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ABSTRACT An elementary model of animal aggregation
is presented. The group-size distributions resulting from this
model are truncated power laws. The predictions of the model
are found to be consistent with data that describe the group-
size distributions of tuna fish, sardinellas, and African buf-
faloes.

Group formation is a widespread phenomenon throughout the
animal kingdom (groups, herds, schools, f locks). Being in
group may reduce the chances of being caught by a predator,
increase foraging efficiency, reduce energy costs, enhance
resistance to toxic environmental conditions, facilitate repro-
duction, or set the stage for social life (1–4). Groups of animals
in general, and fish schools in particular, have been studied
from the viewpoint of the behavioral algorithms that govern
their formation and dynamics at the individual level (6–9), or
from the viewpoint of more macroscopic properties such as
group-size distributions (10–13). The probability distribution
of group sizes in a given species is an important element for
understanding the evolution of grouping in that species; in
particular, the existence of a typical group size may suggest that
such a size has been selected for because it provides an optimal
balance between costs and benefits (14, 15). The notion of
optimal group size, however, is problematic: the actual size of
a group may be quite different from the size that would be
optimal for the group, because it depends on how the group is
formed and on what information and power are available to
the parties (16, 17). This is especially true for large groups,
where the decision for an individual to join a group is likely to
rest with that individual, so that group size may eventually be
limited only by a maximum group size (10), beyond which an
individual is better off alone than in the group. When the
maximum size is large, the group-size distribution may exhibit
a long tail, a possibility that has been overlooked in virtually
all studies (12). Indeed, school size distribution in tropical tuna
fish can be well fitted with a truncated power law over 1.5
decades (18): the number N(s) of caught schools of size s
follows N(s) } s2b, where b is a scaling exponent, up to a cutoff
size sc (Fig. 1). sc sets the scale for the maximum size.

We suggest in this paper that long-tailed (or heavy-tailed)
group-size distributions, including power law distributions,
may be quite generic. In view of this suggestion, one may ask
whether there exist generic proximate mechanisms that pro-
duce such distributions. A possible answer to this question lies
in a simple model of group formation, arguably the simplest
possible model based on elementary cues, inspired by a
physical model of particle aggregation (18–20); this model
generates group-size distributions that exhibit scaling, that is,
power law behavior and slow decay. The model suggests that:

(i) Power law distributions of group sizes result from the
basic dynamics of group formation.

(ii) Mean size is not well defined.

(iii) The cutoff size, which plays a role similar to that of a
maximum size, depends on detailed characteristics of individ-
ual behavior or ecological conditions (food availability, pre-
dation, etc.) that do not modify the scale-invariant properties
of the size distribution. Such factors influence only the distri-
bution’s cutoff size, its crossover from scale-invariant to rapidly
decreasing at large sizes, and possibly its scaling exponent.

(iv) Rapidly decreasing distributions are a limiting case of
truncated power laws when the cutoff size becomes small. The
continuous process of amalgamation and splitting of diffusing
entities leads to a stationary group-size distribution under
given ecological and behavioral constraints (10, 12). Previous
models accounting for group-size statistics have examined by
means of gain–loss equations how the balance between aggre-
gation and splitting under various constraints influences sta-
tionary size distributions (10–13). Stability, or instability,
results from the competition between aggregation and splitting
and their respective characteristic time scales: if splitting is
more rapid than aggregation, large groups cannot form. The
stability or lack of stability of groups influences the properties
of group-size distributions: species with unstable groups tend
to be characterized by more rapidly decreasing distributions
than species with stable groups.

