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Using life-history invariants, this paper develops techniques that allow the estimation of maximum

sustainable yield and the fishing mortality rate that produces the maximum yield from estimates of the

growth parameters, the length at first capture and the steepness of the stock recruitment relationship. This

allows sustainable yields and fishing capacity to be estimated from sparse data, such as those available for

developing country fisheries.
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1. INTRODUCTION
Fisheries science has developed substantially in the past

two decades, primarily owing to the large increase in com-

puting power, which enables complex statistical calcula-

tions to be performed relatively quickly and cheaply. Two

central problems of the science are:

(i) to estimate the potential yield of a stock or stocks;

(ii) to estimate the current state of a stock or stocks.

The scientific apparatus for solving these problems is well

developed. The potential yield of a fish stock can be readily

estimated from its demographic parameters and these in

turn can be estimated using well-understood methods of

sampling, experimentation and statistical estimation. The

current state of a stock can be estimated in a variety of

ways, both directly via research surveys and indirectly using

information on catch levels, their age composition and the

effort levels associated with taking those catches.

However, this is a picture of science that is relevant to

established temperate and high-latitude fisheries in the

developed world. It has much less relevance to tropical

fisheries in the developing world where, even when the

scientific methodology is applicable, its use is heavily

constrained. Institutions in developing countries, with few

exceptions, do not have the resources to conduct the

substantial sampling and research that is necessary to apply

the methodology and much work is conducted that,

although properly executed, is fundamentally flawed

because it is incomplete.

What is needed is a development of a scientific method-

ology that is tailored to the requirements of developing

country fishery management and that in particular can be

based on data and research findings that are within the capa-

bility of their institutions. The scientific analyses described

in this paper are therefore aimed at allowing the estimation

of potential yield and the maximum sustainable rate of

exploitation directly from the parameters of size and growth.
Such parameters are readily estimated from relatively simple

data obtained by standard sampling and estimation proce-

dures. The results mean that, armed with estimates of

growth parameters K and L1 of the von Bertalanffy (1938)

growth curve and an estimate of stock abundance, potential

yield and hence capacity can be calculated, and the current

status of the stock can be determined.
2. POTENTIAL YIELD
The estimation of potential yield is not an abstract problem

of interest only to fisheries scientists and biologists; it is

arguably the most important problem for fisheries manage-

ment in the developing world. The reason is that once an

estimate of potential yield can be made, the key manage-

ment information on the capacity of the fishery can be

deduced. Knowledge of a fishery’s capacity is crucial to its

management, whether in small-scale localized artisanal

fisheries or larger commercial ventures. Management

needs to know how many fishers (and their families) can be

supported by a fish stock or stocks without eroding the

productive capacity of the resource.

It is an intuitively plausible idea that long-lived, slow-

growing species provide relatively lower sustainable yields

than short-lived, fast-growing species. This idea was first

encapsulated in a simple formula by Gulland (1971). The

formula directly related the potential maximum yield of a

species to its instantaneous annual natural mortality rate,

M, in the equation:

Y ¼ 0:5 M B0, ð2:1Þ
where B0 is the unexploited population biomass.

The argument used by Gulland to support this formula

was a simple mix of a theoretical consideration, that the

biomass level at which maximum sustainable yield can be

obtained occurs at half the unexploited level in a simple

logistic model, and an observation from experience of

fisheries worldwide that the maximum yield appeared to

occur when the fishing mortality rate was roughly equal to

the natural mortality rate (see Clark 1991).

Gulland’s formula was never intended to provide

anything other than a simple rough guide to potential yield.
#2005 The Royal Society
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However, because of its potential usefulness, it was

revisited by Beddington & Cooke (1983) and then again by

Kirkwood et al. (1994). In both cases, the aim was to

develop refinements to the formula that improved its

accuracy, while retaining as far as possible its essential

simplicity.

To achieve these refinements, it was first necessary to

take account of another key life-history process, growth. In

fisheries models, almost universally the relationships

between length, l(t), or weight w(t) and age t are assumed

to be described by the von Bertalanffy (1938) growth equa-

tions:

lðtÞ ¼ L1ð1 � e�KtÞ, ð2:2Þ

wðtÞ ¼ W1ð1 � e�KtÞ3
, ð2:3Þ

where L1 and W1 are, respectively, the asymptotic

maximum length and weight of the fish, and K is a growth

rate parameter measuring the rate at which the asymptote

is approached. Note that the von Bertalanffy growth equa-

tions usually include a third parameter, t0, which measures

the theoretical age at which length and weight are zero. For

ease of presentation, we follow Beddington & Cooke

(1983) and assume that t0 is zero.

