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Sediments overlying a brine pool methane seep in the Gulf of Mexico (Green Canyon 205) were analyzed
using molecular and geochemical approaches to identify geochemical controls on microbial community com-
position and stratification. 16S rRNA gene and rRNA clone libraries, as well as mcrA gene clone libraries,
showed that the archaeal community consists predominantly of ANME-1b methane oxidizers; no archaea of
other ANME subgroups were found with general and group-specific PCR primers. The ANME-1b community
was found in the sulfate-methane interface, where undersaturated methane concentrations of ca. 100 to 250
�M coexist with sulfate concentrations around 10 mM. Clone libraries of dsrAB genes and bacterial 16S rRNA
genes show diversified sulfate-reducing communities within and above the sulfate-methane interface. Their
phylogenetic profiles and occurrence patterns are not linked to ANME-1b populations, indicating that electron
donors other than methane, perhaps petroleum-derived hydrocarbons, drive sulfate reduction. The archaeal
component of anaerobic oxidation of methane is comprised of an active population of mainly ANME-1b in this
hypersaline sediment.

The anaerobic oxidation of methane (AOM) is responsible
for oxidizing nearly all of the 70.3 to 85.3 Tg of methane
produced in anoxic marine sediments per year globally (50). In
addition to its importance in controlling greenhouse gases,
AOM has implications for investigations of early life on Earth,
since anaerobic methane oxidizers and methanogens comprise
a methane cycle suitable for oxidant-poor, early-Earth-like en-
vironments (19). The presence of isotopically light organic
carbon in the Archean Eon suggests that AOM may have been
an important microbial pathway on early Earth (19).

Although the organisms responsible for AOM in marine
sediments are not yet isolated in pure culture, stable carbon
isotopic studies and environmental genomic studies have
shown that the process relies on archaea capable of reverse
methanogenesis that often form close associations with sulfate-
reducing bacteria (SRB) (5, 14, 18, 21). The archaeal anaero-
bic methane oxidizers (ANMEs) fall into three phylogenetic
groups called ANME-1 (with subgroups a and b), ANME-2
(with subgroups a, b, and c), and ANME-3 (14, 20, 29, 43–45,
62). The sulfate-reducing bacterial partners usually fall within
the Desulfosarcina/Desulfococcus (DSS) cluster of the Desulfo-
bacteraceae or the Desulfobulbaceae. Most of the previous mi-
crobiological investigations of AOM have focused on hetero-
geneous systems with high methane flux, which contain high
biomass of both ANME-1 and ANME-2. The presence of a
mosaic of ANME phylotypes at these sites makes it difficult to
determine the factors causing their ecological zonation.

Here, we analyzed the microbial community associated
with AOM in Gulf of Mexico (GOM) sediments, where
methane is completely oxidized at the sulfate-methane in-

terface (SMI) and subsurface brines intrude into the upper
tens of centimeters. The microbial census of the archaeal
and bacterial communities both at the SMI and in surface
sediments, was based on 16S rRNA gene, 16S rRNA, mcrA,
and dsrAB clone libraries.

Although 16S rRNA genes provide only indirect physiolog-
ical information through phylogenetic assumptions, genes that
encode specific functional enzymes provide a direct assay of
potential physiologies of an environmental community. All
known orders of methanogens use the enzyme methyl coen-
zyme M reductase (MCR) to catalyze the last step of metha-
nogenesis (33, 55). In this step, a methyl group bound to
coenzyme M is reduced, releasing methane. MCR is composed
of subunits �, �, and �, which are encoded by the genes mcrA,
mcrB, and mcrG, respectively (51). So far, no homologues of
these genes appear to be present in cultured species that are
not capable of methanogenesis (55). The phylogenetic group-
ings of mcrA mirror the phylogeny of the 16S rRNA genes for
all known orders of methanogens (33, 55). Therefore, these
functional genes can be linked to organismal phylogeny. Re-
cently, mcrA has been identified in enrichments of the anaer-
obic methane oxidizers ANME-1 and ANME-2 (17, 18), and
an MCR protein has been isolated from microbial mats where
AOM occurs (30). Thus, mcrA is a useful and specific marker
gene for detecting and identifying anaerobic methane oxidiz-
ers, as well as methanogens, in the environment.