Why have slowly decaying group-size distributions, including
scaling laws, been overlooked in the past, although they are
present in many models of group-size statistics (11, 12, 21)?
Firstly, power law distributions, D(s) } s2b, where D(s) is the
probability that a group be of size s [D(s) is a normalized
version of N(s)], do not have a well-defined mean when b # 2,
a property that may appear nonbiological. Secondly, in his
influential review, Okubo (12) determined that any group-size
distribution should be exponentially decreasing by applying a
maximum entropy principle to the distribution under the
constraint of fixed average size, which implicitly includes the
strong assumption that there exists a well-defined mean and
therefore overlooks slowly decaying distributions such as
power laws with b # 2. It is well known to physicists that such
a procedure leads to exponential (Gibbs–Boltzmann) distri-
butions. The detailed balance assumptions, made by Okubo
(12), also result in exponential distributions, but such assump-
tions are not ethologically justified. Thirdly, long-tailed group-
size distributions are necessarily truncated at a cutoff size
because the population is finite, but truncated power laws must
be distinguished from purely rapidly decreasing ones, as they
exhibit specific properties (they ‘‘violate’’ the central-limit
theorem in practice) (22–24).

The rest of the paper is organized as follows: we first
introduce the model and some of its variants, and then present
group-size distribution data in fish and African buffaloes that
allow the predictions of the model to be tested. The model’s
notations are summarized in Table 1.

MODEL
General Formulation. The only assumption underlying the

model is the tendency of groups of individuals to aggregate
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when they meet, an extension of ‘‘biosocial attraction’’ (2–4,
13). This assumption is clearly minimal for a model of group
formation. We neglect a lot of parameters—streams, temper-
ature, migratory trends, habitat structure, etc.—to keep the
model generic. We assume for modeling purposes that there
are N sites, coarse-grained zones of space, on which n indi-
viduals move. A single individual is a 1-group; m individuals
together form an m-group. One individual may not be the right
atomic unit: some species spend most of their time in group,
and isolated individuals are rarely observed. A 1-group should
then be considered as an atomic object, which may contain a
certain number of individuals.

When an m-group and an h-group move to the same site,
they aggregate to form an (m 1 h)-group. At each discrete time
step, each group hops to a new site. Simulations show that
having groups move asynchronously does not alter the results.

We first consider a mean-field approach, where each group
hops to a randomly selected site. The mean-field model can
apply when there is a large variance in the distance that can be
covered within a day.

The equation that describes the dynamics of the group size
si

t at site i at time t is:

si
t 1 1 5 O

k
W ki

t sk
t 1 I i

t [1]

where I i
t represents the injection of new individuals into site i,

and W ki
t is a random variable representing the motion of a

group located at site k at time t toward site i. Wki
t can take

two values, 0 or 1. We consider that W ki
t does not depend on

t: W ki
t [ Wki. Moreover, the Wki are normalized:

; k,O
i

Wki 5 1 [2]

To analyze this model, we now assume that the injection terms
I i

t are independent equally distributed positive random vari-
ables, the exact distribution of which is irrelevant provided it
has a finite mean.

RESULTS

Mean-Field Model with No Splitting. In the simplest mean-
field model Wki can be 0 with probability 1 2 (1yN) or 1 with
probability 1yN. We first assume that groups do not split at all.
Let us introduce the characteristic function Z1(r, t) of the size
distribution D(s, t) at time t (25):

Z1~r, t! ' ^exp@irs#& 5 O
s50

`

D~s, t! exp@irs#

where ^. . .& denotes the average over all possible realizations
of {Wki} (19, 20). In the mean-field case, we have

Z1~r, t 1 1! 5 F~r!eZ1~r,t!21 [3]

where F(r) [ ^exp[irI t
i]& is the characteristic function of the

injection random variable. To see this, let us write the distri-
bution D(s, t 1 1) of s-groups at time t 1 1 as a function of
D(s, t):

D~s, t 1 1! 5 O
r51

N

~ r
N!S O

s11s21...1sr1sinj5s
p~sinj! P

i51

r

D(s, tD, [4]

where sinj is the size of a particular realization of the injection.
Eq. 4 arises simply from randomly assembling groups at t 1 1.
This formula is equivalent to