It is also well known that the yield from a fish stock is

directly related to the length (or age) at which a fish first

becomes vulnerable to the fishing gear. Accordingly, we

further define Lc to be the length at first capture of the fish

stock, measured relative to L1.

Beddington & Cooke (1983) and Kirkwood et al. (1994)

both developed simple relationships between the potential

maximum yield Y and the parameters M, K and Lc. In

particular, Kirkwood et al. (1994) showed that, for fixed

values of M/K and Lc, the maximum yield as a proportion

of the unexploited fishable stock size (ExB0) is either

exactly or very nearly directly proportional to M. In sum-

mary, they showed that, if the potential yield is considered

as a proportion of unexploited stock biomass:

(i) yield is higher for higher M;

(ii) yield is higher for higher K (for fixed M);

(iii) yield is higher for larger length at first capture Lc.

The major difficulty in applying these results to developing

country fisheries is that for very few fisheries has it been

possible to reliably estimate the natural mortality rate M.

Other parameters have been routinely estimated for many

stocks, but the sampling necessary and the complexity of

estimation mean that estimation of natural mortality is

beyond most developing country fishery institutions

(a remark that also applies to the developed world). This is

a serious problem, as from the results derived it can be seen

that yield is in fact proportional to the natural mortality rate

and if it cannot be estimated then neither can the potential

yield (at least using this methodology).

The key life-history parameters of fish species (M, K , Lm,

the length at sexual maturity relative to L1, and tm, the age

at sexual maturity) have been estimated for a

reasonably large number of species and various authors

have noticed that there appear to be some rather simple

relationships between them that appear to be similar across

different species and for different populations of the same

species. The pioneering work in this area was carried out by

Beverton & Holt (1959) and was largely empirical in its
Phil. Trans. R. Soc. B (2005)
analysis. In effect, they and a number of subsequent authors

(e.g. Pauly 1980; Froese & Binohlan 2000) have used sim-

ple statistical techniques to derive empirical relationships

between the parameters. That such relationships exist is

surprising in that the parameters have been estimated by

using a large variety of sampling methods and sample sizes

and using many different estimation techniques. They are

thus subject to different kinds of statistical uncertainty

(including bias) and the existence of clear empirical rela-

tionships with high statistical significance suggests that

there are likely to be fundamental evolutionary and ecologi-

cal processes involved.

A completely different approach to looking at the

relationship between the life-history parameters has been

taken by authors who have sought an explanation of the

empirical relationships using life-history optimization tech-

niques (Roff 1984; Charnov & Berrigan 1990; Charnov

1993; Jensen 1996).

The implications of these studies are that three

fundamental relationships are to be expected among the

parameters. These are known as the Beverton–Holt invar-

iants and are:

(i) the product Mtm is constant;

(ii) the ratio M/K is constant;

(iii) the value of Lm is constant.

Following the development in Jensen (1996), it is possible

to show that when growth is of the von Bertalanffy form,

Mtm ¼ 1:65; M=K¼ 1:5 and Lm ¼ lðtmÞ=L1¼ 0:67.

Jensen checked these relationships empirically using data

published in Pauly (1980) and other sources and they are

largely corroborated by this statistical analysis. He also

showed that similar results could be obtained for different

growth functions, although the empirical estimates of the

invariants were slightly different. Mangel (1996) took a

slightly different approach to considering these invariants,

which would imply a somewhat more species-specific value

of Lm, which is in any case estimable relatively easily from

field data. We have not explored the implications of this

approach in this paper.

The implications of these results for the estimation of

potential yield in developing countries are highly encour-

aging. They imply that if standard techniques can be used

to estimate K and L1, simple manipulation of the last two

of the invariant relationships above can give the other para-

meters necessary to estimate potential yield. The natural

mortality rate M is equal to 1.5K and the length at maturity

is equal to two-thirds of the asymptotic length, L1. With

these results, it is possible to revisit the analysis of Kirk-

wood et al. (1994).
(a) Constant recruitment

If annual recruitment is assumed to be constant,

Kirkwood et al. (1994) derived a simple expression for the

maximum yield as a proportion of the unexploited fishable

biomass ExB0 in terms of M/K and Lc and showed that for

fixed values of M/K and Lc, the relationship is linear with

the maximum yield being directly proportional to the natu-

ral mortality rate.

