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ABSTRACT Many biological processes exhibit complex kinetic behavior that involves a nontrivial distribution of rate con-
stants. Characterization of the rate constant distribution is often critical for mechanistic understandings of these processes.
However, it is difficult to extract a rate constant distribution from data measured in the time domain. This is due to the numerical
instability of the inverse Laplace transform, a long-standing mathematical challenge that has hampered data analysis in many
disciplines. Here, we present a method that allows us to reconstruct the probability distribution of rate constants from decay data
in the time domain, without fitting to specific trial functions or requiring any prior knowledge of the rate distribution. The ro-
bustness (numerical stability) of this reconstruction method is numerically illustrated by analyzing data with realistic noise and
theoretically proved by the continuity of the transformations connecting the relevant function spaces. This development en-
hances our ability to characterize kinetics and dynamics of biological processes. We expect this method to be useful in a broad
range of disciplines considering the prevalence of complex exponential decays in many experimental systems.

INTRODUCTION

A wide variety of biological and physical processes, such as

chemical and enzymatic reactions (1,2), conformational tran-

sitions of proteins and nucleic acids (3–5), drug metabolism

(6), and relaxation in liquids (7), involve complex kinetics

and dynamics that are best described by a distribution of

first-order rate constants. To better understand these pro-

cesses, one often needs to infer the probability distribution of

rate constants from kinetic data obtained in the time domain.

This task is known as the inverse Laplace problem, a well-

known mathematical challenge in numerical analysis. The

demand to solve this problem has recently been elevated by

single-molecule experiments, which reveal unexpectedly com-

plicated dynamics in many biological and physical processes

(1,3–5,8–16).

Fitting procedures and numerical inversion of the Laplace

transform have been previously proposed to tackle the

inverse Laplace problem and to extract rate constants or

distributions of rate constants from time domain data. It is

well known that fitting methods suffer from arbitrariness

associated with the number of fitting parameters. Sophisti-

cated algorithms, such as hidden Markov modeling (17,18),

maximum likelihood method (19), and Padé-approximant

approach (20,21), were designed to remove such arbitrari-

ness. These methods are often used to handle discrete distribu-

tions of rate constants. Direct inversion of Laplace transform

can be used to derive arbitrary probability densities of rate

constants, but suffers from numerical instability when

applied to experimental data which are intrinsically noisy

(22,24). Regularization methods such as Tikhonov regula-

rization (25–27) and the maximum entropy method (28,29)

have been used to stabilize the numerical inversion of the

Laplace transform, but the results of these methods depend

on the choice of a regularization parameter, the proper value

of which is often difficult to determine without prior knowl-

edge of the rate constant distribution.

In this work, we have developed a new method, the phase

function approach, for directly reconstructing the probability

distribution of rate constants from time domain data without

requiring any prior knowledge of the distribution. This

method can treat both discrete and continuous distributions

in a unified framework without fitting to any trial functions.

Unlike the direct inverse Laplace transform, this method is

robust and stable against noise.

RESULTS

Kinetic data in the time domain

Kinetic experiments often give rise to a nonnegative signal

p(t) that decays as time t increases. A well-known example

for such a signal is the number of reactant molecules as a

function of reaction time. In a general context, one can model

p(t) as a superposition of exponential decays with different

decay rate constants, to shed light on the underlying mech-

anism. Our goal is to reconstruct this distribution of decay

rate constants from p(t).
Without losing generality, we describe here a concrete

example of p(t) akin to single-molecule experiments. An

important quantity obtained from these experiments is the

dwell time of an individual molecule in a given microscopic

state (such as the reactant state) before transition to another

state (such as the product state).
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A dwell-time histogram p(t), p(t) [ Prob ft # dwell time

, t 1 Dtg/Dt, can be constructed, where Prob fg stands for

the probability to find the condition specified in fg satisfied.

As the time interval Dt approaches zero, p(t) becomes the

probability density of the dwell time t and the normalization

condition
R1N

0
pðtÞdt ¼ 1 is naturally satisfied. The function

p(t) determined in this way from single-molecule experi-

ments is equivalent to a normalized reaction/transition time-

course obtained in ensemble experiments. For convenience,

we will refer to p(t) as the kinetic data in the time domain.