Z1~r, t 1 1! 5 F~r! O
i51

N

~N
r!~Zi~r, t!!r

[simply use the definition of Z1(r, t 1 1) in terms of D(s, t 1
1)], hence the result. F(r) can be expanded as F(r) 5 1 1
i^I&r 2 ^I2&r2y2 1 . . . , where ^Im& is the mth moment of the
injection random variable. Taking the limit N3 `, one obtains
the steady-state characteristic function Z1(r) 5 1 2 =2^I&1/2

uru1/2i21/2 1 . . . , so that the size distribution satisfies D(s) }
s23/2 for large enough s (s .. ^I&) (26). It can be shown that the
steady-state characteristic function is also an attractor of the
dynamical process described above, and that any perturbation
is absorbed (27, 28). Simulations confirm that, starting from
any initial condition, one converges to the predicted power-law
distribution. Because of the constant injection of new individ-
uals, the process is nonstationary and the total number of
individuals in the system increases, but this does not prevent a
well-defined limit distribution, D(s), from existing. One should
also remember that the average size computed with D(s) is
infinite. Alternative but related models of coagulation frag-
mentation, based on a Smoluchowski rate equation including

Table 1. Summary of notations used in the paper

Global notations
N(s): number of caught schools of size s
D(s): probability that a group will be of size s
b: exponent of either N(s) or D(s)
sc: cutoff size of either N(s) or D(s)
d: spatial dimension
a, c: fitting parameters for N(s) 5 a s2be2(s/sc)c

General model
N: number of sites
n: number of simulated individuals
Si

t: group size at site i at time t
Ii

t: size of group injected into site i at time t
Wki

t : random hopping variable from site k to site i
D(s, t): probability that a group at time t will be of size s
Z1(r, t): characteristic function of D(s, t)
Z1(r): characteristic function of D(s)
F(r): characteristic function of I i

t

^Im&: mth moment of I i
t

f(x): crossover function of D(s)
Splitting models

p: fraction of each group splitting at each time step
N1: number of sites occupied by a group
^s9&: mean group size over all sites
^s&: mean group size over occupied sites
Psplit(s): probability of splitting for a group of size s
s: maximum allowed group size

Model with attracting site
h: strength of attraction of the attracting site

FIG. 1. Log–log plot of N(s) for free-swimming tuna fish schools in
which three species, yellowfin tuna (T. albacares), skipjack tuna (K.
pelamis), and bigeye tuna (T. obesus) are mixed. Results are given for
7 yr (1976–1982) and for the aggregate distribution of all years. Catch
data from the French purse-seine fishery in the tropical Atlantic Ocean
(18). s (in tons) is the weight of fish caught in a circular net whose
perimeter is about 2 km.

Ecology, Physics: Bonabeau et al. Proc. Natl. Acad. Sci. USA 96 (1999) 4473



a breakup kernel, are also available with comparable results
(21, 29–31).

Mean-Field Model with Splitting. Simple modifications of
the model may affect the critical nature of the process, but the
power law behavior is still observed over a finite range. For
example, one may observe D(s) } s23/2e2s/sc [consistent with
numerical experiments (29 –31)], or more generally
D(s) } s23/2 f(s/sc), where f(x) is a rapidly decreasing crossover
function, the particular form of which depends on the detail of
the aggregation and breakup processes.

Let us assume that the total number of individuals, n, is
constant over time, that a fraction p of each group is separated
from the group at each time step, and that the corresponding
pn individuals are reinjected into the N sites. The expectation
of the injection is then pnyN. D(s, t 1 1) is now given by

D~s, t 1 1! 5 O
r51

N

~ r
N!

z S O
~12p!~s11s21...1sr1sinj!5s

pS sinj P
i51

r

D~si, t!D ,

[5]

because it takes a total size sy(1 2 p) hopping onto the same
site to get a size s at that site after the removal of a fraction
p (it has been assumed for simplicity that removal of particles
occurs after injection). We then obtain

Z1~r, t 1 1! 5 F~~1 2 p!r!eZ1~~12p!r,t!21 [6]

It follows from Eq. 6 that Z1(r) 51 2 i(s9)r 1 . . . : the size
distribution is short ranged with a finite mean ^s9& 5 (1 2
p)nyN. ^s9& is a mean taken over occupied and empty sites; that
is, it includes the statistics of 0-groups. The mean size of
groups, ^s&, does not include empty sites and is related to ^s9&
through ^s& 5 ^s9&NyN1, where N1 is the number of occupied
sites. To evaluate N1 in the stationary state, let us write the
evolution equation of N1, neglecting encounters of order
higher than 2:

N1~t 1 1! < N1~t! 5 pn 2 @~N1~t! 1 pn!~N1~t! 1 pn 2 1!y2N2# ,
[7]

provided N is large enough. Solving for N1, we find that

^s& }
~1 2 p!n1/2

p1/2N
. [8]

^s& increases when p decreases. The same result can be obtained
with another model based on a different formalism (21). In the
present case, the total number of individuals being conserved,
the mean is finite, but the size distribution D(s) retains some
of its power-law characteristics: D(s) } s23/2 f(sysc), exhibiting
a power law behavior for intermediate sizes 0 ,, s ,, ^s&.
When ^s& is small, the power law is not observed, but only an
exponential decay. Simulations have been performed with
different values of p. For small values of p, a power law is
observed up to a large cutoff size, whereas the distribution is
more rapidly decreasing for larger p (Fig. 2: the number N(s)
of observed groups of size s is used instead of the normalized
value D(s). Here, it appears that f(s/sc) 5 e2s/sc.

The model explains deviations from power-law behavior
through several possible modifications that tend to decrease sc.
The cutoff size may result from such factors as some hetero-
geneity in the speed capacities of the individuals in a group, or,
more generally, the ability of a group to maintain its integrity
over only a certain amount of time, which itself may depend on
ecological conditions and individual behavior. The observed
cutoff size in the distribution results from the competition

between aggregation and breakup and depends crucially on the
time scales associated with aggregation and splitting. For
example, the half-life of skipjack tuna schools is likely to be of
the order of weeks (32, 33), whereas other fish (12, 34, 35) are
occasional schoolers, whose schools are not maintained be-
yond a minute. In the first case, a power law distribution is
observed up to a cutoff size, whereas in the second case the
distribution is clearly exponential. Some species exhibit an
intermediate strategy between school integrity over long time
scales and rapid splitting ‘‘pulsating’’ schools (7) exhibit good
cohesion within the day to enhance protection against pred-
ators and split in all directions at night (36).

In a similar vein, Gérard and Loisel (37) have shown that the
increase of group size with habitat openness in large mam-
malian herbivores may result simply from the increased op-
portunity to perceive congeners as habitat openness increases;
this increased opportunity in turn increases the probability of
group formation, whereas more closed habitats tend to lead to
the formation of unstable groups, because individuals may lose
their groups more easily. The interplay between the aggrega-
tion and splitting time scales leads to a shift toward smaller or
larger group sizes: habitat openness plays the role of an
ecological parameter constraining the dynamics of aggrega-
tion.

The model also makes a prediction that may be important
for our understanding of animal groups. Depending on envi-
ronmental conditions, the stability of groups of a given species
may vary; for instance, the lack of food (38), the presence of
predators, or bad sea conditions may reduce group stability. If
the group-size distribution is a truncated power law, and if the
model is relevant to explain the origin of the power law, we
expect that such factors affect the cutoff size and not neces-
sarily the power index b.

In the previous calculations, it was assumed that all ‘‘split-
ting’’ individuals were equally redistributed among all sites, but
this may not be the case. A group of individuals separating
from their group can very well stay together and be reinjected
into the system as a whole. The size distribution of splitting
groups may also be a parameter on its own, and the probability
for a group to split may be related to its size andyor to
environmental parameters. But such modifications of the
model do not destroy scaling properties. Fig. 3 represents the
size distribution obtained from simulations of the mean-field
model with P 5 0.01 and a splitting probability equal to 1 for
any group with a size greater than a maximum allowed size s
(5 20, 50, 80, 100): Psplit(s) 5 0 if s s and Psplit(s) 5 1 if s .
s. Although the crossover function f is more complicated than

FIG. 3. Same as Fig. 2 with P 5 0.01, n 5 50,000, n 5 80,000 and
s 5 20, 50, 80, 100.
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previously, the size distribution exhibits scaling over a certain
range that depends on s, with b 5 1.5.