Using the Beverton–Holt invariant M=K¼ 1:5, it follows

that:

Y=ExB0 ¼ aðLcÞ K , ð2:4Þ
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where the parameter a(Lc) is a constant for a given value of

the length at first capture Lc. The results are illustrated in

figure 1.

Figure 1 indicates that the potential yield increases with

both the size at first capture (Lc) and K , as is well known

(e.g. Beverton & Holt 1957). Furthermore, the rate of

increase in potential yield with Lc also increases as K

increases. However, it is important to remember that situa-

tions where both the growth rates and sizes at first capture

are high are likely to be relatively uncommon. The exploit-

able biomass as a proportion of total biomass becomes

smaller as Lc and K increase. Hence, although in principle

potential yields as a proportion of exploited biomass

are higher, the absolute yields are smaller and thus unlikely

to be commercially attractive unless there are special

circumstances.

In figure 1, results have been presented for only values of

Lc up to 0.6. In the case of constant recruitment, it is well

known that as Lc approaches the eumetric length, Le, the

fishing mortality rate that produces the maximum yield

approaches infinity (Beverton & Holt 1957). The eumetric

length (relative to L1) here is given by (Beddington &

Cooke 1983):

Le ¼
3

3 þ M=K
, ð2:5Þ

and from the Beverton–Holt invariants M=K ¼ 1:5 and

Lm ¼ 0:67, it follows that:

Le ¼ Lm ¼ 0:67: ð2:6Þ

A simple equation that captures to a good degree of accu-

racy the relationship illustrated in figure 1 is as follows:

Y=ExB0 ¼ 0:2 K ð1 � lnð0:67 � LcÞÞ: ð2:7Þ

There is an attraction in using an assumption of constant

recruitment as the mathematics are simple and it has been

argued that it is a reasonable assumption provided that the

SSB is not reduced to low levels. Several authors have

suggested that when the level of exploitation is such that

SSB is greater then 20% of its unexploited level, then the

assumption of constant recruitment is reasonable. How-

ever, it is well known that levels of exploitation are often

higher than this (Garcia & Grainger 2005) and hence the
Phil. Trans. R. Soc. B (2005)
results for constant recruitment are called into question.

We explain the more general case in x 2 b.

(b) Recruitment varying with stock size

Constant recruitment is effectively the limiting case of

strong density dependence. A more realistic and conserva-

tive approach is to assume that recruitment varies with

stock size, with reduced recruitment occurring when the

stock size is low.

There is a large literature on stock and recruitment in

fish and a variety of models have been proposed

(e.g. Quinn & Deriso 1999). In practice, however, it is

rarely possible to distinguish between the different models

in terms of how well they fit available stock and recruitment

data and Kirkwood et al. (1994) chose to use a modified

form of the Beverton & Holt (1957) stock–recruitment

relationship. They argue that the various stock and recruit-

ment relationships vary between the extreme density

dependence of the Ricker (1954) relationship, through

constant recruitment to the more conservative form of the

Beverton–Holt relationship. This choice seems sensible in

the context of developing country fisheries and it has the

added advantage that the mathematics are slightly simpler.

According to the Beverton–Holt stock–recruit relation-

ship, the number of recruits first increases rapidly as the

SSB increases from zero. As the SSB increases further, the

rate of increase in the number of recruits declines, until for

very high SSBs, recruitment approaches an asymptote.

The standard formulation of the Beverton–Holt

stock–recruit relationship is:

R ¼ aB

1 þ bB
, ð2:8Þ

where R is the number of recruits arising from an SSB of B,

and a and b are parameters. In this formulation, a/b is the

asymptotic number of recruits, and b is a productivity para-

meter measuring the rate at which this asymptote is

reached.

This formulation is useful when pairs of corresponding

estimates of SSB and recruitment are available, as it is a

relatively simple matter to estimate the parameters by using

regression techniques. Estimates of the parameters a and b
are also often reported in the literature when Beverton–

Holt relationships have been fitted to stock and recruit-

ment data. In many cases, however, and particularly for

developing country fisheries, such data are absent, and it

is then very difficult to select realistic values for the

parameters.