When the transition from the first state to the second is a

Markov process with a single rate constant k, p(t) follows a

single exponential decay p(t) ¼ ke�kt. For complex biolog-

ical systems, there are often multiple transition pathways that

connect different microscopic states, so the transition kinet-

ics are described by a distribution of rate constants instead of

a single rate constant. A common way to describe the dis-

tribution of rate constants is by the probability density

function r(k), which is related to the time domain data by the

Laplace transform p(t) ¼
R

r(k)ke�ktdk. However, the

probability density function is in general nonmonotonic,

unbounded, and may contain singularities. In some cases, the

probability density function may not even be well defined

—a well-known example is the devil’s staircase probability

distribution observed in physical systems of fractional dimen-

sionality. These function properties of r(k) make the inverse

Laplace transform that converts p(t) into r(k) intrinsically

unstable, such that a small perturbation in p(t) can often lead

to wild, unphysical changes in the reconstructed r(k).

In this work, we overcome the stability problem by de-

scribing the rate constant distribution with a cumulative dis-

tribution function defined as F(k) [ Prob fthe rate constant

, kg. The time-domain data function p(t) is related to F(k) by

pðtÞ ¼ ðT̂FÞðtÞ[
Z

ke�kt
dFðkÞ: (1)

Here, T̂ stands for the transformation between F(k) and p(t).
We will describe a method to invert F(k) from p(t). Unlike

the probability density r(k), a nonnegative function (30) that

is not necessarily bounded, the function F(k) is a bounded

and nondecreasing function of k. These functional properties

of F(k) ensure that the inversion from p(t) to F(k) will be

stable. A rigorous proof of stability will be provided in

Theoretical Foundation of the Robustness. In the following,

we will present the mathematical formalism to reconstruct

F(k) from p(t).

Mathematical formalism for the reconstruction of
rate constant distributions

It is well known that one can obtain the amplitudes of dif-

ferent oscillatory modes contained in a signal by performing

a Fourier transform. Exponential decay can be described as

oscillation with a purely imaginary frequency v¼ ik. We can

thus use Fourier analysis followed by a conversion between

real and imaginary frequencies to decompose p(t) into a super-

position of exponential decays with different rate constants.

Definition of the phase function

Following the above rationale, we first perform the Fourier

transform of p(t) with a complex-valued frequency v ¼
Rev 1 i Imv as

p̃ðvÞ ¼
Z 1N

0

pðtÞ e�ivtdt for Imv # 0:

The condition Imv # 0 ensures the convergence of the

integral. Naturally, we can write p̃ðvÞ as jp̃ðvÞj eifðvÞ, where

jp̃ðvÞj is the modulus of p̃ðvÞ and fðvÞ[ arg p̃ðvÞ is the

phase of p̃ðvÞ. Importantly, the phase function fðvÞ ¼
Im ln p̃ðvÞ contains complete information about p̃ðvÞ, be-

cause p̃ðvÞ is an analytic function. This is reminiscent of the

Kramers-Kronig theory of chromatic dispersion, which states

that the frequency-dependent optical response of a dielectric

material can be fully characterized through the absorptive

part Imx(v) of the complex susceptibility function x(v). As

the phase function f(v) is bounded and thus numerically

much easier to handle than the unbounded p̃ðvÞ, we first com-

pute f(v) and then use it as the basis for our reconstruction

formalism.

The Fourier transform of p(t) in Eq. 1 and the analytic con-

tinuation of the Fourier transform allow us to obtain p̃ðvÞ ¼R
ð11iv=kÞ�1dFðkÞ for Rev 6¼ 0. Thus, the phase function

of p̃ðvÞ is given by

fðvÞ ¼ arg

Z
1 1

iv

k

� ��1

dFðkÞ for all Rev 6¼ 0: (2a)

To obtain a well-defined phase function f(v) for all complex

values of v, we further define

fðikÞ[ lim
e/0

1
fðik � eÞ for ReðikÞ ¼ 0: (2b)

It is worth noting that the function f(v), as the imaginary

part of the analytic function ln p̃ðvÞ, must satisfy the Laplace

equation @2f(v)/@(Rev)2 1 @2f(v)/@(Imv)2 ¼ 0 for all

Rev 6¼ 0. In practice, we use this property to obtain the

boundary values f(ik) from f(v) by numerically solving this

Laplace equation.

The phase function fully determines the rate
constant distribution

It is interesting to note that the phase function f(ik) contains

all the necessary information for us to reconstruct the rate

constant distribution F(k) (Fig. 1). This correspondence

can be understood intuitively through the following three

rationales:

1. The boundary value f(ik) along with the asymptotic be-

havior f(v) ; arg(1/iv), jvj/ N uniquely determines

the harmonic function fðvÞ[ Im ln p̃ðvÞ as in the case of
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a two-dimensional electrostatic field, where the boundary

electric potential fully determines the potential values in

the interior of a region.