Mean-Field Model with Splitting and an Attracting Site.
Introducing a special attracting site, such as a drifting log or an
anchored artificial fish-aggregating device (FAD) for fish, or
a water hole for mammals, is ethologically relevant and does
modify the group-size distribution. A special attraction to site
1 can be included into the model by modifying the probabilities
of the transition random variables:

; k,5p~Wk1 5 1! 5 1 2 p~Wk1 5 0! 5
1 1 h

N

; i Þ 1, p~Wki 5 1! 5 1 2 p~Wki 5 0! 5
1
N

2
h

N~N 2 1!
[9]

h is a parameter that quantifies the strength of attraction to site
1. Fig. 4 shows how the introduction of this attracting site alters
the group-size distribution (at the attracting site). Increasing
the attractivity of the site, that is, increasing h, affects the
exponent of the distribution and its global shape. Simulations
were performed with splitting characterized by P 5 0.01. One
might argue that introducing a globally attracting site not only
introduces an implicit spatial scale, but may also not be
realistic. Although this is true, introducing an explicit spatial

scale by assuming that only schools within a certain distance of
the attracting site are attracted leads to similar results.

Spatial Model. Other exponents can be obtained with more
complicated combinations of aggregation and breakup ker-
nels, even in the mean-field case (29–31). But some of the most
interesting predictions of the model are related to the effective
dimension d of the space in which animals move. Although the
ocean is three-dimensional, fish may not use the whole ocean.
They may be constrained to swim along the coasts, over the
continental shelf, or be limited in depth by physiological
constraints, or, alternatively, may move so randomly from any
location to any other location that space is irrelevant (mean-
field). The same observation is true for many animal species,
that, for many reasons, may not fully use their spatial envi-
ronment.

The exact value of the exponent, in a version of the model
on a d-dimensional lattice (groups hop to neighboring sites
only) has been obtained by Takayasu et al. (19) for d 5 1: b 5
4y3. For other dimensions, simulations performed by the same
authors indicate that b 5 1.465 6 0.003 for d 5 2, b 5 1.491 6
0.007 for d 5 3 (19): b increases when d increases. There is a
simple explanation for this trend: a small value of b indicates
that there are many large groups, which is more likely to
happen in low dimension, where groups have a higher prob-
ability of meeting and coalescing. Therefore, we expect the
exponent b to increase with effective dimension, with a
maximum value of b 5 3y2, obtained when there is no spatial
constraint on movement. The model on a lattice can be
generalized to more complicated and realistic models with, for
example, tunable fractal dimension: the space in which animals
actually move may not have an integer dimension, so that a
whole range of exponents may be expected depending on
effective space dimension.

Data. The data presented in this section are catch-per-set
data for tuna fish and sardinellas and are direct-count data for
African buffaloes. Biases are discussed in the last section of the
paper. We are looking for fits of the type N(s) } a s2b f(sysc),
with f(x) 5 e2xc

, where a, b, c and sc are four fitting parameters
and f is a crossover function from power law to exponential
decay. For simplicity, we restrict our attention to c 5 1, 2. We
focus here on two points: (i) whether the observed data are
consistent with power law distributions, and (ii) whether space
dimension influences the size distribution in a way predicted
by the model.

We have identified two cases in which the effective dimen-
sion may be less than three for fish schools (although the extent
of the dimensional reduction that occurs is difficult to quantify
accurately): (i) tuna fish in the presence of a drifting log or a
FAD, and (ii) some species of sardinellas [clupeid fish
(Sardinella maderensis and S. aurita)], which do not make use
of the full three-dimensional oceanic space. By contrast, the
swimming volume of tuna fish is larger because it is con-
strained only by large transoceanic ecological boundaries.
According to acoustic telemetry experiments (39–41), the
common swimming speed for tuna fish is between 0.5 and 2
mzs21, which may correspond to daily covered distances up to
70 km and lead to quite a variance in the locations they can
reach, suggesting that the mean-field model may apply. But it
is unclear whether free-swimming tuna fish can be adequately
described by the mean-field model or by the three-dimensional
model. The model predicts that as the effective dimension
decreases, one should still observe a power law distribution,
with an exponent smaller than the mean-field exponent b 5
1.5.