An alternative formulation incorporates a parameter

characterizing the ‘steepness‘ of the stock–recruit relation-

ship at low stock sizes. As illustrated in figure 2, the steep-

ness (h) is defined as the recruitment (as a fraction of the

recruitment in an unexploited stock) that results when SSB

is 20% of its unexploited level, SSB0 (Mace & Doonan

1988). As h approaches 1, the Beverton–Holt relationship

approaches a form in which recruitment is constant; when

h is 0.2, recruitment is linearly related to SSB. The great

advantage of this formulation is that h is a dimensionless

parameter characterizing the shape of the relationship and

it is unaffected by the actual size of the stock.

One further parameter needed for this analysis is the

value of Lm. This is the third Beverton–Holt invariant, so

that Lm¼ 0:67.
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Kirkwood et al. (1994) illustrated an empirical relation-

ship between potential yield and the natural mortality rate

that was almost linear for large areas of parameter space,

but varied with Lm, M/K , the degree of density dependence

and Lc. The use of the Beverton–Holt invariants signifi-

cantly simplifies that analysis so that, as in the constant

recruitment case, the potential yield as a proportion of

unexploited fishable biomass is given (to a close approxi-

mation) by the linear relationship:

Y=ExB0 ¼ aðLc,hÞ K , ð2:9Þ

where a(Lc,h) is a constant multiplier of K determined by

the length at first capture Lc and the degree of density

dependence (steepness) in the stock–recruitment relation-

ship h.

The results are summarized in figure 3.

As expected, the multiplier of K increases with increased

length at first capture and with an increasing degree of den-

sity dependence, with constant recruitment being the limit-

ing case as the steepness parameter h approaches 1.

Of particular interest is how quickly yield decreases as

the steepness falls below 1, especially for larger values of Lc.

Given its definition, it is obvious that reliable estimates of h

close to 1 will be available only in cases where the spawning

stock size has been reduced to very low levels (i.e. it has

been severely overexploited). For many stocks, recruitment

appears on average to be constant over the observed range

of spawning stock sizes. In such cases, it is often possible to

identify a reasonable lower bound for the steepness, but the

data would be consistent with any steepness between that

and 1. Prudence would therefore indicate that in assessing

yield, it would be wise to assume lower values of h (weaker

density dependence) until data accumulate to provide

evidence to the contrary.

Figure 3 also illustrates clearly the strong bias associated

with the use of the Gulland (1971) formula in assessing

potential yield. The horizontal line depicting the Gulland

relationship lies well above the other lines even for combi-

nations of high density dependence, growth and length at

first capture.

Given the comprehensive collection of stock–

recruitment data drawn together by Myers et al. (1995),
Phil. Trans. R. Soc. B (2005)
there is a reasonable literature on estimates of the steepness

parameter h. In particular, Myers et al. (1999) summarize

estimates of h for a variety of fish species. Combining this

information with estimates of the growth parameter K

obtainable from FishBase (Froese & Pauly 2004) it is

possible to illustrate our results by considering a few typical

species. A more exhaustive analysis will be reported else-

where. The summary results for selected species are shown

in figure 4.

The results presented in figure 4 for individual species

are for illustrative purposes only, as there is manifestly

substantial uncertainty around the estimates of K and h.

Furthermore, we have assumed a constant Lc of 0.5 for

each, when in practice the actual lengths at first capture for

particular fisheries are likely to be different from this value.

Nevertheless, the positioning of the species within the con-

tours illustrates well the general pattern to be expected

from the life history of the species concerned.

Estimates of the ratio between potential yield and

unexploited fishable biomass for the individual species, and

indeed most species, are arguably of historical interest only

as almost all have been subject to substantial periods

of exploitation. They are nevertheless indicative of the rela-

tively low levels of sustainable yields that are possible and

point to the basic reason why so many stocks are over-

exploited. In practice, estimates of the original unexploited

biomass ExB0 are rarely available, although for certain

species and populations some estimates can be made when

long time-series of catch and relative abundance data are

available. For new fisheries, particularly where some esti-

mate of biomass has been made, the results can provide

useful guidelines for the likely levels of sustainable yields.