2. The phase function f(v), which is the imaginary part of

ln p̃ðvÞ (fðvÞ[ Imlnp̃ðvÞ), uniquely determines the real

part Relnp̃ðvÞ, and thus the function p̃ðvÞ in full, in the

same way that the absorptive (imaginary) part of sus-

ceptibility function determines the dispersive (real) part

according to the Kramers-Kronig relations.

3. The function p̃ðvÞ has a one-to-one correspondence to

p(t) through the Fourier transform, which in turn has a

one-to-one correspondence to F(k), owing to the unique-

ness of the inverse Laplace transform.

To illustrate this correspondence between f(ik) and F(k)

geometrically, we use a simple example of multiple expo-

nential decay. Consider a distribution function F(k) with two

stepwise jumps (Fig. 2 a), which corresponds to a double ex-

ponential decay in the time domain pðtÞ ¼ a1k1e�k1t1

a2k2e�k2t. The corresponding analytic continuation of the

Fourier transform p̃ðikÞ ¼ a1k1ðk1 � kÞ�1
1a2k2ðk2 � kÞ�1

diverges at k1 and k2, and vanishes at a node k
ð0Þ
1 , which satisfies

a1 ¼ 1 – a2 ¼ (1 – k1=k
ð0Þ
1 )/(1 � k1/k2). The two singularities

and one node in p̃ðikÞ geometrically translates into two

0-to-p jumps in the phase function f(ik) at k1 and k2, as

well as one p-to-0 jump at k
ð0Þ
1 , from which the branching

ratio a1: a2 can be determined (Fig. 2 a). Thus the dis-

continuity points in the phase function f(ik) fully determine

the discretely distributed rate constants and the branching

ratio. This algebraic approach can be generalized to any

m-component multiple-exponential decay pðtÞ ¼ +m

r¼1
arkre

�krt

(Fig. 2 b). In this case, the Fourier transform takes the

form of p̃ðikÞ ¼ +m

r¼1
arð1� k=krÞ�1

, and thus has m singu-

larities at k1,k2, . . . , km, where p̃ðikÞ diverges and (m – 1)

nodes at k
ð0Þ
1 ; k

ð0Þ
2 ; . . . ; k

ð0Þ
m�1 where p̃ðikÞ ¼ 0. Accordingly,

the phase function fðikÞ ¼ arg p̃ðikÞ flip-flops (2m – 1)

times between 0 and p: The k-values at which f(ik) ex-

hibits a discontinuous jump from 0 to p correspond to the

discretely distributed rate constants k1,k2,. . . , km, while the

k-values at which f(ik) jumps from p to 0 correspond

to the nodes k
ð0Þ
1 ; k

ð0Þ
2 ; . . . ; k

ð0Þ
m�1 (Fig. 2 b). The k

ð0Þ
1 ;

k
ð0Þ
2 ; . . . ; k

ð0Þ
m�1 values contain information necessary to

determine the branching ratios a1 : a2 : . . .: am. This illus-

tration provides a geometrical method to infer a discrete

distribution F(k) from the phase function f(ik), which is in

turn deduced from the time domain data p(t).
In a more general context that covers both continuous and

discrete distributions of rate constants, we have proved rig-

orously that the phase function f(ik) has one-to-one cor-

respondence with the time domain data p(t) ¼
R

ke�ktdF(k)

and thus can uniquely determine F(k) through the following

equation:

FðkÞ ¼ðT̂� 1
ŜfÞðkÞ[ lim

e/0
1

Z k

0

dk9
sinfðik9� eÞ

pk9

�

3 exp �
Z k10

k�0

ln

����1� k9 1 ie
k$

���� dfðik$Þ
p

" #)
:

(3)

FIGURE 1 The transformations that link the kinetic data p(t) in the time

domain, the rate constant distribution F(k), the phase function f(v), and its

value at the imaginary axis f(ik). FT stands for the Fourier transform.

FIGURE 2 The algebraic relation be-

tween the phase function f(ik) and the

rate constant distribution F(k) for dis-

crete distributions. (a) A specific exam-

ple of double exponential decay. Here,

F(k) contains two discontinuous jumps

at k1 and k2, corresponding to two dis-

cretely distributed rate constants with

amplitudes of a1 and a2, respectively.