A key enzyme for sulfite and sulfate reduction, dissimilatory
(bi)sulfite reductase (DSR), catalyzes the six-electron reduc-
tion of sulfite to sulfide, the energy-conserving step in the
dissimilatory sulfate reduction pathway (40). DSR is present in
all major known groups of sulfate reducers and is encoded by
the � and � subunits of the dsr gene, comprising dsrAB. In most
cases, the phylogeny of dsrAB follows that of 16S rRNA genes
(65). However, lateral gene transfer has occurred in the cases
of Thermodesulfobacteriales, Archaeoglobales, and low-G�C
gram-positive sulfate reducers (27, 68). With the exception of
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these lateral gene transfer events, dsrAB gene phylogeny gen-
erally represents the organismal phylogeny of all known sulfate
reducers.

Due to the persistence of DNA sequences from inactive
microorganisms in anoxic sediments, DNA clone libraries of-
ten do not represent the diversity of the active population (38).
rRNA is more rapidly degraded and more accurately repre-
sents the diversity of active microbial populations in marine
sediments (7). Therefore, we also determined sequences of 16S
rRNA at the SMI depth of these sediments.

This study focused on shallow sediments near a mud volcano
in Green Canyon (GC) lease block 205, Genesis Field, Gulf of
Mexico. Methane in this area is 33 to 55% archaeal in origin,
deriving from methanogenic degradation of organic com-
pounds in deep petroleum deposits (53). Sediments of Green
Canyon overlie a salt diapir whose movement creates fractures
in sediments that act as conduits for the upward migration of
fluids rich in petroleum, methane, and other degraded hydro-
carbons. The seafloor expressions of this fluid migration are
mud volcanoes, cold methane seeps, and gas hydrates (26, 53).
Lipid and nucleic acid biomarker analyses have shown that
AOM is a key contributor to archaeal biomass in and around
gas hydrates in nearby sediments from GC234 and Atwater
lease block 425 (31, 37, 38, 67). Our sedimentary samples from
GC205 lack hydrates and methane ebullition, thereby allowing
the establishment of a zone of methane and sulfate overlap
driven by steady-state diagenesis.

This work identifies geochemical controls that shape the
composition of the archaeal and bacterial communities in
these hypersaline and relatively quiescent sediments. By
linking molecular (16S rRNA gene/rRNA and functional-
gene sequences) and geochemical approaches, we identified
environmentally relevant information about the diversity,
distributions, and activities of bacterial and archaeal com-
munities involved in methanogenesis, AOM, and sulfate re-
duction.

MATERIALS AND METHODS

Site description and sample collection. Core 5 from dive 4566 (4566-5) was
retrieved from Green Canyon 205, Gulf of Mexico (27.71672778°N,
�90.5334627°W), using the Johnson-Sea-Link submarine in the summer of 2003
(Fig. 1A). Visual observation of a mud volcano was made at GC205 during
previous submersible reconnaissance of the site. Sediments were sampled at the
site of a subsurface salt diapir in �876-m water depth, with a seawater temper-
ature of �6°C. Although orange and white microbial mats were present near the
sampling site, the core was taken from bare sediment adjacent to the mats (Fig.
1B). A push core (30 cm) was deployed from the Johnson-Sea-Link submersible
to collect sediment and pore water. The core contained no gas hydrates, and the
bottom contained visible carbonate crusts and petroleum. Onboard the ship, the
core was subsectioned into 3-cm intervals. From each interval, a sediment plug
was collected with a 3-ml-cutoff plastic syringe. Plugs were placed in 30-ml glass
serum vials, sealed with rubber stoppers and aluminum caps, and frozen for
future analysis of methane concentrations and stable carbon isotopes. The re-
maining sediment from each interval was then collected in sterile 15-ml centri-
fuge tubes and frozen at �20°C.