Recent exploitation of deepwater species, for which growth

is known to be very slow would have been arguably less

intense if such preliminary results were available. Similarly,

the exploitation of newly discovered or relatively lightly

exploited stocks can be guided by this analysis to provide

an assessment of sustainable yields and hence the level of

sustainable fishing capacity.
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Of more immediate interest to fishery managers is an

idea of whether the current level of exploitation of a stock is

sustainable. In x 3, we explore this issue using similar

techniques to those for the estimation of sustainable yield,

but this time we focus on the fishing mortality rate that

produces the maximum sustainable yield. If this is known

and the current fishing mortality rate can be estimated,

then the sustainability of current levels of fishing can be

assessed.
3. STOCK STATUS
In addition to comparing recent and current catches to esti-

mates of potential yield, the status of a fished stock can also

be assessed by comparing an estimate of the current fishing

mortality rate with an estimate of the fishing mortality rate

that produces the maximum yield, Fmax.

Both Beverton & Holt (1957) and Gulland (1971)

observed that in many situations, Fmax was related to and

often close to the level of the annual instantaneous natural

mortality rate, M. Other authors have also made similar

observations but, to our knowledge, no studies have been

carried out to elucidate this relationship. The above analy-

sis would appear to have two implications. First, whatever

relationship exists between Fmax and M, it is likely to hold

only for a particular Lc. Second, it is likely that Fmax

(for particular Lc) may be a simple fraction of the growth

parameter K.

(a) Constant recruitment

Confirming that suggestion, using the techniques of Kirk-

wood et al. (1994) and the Beverton–Holt invariants, it can

be shown that for Lc < Lm, in the case of constant recruit-

ment a linear relationship holds between Fmax and K.

Specifically:

Fmax ¼ aðLcÞ K ð3:1Þ
where the coefficient a(Lc) varies with the length at first

capture. The results are illustrated in figure 5.
Phil. Trans. R. Soc. B (2005)
As with the comparable relationship between yield

biomass ratios and K discussed earlier, Fmax increases with

increasing K and increasing Lc. Now, however, the

relationship with Lc is much more non-linear for larger Lc,

reflecting the fact that Fmax approaches infinity as Lc

approaches 0.67.

Because of the extreme density dependence implicit in

an assumption of constant recruitment, the Fmax predicted

in this case is almost certainly an upwardly biased estimate

of the true Fmax. It follows, therefore, that if the current

fishing mortality rate is estimated to be close to or above

this Fmax, then it is likely that the stock is being

overexploited.

A simple equation that captures to a good degree of

accuracy the relationship illustrated in figure 5 for Lc < Lm

is as follows:

Fmax ¼ 0:6K

0:67 � Lc

: ð3:2Þ

(b) Recruitment varying with stock size

If, as before with potential yield, we make the more

prudent and realistic assumption that recruitment varies

with SSB according to a Beverton–Holt stock–recruitment

relationship, then to a close approximation Fmax is linearly

related to K. In this case, however, the equation is:

Fmax ¼ aðLc,hÞ K , ð3:3Þ
where a(Lc,h) is a constant depending on the values of Lc

and the degree of density dependence h. The results in

terms of values of the multiplier of K are summarized in

figure 6.

The results shown in figure 6 indicate the very strong

influence that the steepness h has on Fmax. In practice, h is a

relatively difficult parameter to estimate reliably, requiring

at least a substantial time series of stock and recruitment

data corresponding to a wide range of spawning stock sizes.

Because of this, it is not surprising that the estimates repor-

ted in Myers et al. (1999) are predominantly for temperate
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species subject to substantial fisheries. For developing

country fisheries, it may therefore be rather difficult to

obtain reliable direct estimates of h, though it may be

possible to infer possible ranges from published estimates

for similar species elsewhere. In such circumstances, a rela-

tively low choice of h would appear to be prudent.

The horizontal dotted line in figure 6 corresponds to a

multiplier of K of 1.5, which is equivalent to Fmax being

equal to M. It will be recalled that a number of authors

since Beverton & Holt (1957) have observed that, for

certain species, Fmax was approximately equal to M. While

this is true for certain combinations of K and h, it seems

likely that the relationship claimed is an artefact of

the choice of species examined, as the region close to a

multiplier of K of 1.5 is only a very small part of feasible

parameter space.

The results obtained from the set of selected species used

in x 3a are presented in figure 7.