The phase function f(v) is presented

by the orientation of the unit vectors in

the phase portrait. The corresponding

f(ik) contains two 0-to-p jumps at k1

and k2 and a p-to-0 jump at k
ð0Þ
1 , which

satisfies a1 ¼ 1 � a2 ¼ (1 � k1=k
ð0Þ
1 )/

(1 � k1/k2). (b) A general multiple

exponential decay with m rate con-

stants. The phase function f(ik) flip-

flops between 0 and p according to the

sign changes in p̃ðikÞ. The k-values at

which f(ik) undergoes a 0-to-p jump

correspond to locations of rate constants k1,k2,. . .,km; the nodes k
ð0Þ
1 ,k

ð0Þ
2 ; . . . ; k

ð0Þ
m�1 at which f(ik) undergoes a p-to-0 jump determine the branching ratios a1 :

a2 : . . .: am, where ar ¼
Qm�1

q¼1 j1� kr=k
ð0Þ
q j=

Q
1#q#m;q 6¼r j1� kr=kqj for r ¼ 1,2, . . . , m.
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Here, T̂�1Ŝ stands for the mapping from f(ik) to F(k), while

the upper bound �kk and lower bound k of kinetic rate con-

stants in the limits of integration are set by the experimental

time resolution and maximum observation time, respectively.

The derivation of Eq. 3 was accomplished in three major

steps following the three aforementioned physical relations

between f(ik) and f(v), between f(v) and p̃ðvÞ, and be-

tween p̃ðvÞ and F(k) (see section S1, Supplementary Mate-

rial, for the detailed derivation).
In summary, the above formalism allows us to reconstruct,

using Eq. 3, the cumulative rate constant distribution F(k)

from the phase function f(ik), which is in turn derived from

time domain data p(t) using Eq. 2 (Fig. 1). We thus refer to

this reconstruction method as the phase function method.

Importantly, this reconstruction process does not rely on any

fitting procedure.

A geometrical constraint of the phase function

The nondecreasing property of F(k) leads to an important

geometric constraint on the phase function:

0 # fðvÞ# arg
1

iv
, p for Rev , 0: (4)

This geometrical constraint can be understood physically by

noticing that the expression
R

(1 1 iv/k)�1dF(k) in Eq. 2a

can be regarded as the center-of-mass for a system of par-

ticles distributed in the circular section 0 # arg z # arg(1/iv)

, p of the complex z-plane. Therefore the phase-angle of

this center-of-mass position, f(v)¼ arg
R

(1 1 iv/k)�1dF(k),

should also lie in the same circular section, giving 0 # f(v) #

arg(1/iv) , p (see section S1.1, Supplementary Material, for

details). Conversely, this geometric constraint also implies

that the corresponding rate constant distribution F(k) is a

bounded and nondecreasing function (as judged from Eq. 3),

which ensures the numerical stability of the reconstruction,

as we shall prove in Theoretical Foundation of the Robustness.

We impose this geometric constraint on the phase function

during the numerical implementation as an error-correcting

device to ensure the stability and accuracy of the reconstruc-

tion. As the constraint applies to all physically meaningful

rate constant distributions, enforcing this constraint does not

bias the result toward any particular probability distribution

and can be used to (partially) correct noise-induced errors for

all types of kinetic data without requiring additional informa-

tion about the rate distribution.

General applicability of the reconstruction formalism

When analyzing experimental data, one is often curious

about whether the distribution F(k) is dispersed smoothly

throughout the k-domain or if it involves rate constant dis-

tribution in isolated regions well separated by gaps. The

phase function approach outlined above provides this

information in a straightforward way. The identity sinf(ik9)

¼ 0 defines k9 values that belong to disallowed rate constant

gaps, which constitute plateaus in F(k). It is important to note

that although F(k) is presented as a limit of continuous func-

tions in Eq. 3, F(k) itself can be either continuous or discon-

tinuous. From the properties of uniform convergence, we

rigorously establish the following criteria for the continuity

of F(k) (see section S1.3.3, Supplementary Material, for a proof):

1. If f(ik9 1 i0) � f(ik9 � i0) , p, then F(k) is continuous

at the point k9.

2. A 0-to-p jump in f(ik) (f(ik9 1 i0) � f(ik9 � i0) ¼ p)

exactly implies a discrete jump of F(k).

In particular, when the phase function f(ik) presented in

the upper panel of Fig. 2 b is plugged into Eq. 3, we obtained

an F(k) function exactly as described by the lower panel of

Fig. 2 b, confirming the purely algebraic argument given for

the discrete rate constant distributions.

Numerical implementation of the reconstruction

To numerically reconstruct the rate constant distribution F(k)

from the time domain data p(t) using the phase function

method, we wrote a computer program that carries out the

three major tasks in the process. First, the program computes

the Fourier transform of p(t) using a fast Fourier transform

algorithm to determine the phase function f(v). This allows

us to map discrete data points in the time domain to the phase

function f(v) in the lower half v-plane, Im v # 0 (see

section S2.1.1, Supplementary Material, for details). Next, the

program analytically continues f(v) to the imaginary axis to

obtain f(ik). This is done by solving the Laplace equation

using a four-point finite-difference method (see section

S2.1.2, Supplementary Material). In the third step, F(k) is

calculated from f(ik) using Eq. 3 through a numerical inte-

gration process (see section S2.1.3, Supplementary Material).