Free-Swimming Tuna. Fig. 5 shows the school size distri-
bution of free-swimming tuna fish (18), aggregated over 7 yr
(1976–1982), in which three species, yellowfin tuna (Thunnus
albacares), skipjack tuna (Katsuwonus pelamis), and bigeye
tuna (T. obesus) are mixed. The dotted line corresponds to a
fit of the type s2be2(s/sc)c

, with a 5 3,497, b 5 1.49, c 5 2, sc 5

FIG. 2. Log–log plot of N(s). Simulation with n 5 100,000 sites, n 5
80,000 individuals, P 5 0.01, 0.3, 0.5. Simulation run 5 106 time steps.

FIG. 4. Same as Fig. 2 with P 5 0.01 and h 5 0, 0.001, 0.01, 0.05,
and 0.1.
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29.7 (r . 0.999). The power law is relevant over 1.5 decades.
The solid line shows the distribution obtained with the mean-
field model with P 5 0.1 (r . 0.99). This school size distribution
is consistent with both the mean-field model of aggregation
(b 5 1.5) and the spatial model in three dimensions (b 5
1.491).

Tuna Fish Schools Caught in the Vicinity of a Fish-
Aggregating Device. Data originating from fishing performed
in the vicinity of a FAD, aggregated over 7 yr (1976–1982) (18)
are well fitted by a rapidly decreasing distribution, such as an
exponential distribution (Fig. 6). Attraction to the FAD may
introduce one or several scales: the probability of a school to
be attracted toward the site per unit time introduces a temporal
scale, and the distance of attraction of the site, in a spatially
explicit model, introduces a spatial scale. However, a power
law with a small cutoff size (a s2be2(s/sc)c

) is still consistent with
the data (dotted line, Fig. 6): a 5 1,113.3, b 5 0.698, c 5 1, sc
5 3.72 (r . 0.999) (power law over 0.5 decade). Moreover,
such a power law is also consistent with the dimensional

reduction that results from the presence of the FAD; it can be
argued that the effective dimension is less than 1 because the
FAD is a point, so that b should be smaller than 1.3. The solid
line in Fig. 6 corresponds to distribution obtained with the
mean-field model supplemented with an attracting site, with
P 5 0.1, n 5 80,000, n 5 100,000, and h 5 0.05.

Sardinellas. Fig. 7 shows the size distribution of schools of
sardinellas (S. maderensis and S. aurita) caught in the upwelling
areas of the West African coasts, aggregated over 18 yr
(1970–1987) (42). The dotted line represents a fit of the type
a s2be2(s/sc)c

with a 5 503, b 5 0.95, c 5 2, sc 5 59.8 (r . 0.999)
(power law over 1.6 decades). This fit is consistent with the
dimensional reduction hypothesis. The effective dimension lies
between 1 and 2, because sardinellas tend to swim along the
coasts above the continental shelf, which reduces the effective
dimension by 1. Moreover, the vertical range of this species is
also constrained by the depth of the continental shelf, that is,
between 1 and 200 m, which further reduces the effective
dimension by an unknown factor.

African Buffaloes. Fig. 8 shows the herd size distribution for
the African buffalo (Syncerus caffer) (43). Two fits are repre-
sented: one of the form a s2b with a 5 9,998 and b 5 1.15, and
one of the form a e2s/sc, with a 5 59 and sc 5 297. One unit
of s in Fig. 8 corresponds to 10 individuals. The power law
seems to match the data in the large size region, whereas the
exponential fit is better for small sizes; this result is consistent
with the observation that small groups are unstable (disinte-
gration occurs on a faster time scale than aggregation) and
large groups are stable (43). Moreover, the b 5 1.15 exponent
obtained for animals whose movements take place in a two-
dimensional space is consistent with the dimensional reduction
hypothesis and suggests that the model can apply to terrestrial
animals as well. In large vertebrates, such as ungulates, habitat
openness, which can be characterized by the fractal dimension
of the spatial distribution of open patches, may further reduce
the effective dimension because patches of closed habitat (for
example, forest patches) prevent individuals from seeing each
other and groups from forming (37).