As noted before, the results presented for individual

species are for illustrative purposes only, given the uncer-

tainties associated with them. Again, however, the posi-

tioning of the species within the contours illustrates well

the general pattern to be expected from their life histories.
4. CAVEATS
To produce the results presented here, it has been neces-

sary to make a number of simplifying assumptions. The

first is that all fishes with lengths greater than Lc are equally

vulnerable to capture. Manifestly, real fisheries do not

operate in this manner; typically, they are prosecuted using

a variety of fishing gears that have different selection pat-

terns with size (and age). Usually, for each gear it is poss-

ible to identify an average length at first capture. If one gear

dominates catches, then setting Lc equal to the average

length at first capture for that gear should be sufficient. If

there are many gears catching a wide range of sizes, and set-

ting Lc equal to the smallest average length at first capture

would be prudent. The hardest case is when there are two

substantial gears catching over quite different size ranges

(e.g. purse seine and long-line fisheries for tunas), but even

here, selecting an Lc based on the smaller average length at

first capture seems the most sensible course of action.

The Beverton–Holt invariants and their various deriva-

tions produce an estimate of the relationship between M
Phil. Trans. R. Soc. B (2005)
and K with growth assuming that the natural mortality rate

is constant over the relevant part of the lifespan. However,

in a number of species, age- or length-specific patterns of

natural mortality have been observed. Kirkwood et al.

(1994) were able to show that in this case, a simple Heincke

estimator (Heincke 1913) will give a reasonable estimate of

the average natural mortality rate that relates well to the

natural mortality rate involved in the derivation of the

invariants.

By ignoring stochastic effects, the analysis presented here

fails to account for a ubiquitous characteristic of fish

stocks, namely that they fluctuate constantly. Such fluctua-

tions are difficult to quantify and in most circumstances

they are impossible to predict. However, again Kirkwood et

al. (1994) showed that their deterministic analysis still pro-

vides a reasonable guide to the average behaviour of stocks

that are exploited in fluctuating environments.

In some species, there is evidence that density depen-

dence operates on both growth and mortality of post-

recruits, as well as via the stock recruitment process (e.g.

Beverton & Holt 1957; Lorenzen & Enberg 2002). In this

situation, the analysis is substantially more complicated,

but the estimate of potential yield at Fmax obtained on the

assumption that density dependence only occurs via the

stock–recruitment relationship is likely to be conservative

(Kirkwood et al. 1994).
5. ASSESSING STOCK STATUS
The results above have a useful practical implication for the

assessment of the status of fisheries where data are sparse.

Given an estimate of growth parameters for the species

concerned, an estimate of Fmax can be obtained simply by

application of equation (3.3). For data-rich fisheries, there

are many methods available for estimating the current F

that are routinely used in annual stock assessments, but it is

often not possible to use these methods when data are

sparse. Fortunately, however, several other (albeit rather

imprecise) methods for estimating the current total mor-

tality rate (F þ M) that rely simply on availability of catch

length frequency samples and estimates of growth para-

meters have been incorporated into stock assessment soft-

ware packages commonly used in developing countries
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(e.g. FiSAT; Gayanilo & Pauly 1997). It is then a simple

matter to estimate F by applying the Beverton–Holt

invariant M¼ 1:5K . Alternatively, if an estimate of current

biomass is available, for example from a survey, then a

simple approximate estimate of F is available from the ratio

of current catch to current biomass.

If the current estimate of F is substantially higher than

Fmax, then the stock is clearly being overexploited and

action may be needed to avert a stock collapse. If it is close

to Fmax, then any increase in fishing effort should be

discouraged. In the situation where the estimate of F is well

below Fmax, then some simple guidelines for expansion of

the fishery may be used. Increasing catch levels by increas-

ing effort can be permitted as long as the new F is still

below Fmax. Clearly, prudence will require that it is a

reasonable level below.
6. CONCLUDING REMARKS
In this paper, we have developed simple relationships that

can be used to estimate potential yield and the maximum

sustainable fishing mortality rate given information on the

growth curve and size at which fishing starts. In both cases,

this information can be obtained relatively easily from stan-

dard sampling procedures well within the capability of

developing country fisheries institutions. The level of

potential yield and the corresponding fishing mortality rate

depend also on the steepness (the degree of density depen-

dence) in the stock–recruit relationship, which is much less

easy to estimate. However, the results in this paper still

allow estimates to be calculated for a reasonable range of

possible values of steepness, thereby allowing prudent

management decisions to be made when only sparse data

are available.
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