Although the direct output of this algorithm is the cu-

mulative probability distribution F(k), we also evaluated the

probability density of ln k, to provide a more intuitive picture

of what the rate constant distribution looks like. Typically,

the rate constant of a biological or chemical process is related

to the activation free energy DG* by the Arrhenius equation

k } exp(�DG*/kT). Thus dF(k)/dlnk provides an intuitive

description of the activation energy distribution. To evaluate

dF(k)/dlnk from F(k), we estimated the finite-difference

value DF(k)/Dlnk where the dynamic window size Dlnk is

chosen point-by-point such that the increment F(k) in this

window represents a statistically significant subpopulation

(see section S2.2, Supplementary Material).

Importantly, the numerical implementation of the phase

function method contains no free fitting parameters and need

not be adjusted according to the different types of rate con-

stant distributions. This numerical analysis gives a uniform

error bound and noise amplification ratio for all types of

input data (see section S2.3, Supplementary Material). The only

a priori information required to provide the stability in the
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phase function approach is the geometric constraint on the

phase function (Eq. 4), which ensures that rate constant dis-

tribution F(k) is a bounded and nondecreasing function, and

therefore physically meaningful as a cumulative probability.

Numerical illustration of the robustness

To test the numerical performance of the phase function

method, we analyzed simulated kinetic data with realistic

noise. Due to the limited number of transition/reaction events

detected in single-molecule measurements, these experi-

ments often generate relatively noisy data. We thus used

simulated single-molecule data as test cases to demonstrate

the robustness of the reconstruction method when dealing

with noisy data. Specifically, for each preset rate constant

distribution F(k) (see for example Fig. 3 a), we used Monte

Carlo simulation to generate random integers (R) that obey:

Prob ft # R , t 1 Dtg [ p(t)Dt with p(t) ¼
R

ke�ktdF(k).

These integers model the dwell times of individual mole-

cules in a given microscopic state before transition to another

state with rate constants obeying the distribution F(k). In

each of the following examples, 8000 dwell times were

generated. This simulation naturally takes into account two

major sources of noise encountered in single-molecule exper-

iments: the Poisson noise associated with measuring a finite

number of events and the digitization noise associated with

finite time resolution. The statistical histogram of the simulated

dwell times, p(t) (Fig. 3 b), represents the time domain data.

We then analyzed the time domain data p(t) by the phase

function method to obtain a rate constant distribution Frec(k)

and compared Frec(k) with the preset F(k) (Fig. 3 c).

First, we tested the performance on continuous rate con-

stant distributions. To model a commonly encountered sce-

nario, i.e., the Gaussian distribution of the activation energy

DG*, we preset F(k) to reflect a Gaussian distribution of ln k.

It is evident from Fig. 3 c that the reconstructed Frec(k)

faithfully reproduces the preset F(k). More complex biolog-

ical processes often exhibit kinetics that involves distinct

regions of rate constants. For example, enzymes with differ-

ent conformations can have different reaction rates. To model

this behavior, we preset F(k) to include uniform distributions

of DG* (or ln k) in two separate regions (Fig. 3, d and e).

The Frec(k) reconstructed using the phase function method

again agrees quantitatively well with the preset F(k) (Fig.

3 d). The probability density of lnk, dF(k)/dlnk, shows two

well-separated regions of rate constants with sharp bound-

aries, as expected from the preset distributions (Fig. 3 e). The

reconstruction result obtained from the phase function method

is clearly more satisfactory than that obtained from inverse

Laplace transform with regularization to remove numerical

instability (compare Fig. 3 e with Fig. 3 f). As a widely used

regularization method, a specific form of Tikhonov regulari-

zation stabilizes inverse Laplace transform by arbitrarily

enforcing smoothness of the rate constant distribution and

penalizing curvature associated with the distribution function

(27). The reconstructed rate constant distribution using this

FIGURE 3 Reconstruction of contin-

uous F(k) from simulated kinetic data

p(t). (a) A preset F(k) that describes a

Gaussian distribution of ln k. (b) The

time domain data p(t) generated from

F(k) using Monte Carlo simulations. (c)