Sample preparation. Three days after the cruise, the sediment tubes were
thawed, homogenized, and centrifuged at 3,000 � g for 5 min. The resultant
supernatant was transferred to 2-ml O-ring-sealed plastic microcentrifuge tubes
and frozen for sulfate and chloride analysis. The remaining sediment pellet was
returned to �20°C for total organic carbon (TOC) concentration and carbon-
to-nitrogen (C/N) ratio analyses. After 1 month, the sediment pellets were
transferred to a deep freezer (�80°C) for molecular analyses. The cores were
originally frozen for geochemical analyses only; no subsamples were taken and
fixed for cell-imaging capabilities.

Geochemical analyses. Pore water sulfate and chloride concentrations were
determined by ion chromatography of 1:100-diluted pore fluid samples using a
2010i Dionex Ion chromatograph (Sunnyvale, CA) as described by Martens et al.
(35). The percent TOC (%TOC), stable carbon isotopic composition, and C/N
ratios were measured on �30 mg of freeze-dried sediment pellets that were
vapor acidified to remove inorganic carbon prior to combustion to CO2 and N2

on a Carlo-Erba NA 1500 (CE Elantech, Inc., Milan, Italy) elemental analyzer.
The effluent gas stream was introduced to a Finnigan Mat 252 isotope ratio mass
spectrometer (Thermo Finnigan, Bremen, Germany) via a modified Finnigan
ConFlo interface (6). Methane concentrations and carbon stable-isotope ratios
were analyzed for each depth interval using the same serum vial, as previously
described. For methane concentrations, a 5-ml headspace aliquot was analyzed
on a Shimadzu Mini II Gas Chromatograph (Kyoto, Japan) equipped with a
flame ionization detector. Carbon stable-isotope ratios for dissolved methane
were obtained using a preconcentrating system on line with a continuous-flow
5890 Hewlett-Packard gas chromatograph (Palo Alto, CA), capillary combustion,
and isotope ratio mass spectrometry, as described by Rice et al. (52). The re-
sults are reported using the standard “del” notation: �13C (‰) 	
(Rsample/Rstandard � 1) � 1,000, where R is the ratio of the heavy isotope to the
light isotope. The precision for replicate measurements of single samples was

3% for sulfate, chloride, and methane concentrations; 1% for TOC and meth-
ane isotopes; and 5 to 10% for %TOC and C/N.

Nucleic acid extraction, amplification, cloning, and sequencing. Genomic
DNA was extracted from three depth sections: 0 to 3 cm (SURF), 15 to 18 cm
(SMI-1), and 18 to 21 cm (SMI-2). DNA was extracted from 0.5- to 1.3-g
sediments using the MOBIO UltraClean Soil DNA Kit (MOBIO Labs, Inc.,

FIG. 1. (A) Location of block GC205, the site of dive 4566 on the
slope of the Gulf of Mexico; water depth, 876 m. (B) Johnson-Sea-Link
image of core location (white arrow) just outside white microbial mats.
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Solana Beach, CA), following the manufacturer’s instructions, with the following
modification: the sediments were subjected to four cycles of freezing at �80°C
and then thawing at 65°C after addition of the inhibitor removal solution. Bac-
terial 16S rRNA genes and dsrAB genes were PCR amplified with the following
primers: B8f-B1492r as general bacterial primers (62); DSR1f-DSR4r (65) with
a subsequent nested reamplification with 1f1r (10) as dsrAB-specific primers. For
amplification of mcrA from SMI-1, the primer set ME1-ME2 (16) was used; for
SMI-2, mcrA was amplified from an MCRf-ME2 nested reamplification within
ME1-MCRr (16, 33). For amplification of archaeal 16S rRNA genes from the
SURF and SMI-2 sections, the first amplification with primers A8f and A1492r
(62) was followed by nested reamplification with primer combination A21f-
A915r (1, 8). This nested amplification was necessary in these sections in order
to obtain sufficient PCR product for cloning and sequencing. For nonnested
rRNA gene amplification in the SMI-1 section, general primers A8f-A1492r (62)
and A21f-A915r (1, 8) were used, as well as the ANME-2-specific primers
8f-EelMS932r (5). A listing of all the primers used and their annealing temper-
atures can be found in Table 1. Primer combinations (nested and nonnested) and
the resulting clone library compositions are listed in Tables 2, 3, and 4. Since the
primer A21f proved to have 3�-terminal mismatches to multiple archaeal groups,

the unnested clone library obtained with primers A21f-A915r may have been
biased against these groups. Clone libraries based on the shorter, more general
primer A8f (62), used as the first nested primer or as the sole forward primer,
show a higher diversity of archaeal lineages (Table 2).