DISCUSSION

The scaling exponent b clearly decreases when the effective
space dimension decreases, which is consistent with the mod-
el’s prediction. That the exact values of some of the exponents

FIG. 5. School size distribution of free-swimming tuna fish aggre-
gated over 7 yr (same as Fig. 1). The dotted line corresponds to a fit
of the type a s2be2(s/sc)c, with a 5 3,497, b 5 1.49, c 5 2, sc 5 29.7. The
solid line has been obtained with the mean-field model (P 5 0.1).

FIG. 6. School size distribution of tuna fish caught in the vicinity
of a FAD aggregated over 7 yr (1976–1982). The dotted line corre-
sponds to a fit of the type a s2be2(s/sc)c, with a 5 11,13.3, b 5 0.698,
c 5 1, sc 5 3.72. The solid line has been obtained with the mean-field
model supplemented with an attracting site (P 5 0.1, n 5 80,000, n 5
100,000, h 5 0.05).

FIG. 7. School size distribution of sardinellas (S. maderensis and S.
aurita) caught in the upwelling areas of the West African coasts,
aggregated over 18 yr (1970–1987) (42). The dotted line corresponds
to a fit of the type a s2b e2(sysc)c, with a 5 503, b 5 0.95, c 5 2,
sc 5 59.8.
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measured on the empirical data are not in perfect agreement
with the values predicted by the model is certainly an issue. It
may be explained partly by biases in the data and partly by the
fact that small cutoff sizes tend to artificially reduce the
estimated value of b.

Let us discuss the biases that exist in the fish data sets. Such
biases have never been systematically measured; we assumed
that they were consistent across all data sets and did not
qualitatively alter the results. There are several ways of esti-
mating school size (acoustic surveys, aerial surveys, light
detecting and ranging, catch per set). We use catch per set data
because they are easily accessible, relatively inexpensive, and
large numbers of observations are available. But a catch made
by a purse seiner does not always correspond to an entire
school: net saturation leads to an underestimation of school
size. Nevertheless, a study based on 18 acoustic surveys of
pelagic fish in different tropical areas also indicates that the
distribution of school biomass per 1.5 km daytime distance is
long tailed and close to a negative exponential function (44).
On the other hand, fishermen may not always be interested in
small schools, which leads to an underestimation of the number
of small schools. Another minor problem is the presence of
individuals from different species in a catch, but counting them
together, as we have done, may be ethologically relevant
because they do school together. Finally, catch-per-set data is
expressed in school weight, which is different from the number
of individuals. In certain species of fish, such as tuna, there can
be large differences between the weights of individuals, and
larger fish form heavier schools with fewer individuals, in
contrast with small fish, which form large but less heavy
schools. The model, however, is rather insensitive to this issue:
the mass distribution of the atomic elements is included into
the injection term, and the detail of this distribution is
irrelevant to the scaling properties, provided the distribution
has a well-defined first moment.

The consistency between the ordering of exponents in the
empirical data and the ordering predicted by the model is
remarkable enough that, despite the factors that bias size
estimates, it is a strong evidence that the elementary model of
aggregation contains the essential ingredients of animal group-
ing behavior that influence group-size distribution. The model
suggests that long-tailed group-size distributions result from

the basic mechanisms of aggregation; there is no need to
invoke other mechanisms. Although more data on other
animal species are needed, we believe that this model applies
to a wide spectrum of cases where group size can be large and
aggregation is based on simple cues.
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FIG. 8. Herd size distribution of African buffaloes (S. caffer) (43).
One unit of s corresponds to 10 individuals). Two fits are represented:
one of the form a s2b with a 5 9,998 and b 5 1.15, and one of the form
ae2s/sc with a 5 59 and sc 5 297.
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