Comparison between the Frec(k) recon-

structed from p(t) using the phase

function method (red line) and the

preset F(k) (black line). (d) Comparison

between the Frec(k) reconstructed from

p(t) using the phase function approach

(red line) and the preset F(k) (black
line), which describes uniform distri-

butions of ln k in two separate regions

of the k-domain. The inset depicts the

time domain data p(t) generated from

F(k) using Monte Carlo simulations. (e)

Comparison between the probabil-

ity density, dF(k)/dlnk, reconstructed

using the phase function approach (red

line) and the preset probability den-

sity (black line). (f) The probability

density of rate constant dF(k)/dlnk
reconstructed using the inverse Laplace

transform with Tikhonov regularization. We use S. Provencher’s software CONTIN (27) to realize the regularization, which minimizes the estimator

x2ð
R1N

t
pðtÞ dt;

R
e�ktrðkÞ dkÞ1a2 +

k
½rð2ÞðkÞ�2, where x2 measures the chi-squared deviation between the time domain data p(t) and the time domain fit

using the probability density r(k)¼ dF(k)/dk, and the second-order derivative r(2)(k) measures the smoothness of r(k) in the k-domain. The results for different

values of the penalization parameter a are shown in colored lines in comparison with the preset probability density (black line). Error bars for the reconstruction

are estimated in section S2.3 in the Supplementary Material.
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regularization method depends sensitively on the penalization

parameter a (Fig. 3 f). Even at the optimal a-value, which is

difficult to choose without prior knowledge of the k distribu-

tion, the reconstruction fails to reproduce the sharp features in

the probability density of k (Fig. 3 f).
Next, we tested discrete distributions of the rate constant k.

For this purpose, we chose three preset F(k) functions that

reflect double, triple, and quadruple exponential decays. In

all three cases, the Frec(k) reconstructed from simulated p(t)
using the phase function approach agrees well with the preset

F(k) (Fig. 4, a–c). We note that the broadening of the

discontinuous steps in F(k) is not a reconstruction error but

reflects an intrinsic finite sampling effect. As only a finite

number of the dwell times (8000) were used to build the time

domain histogram p(t), the Poisson counting noise (1=ffiffiffiffiffiffiffiffiffiffi
8000
p

� 1%) leads to a dispersion in the k-domain with a

natural finite sampling width of d ln k ; 60.2, i.e., a single

rate constant k and a dispersed distribution of rate constants

between 0.67 k and 1.33 k generate p(t) functions that are

indistinguishable to within 1% (see section S2.3, Supple-

mentary Material). Remarkably, the reconstruction even works

well for high-order exponential decays, which typically can-

not be fit with confidence. Indeed, in the case of the qua-

druple exponential decay, whereas both triple and quadruple

exponential fits appear to describe the time-domain data well

(Fig. 4 d), the phase function reconstruction clearly indicates

four separate regions of rate constants, the center locations

and widths of which agree quantitatively with the preset rate

constants and the natural finite sampling width, respectively

(Fig. 4 e). Deviation at the fastest rate constant is due to

errors associated with finite time resolution of the data. In

contrast, the rate distributions obtained from the inverse

Laplace transform using Tikhonov regularization depend

strongly on the choice of the penalization parameter (Fig. 4 f).
Moreover, the optimal value of the penalization parameter

a for the continuous distribution given in Fig. 3 f and that for

the discrete distribution given in Fig. 4 f are dramatically

different, making the choice of a extremely difficult in the

cases where the smoothness of the distribution is not known

a priori. This problem is exacerbated when considering a

mixed distribution comprising both narrow and broad dis-

tributions in different regions of k-domain (Fig. 5). In this

case, the Tikhonov regularization failed to produce a sat-

isfactory rate distribution with any a-value. In contrast, the

phase function method is a direct inference method that

contains no fitting parameters and thus works well for ar-

bitrary distributions of k (Figs. 3–5), including the mixed

distribution comprising both discrete and continuous distri-

butions in different regions of k (Fig. 5).

Theoretical foundation of the robustness

The robustness (numerical stability) of the phase function

method illustrated by the above examples is not accidental,

but supported by a rigorous theoretical basis, which lies in

the continuity of transformations linking the relevant func-

tion spaces. We have shown that the 10 transformations

connecting the four function spaces comprising admissible

time domain data p(t), phase function f(v) for Imv # 0, its

value at the imaginary axis f(ik), and rate constant dis-

FIGURE 4 Reconstruction of discrete

F(k) from simulated kinetic data p(t).