Total RNA was extracted following previously described methods (34, 56).
Briefly, �2 ml sediment was mixed with 5 ml phenol (pH 5), 5 ml of extraction
buffer (50 mM sodium acetate and 10 mM EDTA, pH 5), and 0.5 ml 20% sodium
dodecyl sulfate. This mixture was subjected to four cycles of freezing at �80°C
and then thawing at 65°C and then extracted with phenol, phenol-chloroform
(1:1), and chloroform; precipitated in 7.5 mM NH4CH3COOH and isopropanol;
and washed with ethanol. PCR amplification of reverse-transcribed cDNA (RT-
PCR) was performed using the general archaeal primers A8f-A1492R (62).

Each 25-�l PCR and RT-PCR mixture contained 1 �l DNA template, 2.5 �l
primer solution (10 pmol/�l), 1 �l bovine serum albumin (10 mg/ml), and 1 �l
deoxynucleotide triphosphate (10 mM each dATP, dCTP, dGTP, and dTTP).
PCR mixtures included an additional 2.5 �l 10� PCR buffer (Promega) and 0.15
�l Taq polymerase in storage buffer B (Promega); RT-PCR mixtures included an
additional 5 �l 5� RT-PCR buffer (QIAGEN) and 1 �l One-Step RT-PCR
enzymes (QIAGEN). PCR and RT-PCR amplifications were performed in a

TABLE 1. Primers used in this study

Primer Target
gene Predicted target group Sequence (5� to 3�)a Annealing

temp (°C) Reference

A8f 16S Archaea TCC GGT TGA TCC TGC C 55 or 59 62
A1492r 16S Archaea GGC TAC CTT GTT ACG ACT T 55 62
A21f 16S Archaea TTC CGG TTG ATC CYG CCG GA 64 8
A915r 16S Archaea GTG CTC CCC CGC CAA TTC CT 64 8
Ee1MS932r 16S ANME-2 AGC TCC ACC CGT TGT AGT 59 5
B8f 16S Bacteria AGR GTT TGA TCC TGG CTC AG 50 or 55 62
B1492r 16S Bacteria CGG CTA CCT TGT TAC GAC TT 50 or 55 62
dsr1f dsrAB Sulfate reducers ACS CAY TGG AAG CAC G 54 65
dsr4f dsrAB Sulfate reducers GTG TAG CAG TTA CCG CA 54 65
1F1 dsrAB Sulfate reducers CAG GAY GAR CTK CAC CG 48 10
1RI dsrAB Sulfate reducers CCC TGG GTR TGR AYR AT 48 10
MCRf mcrA Methanogens/ANMEs TAY GAY CAR ATH TGG YT 50 or 55 55
MCRr mcrA Methanogens/ANMEs ACR TTC ATN GCR TAR TT 50 or 55 55
ME1 mcrA Methanogens/ANMEs GCM ATG CAR ATH GGW ATG TC 50 or 55 16
ME2 mcrA Methanogens/ANMEs TCA TKG CRT AGT TDG GRT AGT 50 or 55 16
ANME-2a-647r 16S ANME-2a TCT TCC GGT CCC AAG CCT 45 to 64 29
ANME-2c-622r 16S ANME-2c CCC TTC GCA GTC TGA TTG 46 to 64 29
ANME-2c-760r 16S ANME-2c CGC CCC CAG CTT TCG TCC 47 to 64 29

a Y, C/T; R, A/G; M, A/C; W, A/T; K, G/T; H, A/C/T; D, A/G/T.