(a–c) Comparison between the Frec(k)

reconstructed from p(t) using the phase

function approach (red line) and the

preset F(k) (black line). Gray bars in-

dicate the natural finite sampling width

set by the Poisson noise arising from

sampling only a finite number (8000) of

dwell times. (d) Triple (blue dotted line)

and quadruple (red solid line) expo-

nential fittings of the time domain data

PðtÞ ¼
R t

0
pðt9Þdt9 (gray symbols), sim-

ulated using the preset F(k) depicted in

panel c. (e) Comparison between the

probability density dF(k)/d ln k recon-

structed using the phase function ap-

proach (red line) and the preset

probability density (black arrows and

gray columns). The probability density

functions (dF(k)/d ln k) were derived

from rate constant distributions (F(k))

shown in panel c. The black arrows

indicate the locations of the discretely

distributed rate constants and the gray columns describe the natural finite sampling width. (f) The rate constant probability density reconstructed from the time

domain data using the inverse Laplace transform with Tikhonov regularization. The time domain data was generated from F(k) shown in panel c. Different

colored lines correspond to different values of the Tikhonov penalization parameter a. The preset probability density (black arrows and gray columns) is

shown for comparison.
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tribution F(k) are all well-defined, one-to-one, and contin-

uous. The continuity of these transformations implies that the

convergence of a sequence of functions in any one of the four

function spaces entails convergence of the corresponding

sequences in the other function spaces, namely that

pnðtÞ ��!L1

pðtÞ5 fnðvÞ ��!+ fðvÞ; Imv # 0

5 fnðikÞ ��!w� fðikÞ5 FnðkÞ ��!W FðkÞ

(see Fig. 5 for the definitions of the convergence rules w*, �,

L1, and W). The proof of continuity is founded on the fact

that the four admissible pools of functions all form compact

metric spaces, so that the compactness technique in topology

applies. We refer readers to section S3 in the Supplementary

Material for the definition of these four admissible function

spaces and the rigorous proof of the one-to-one correspon-

dence and continuity of the 10 transformations shown in Fig. 6.

Here, we shall focus on the practical implications of the

continuity in the reconstruction method. The continuity of

mappings, i.e., the ability to send a convergent sequence in

one function space to a convergent sequence in another

function space, implies numerical stability of the transfor-

mations we have used in the realization of the phase function

approach. Especially, the continuity of T̂�1 implies that small

errors in p(t) should only affect the inference of F(k) to a

small extent, which is critical for a robust analysis of

experimental data that are intrinsically noisy. Furthermore,

the continuity of Ŵ and Q̂�1 imply that both the Fourier

transform from p(t) to f(v) (Imv # 0) and the extrapolation

of f(ik) from f(v) (Imv # 0) are numerically stable, as long

as the geometric constraint of the phase function (Eq. 4) is

enforced. Last, the continuity of T̂�1Ŝ indicates that approx-

imations in f(ik) will only impact the reconstruction of F(k)

to small extent. Therefore, not only is the algorithm robust in

theory, it is also reliable when implemented numerically.

The robustness of the reconstruction is a direct conse-

quence of analyzing the cumulative distribution function of

the rate constant, F(k), rather than the probability density,

r(k). The totality of bounded and nondecreasing F(k) can

form a compact function space, which is crucial for the

continuity of inverse mappings. This forms a stark contrast

with the numerical instability encountered in the direct inverse

Laplace transform, which attempts to derive a probability den-

sity function r(k) directly from the time domain data p(t) ¼R
ke�ktr(k)dk (23). Here, the nonnegative probability density

r(k) is unbounded and thus the function space of r(k) is non-

compact, undermining the numerical stability of inverting

r(k) from p(t). It is important to note that F(k) contains all

the statistical information present in r(k). Once F(k) is

reconstructed, one can estimate r(k) by finite difference

across dynamic windows, as we have shown in the numerical

examples (Figs. 3–5). The reverse is, on the other hand, not

true—if we start with an unstable estimate of r(k), we cannot

then use integration to obtain a reliable estimate of F(k). A

rigorous discussion concerning the F(k)-r(k) contrast ap-

pears in section S3.3.3, in the Supplementary Material.

DISCUSSION

A broad range of experiments in biology, chemistry, and

physics generate data in the form of exponential decays. An

important goal of these experiments is to extract the

FIGURE 5 ReconstructionofF(k) that

contains both discrete and continuous

distributions of k in different regions of

the k-domain. (a) Comparison between

the Frec(k) reconstructed using the phase

function approach (red line) and the pre-

set F(k) (black line) with the natural finite

sampling width (gray bars). (b) Compar-

ison between the probability density

dF(k)/d ln k reconstructed using the phase

function approach (red line) and the

preset probability density (black arrow

and line). (c) The rate constant probability

density reconstructed using the inverse

Laplace transform with Tikhonov regu-

larization, with different values of the

penalization parameter a (colored lines).

FIGURE 6 The function spaces involved in the reconstruction equipped

with different convergence rules. The four function spaces, respectively,

comprise admissible time domain data p(t), phase function f(v) for Imv #

0, its value at the imaginary axis f(ik), and rate constant distribution

F(k). Definitions of the admissible functions are given in section S3.1 in

the Supplementary Material. The robustness of the reconstruction is en-

sured by the continuity of the 10 transformations Ŝ; Ŝ�1; T̂; T̂�1; Ŵ;

Ŵ�1; Q̂; Q̂�1; Ŝ�1T̂; and T̂�1Ŝ, connecting the four admissible function

spaces, as proved in section S3.2 in the Supplementary Material.
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distribution of decay rate constants. For example, kinetic

characterization of biochemical reactions in vitro or in vivo

provides important information about the reaction pathways.

However, it is difficult to robustly and accurately extract rate

constants from the decay data, especially when the rate con-

stants follow a nontrivial distribution. Such difficulty arises

from the numerical instability in the inverse Laplace trans-

form and the noise associated with experimental data.

In this work, we have developed a numerically stable

method that is capable of reconstructing the cumulative rate

constant distribution F(k) from data in the general form of

f(t) ¼
R

e�ktdF(k). The method establishes an analytical rela-

tion between F(k) and a phase function f(ik) that is derived

from the time domain data by Fourier transform and analytical

continuation. This phase function method allows one to

directly infer the rate constant distribution without fitting the

time domain data to any trial functions and without requiring

any prior knowledge of F(k). We have rigorously proved the

robustness of the reconstruction method by showing that it

consists of continuous transformations between the relevant

function spaces (Fig. 6) and illustrated its numerical stability

by analysis of simulated data with noise (Figs. 3–5).

Two remarkable properties of the phase function method

are its model-independence and numerical stability. This

allows the phase function method to be applicable to ar-

bitrary forms of probability distribution functions. This is

different from fitting algorithms specifically tailored to

discrete distributions of decay rate constants or to distribu-

tions with a finite degree of freedom (31), which can result in

divergence when applied to data involving arbitrary contin-

uous F(k). Although decay functions such as stretched-

exponential decays or the Mittag-Leffler functions can be

used to fit kinetic data with special preselected forms for

continuous F(k), an unbiased reconstruction of the rate

constant distribution that does not require making these a

priori decisions is often more desirable.

Continuous distributions of rate constants in arbitrary

functional forms have been previously handled with inverse

Laplace transform, which has a well-known numerical insta-

bility and fails to treat data contaminated with even a mod-

erate level of noise. Various regularization methods, such as

Tikhonov regularization (25,27) and the maximum entropy

method (28,29), have been used to suppress the numerical

instability by enforcing a certain level of smoothness of the

probability density r(k); or effectively, by penalizing against

the curvature or information entropy of r(k). These regu-

larization methods result in an estimate for r(k) that depends

on the value of the penalization parameter (see, for example,

Figs. 3–5). Although one may use certain criteria such as the

Fisher distribution (27) or a hierarchical optimization pro-

cedure (29) to optimize the penalization parameter, a signif-

icant level of arbitrariness persists in these approaches

without prior knowledge of the rate constants distribution.

For complicated distributions with different smoothness

scales in different regions of k, an optimal penalization

parameter that provides a satisfactory description of the data

may not even exist (Fig. 5). In contrast, the phase function

method developed here is a direct inference method that

contains no fitting parameters and thus can faithfully re-

construct the rate distribution without relying on additional

information input (Figs. 3–5).

In summary, we have presented a new mathematical

method, the phase function approach, to determine the

probability distribution of kinetic rate constants from noisy

data in the time domain. This method is generally applicable

to kinetic data taking the form p(t) ¼
R

ke�ktdF(k) and other

experimental data with similar functional forms. The method

can be further generalized to characterize the kinetics of

sequential, multistep reactions described by functional forms

of e�k1t � e�k2t, te�kt, etc. (Y. Zhou and X. Zhuang, un-

published). We expect that this new method will enhance our

ability to analyze kinetic data and extract kinetic information

essential to our understandings of reaction pathways and

networks involved in both biological and physical processes.

This method can also be applied to data analysis in many

other areas considering the prevalence of complex exponen-

tial decays in a wide range of disciplines.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org. A computer program

for the numerical implementation of the phase function recon-

struction method is available in the ‘‘Protocols and Methods’’

section at http://zhuang.harvard.edu.

We appreciate discussions with Profs. Sunney X. Xie and David R. Nelson

on the subject.
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