TABLE 2. Phylogenetic affiliations of archaeal 16S rRNA genes and rRNA clone libraries at each depth below the seafloor
and primer combination

Phylogenetic affiliation

No. of clones from 16S rRNA genes No. of
clones from

rRNA at
15–18 cm0–3 cm 15–18 cm 18–21 cm

A8f-A1492r/
A21f-915r A8f-Eel932r A21f-A915r A8f-A1492r A8f-A1492r/

A21f-915r A8f-A1492r

Euryarchaeota
ANME-1b 37 80 66 20
Methanosarcinales (GoM Arc I) 23 4 1 1
Outside Methanosarcinales/

Methanomicrobiales
1 10

Thermoplasmatales
MBG-D 22 2 34 2
Other Thermoplasmatales 2

Crenarchaeota
MG-I 2
MBG-B 22 2

Total no. of clones 46 63 36 86 79 21
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Bio-Rad iCycler. The conditions for PCR were as follows: an initial denaturation
at 94°C for 2 min, followed by 30 cycles, each consisting of 30 s of denaturation
at 94°C, 1 min at primer-annealing temperature (Table 1), and 1 to 3 min of
elongation at 72°C. RT-PCR required the following protocol: 50°C incubation
for reverse transcription for 30 min, 95°C polymerase activation for 2 min,
followed by 40 cycles of 94°C denaturation for 30 s, 55°C annealing for 1 min, and
72°C extension for 1.5 min, plus a final cycle of 94°C for 30 s, 55°C for 3 min, and
72°C for 10 min. Extracted total RNA subjected to forward PCRs did not yield
visible product on a 1.5% agarose gel, indicating the absence of significant
coextracted DNA. Parallel blank extractions, serving as controls for contamina-
tion during DNA or RNA extraction, also yielded no visible products. All PCR
and RT-PCR products were purified using a MoBio PCR cleanup kit, A tailed,
and cloned using the TOPOXL PCR cloning kit before being transformed into
Escherichia coli following the manufacturer’s protocols (Invitrogen, San Diego,
Calif.). Sequences were obtained at the Josephine Bay Paul Center at the Marine
Biological Laboratory (Woods Hole, MA), using an ABI 3730 sequencer and
M13 universal primers SP010 and SP030 (Operon). The sequences were con-
verted to text files with Chromas 1.45 and assembled.

PCR check for ANME-2. To test rigorously for the presence of the two most
common phylotypes of ANME-2, forward primers ANME-2a-622, ANME-2c-
647, and ANME-2c-760 (29) were each paired with reverse primer EelMS932r
(5) for a low-stringency PCR amplification of SMI-1 DNA extract. Low anneal-
ing temperatures allow primers to bind more easily to templates at the expense
of specific binding (24). In addition, increasing the cycle number increases the
probability of producing amplicons from a smaller quantity of starting template
at the expense of template bias minimization (57). Therefore, a high PCR cycle
number and a range of annealing temperatures were used to increase the prob-
ability of amplifying ANME-2 sequences, even at low template numbers. The
PCR mixtures were identical to those used in clone libraries, except that Hot-
StarTaq (QIAGEN) was used in order to increase the sensitivity to low gene copy
numbers. The following PCR protocol was used: enzyme activation at 95°C for 15
min, then 40 cycles of 94°C for 30 s; 45°C, 47°C, 50°C, 51°C, 53°C, 55.5°C, 59.3°C,
62°C, or 64°C for 1 min; and 72°C for 1.5 min, plus a final 5 min at 72°C. The PCR
products were then visualized on a 1.5% agarose gel using an ethidium bromide
stain.

Phylogenetic analysis. Archaeal and bacterial 16S rRNA gene sequences were
aligned with BLAST (basic local alignment search tool) hits from GenBank
(http://www.ncbi.nlm.nih.gov/BLAST/) using the ARB software (http://www
.arb-home.de) fast aligner utility, followed by manual adjustments. The sequences
were screened for chimeras by comparing neighbor-joining trees made of the first
and second halves of all sequences. Any clones that had different groupings in the
first and second halves were then checked using the Pintail program (2) and
excluded from the clone libraries. Of a total of 623 sequences (including those
from 16S rRNA genes, 16S rRNA, and functional genes), 25 sequences were
found to be chimeras. Unalignable regions (helices 6, 11, and 17 for archaeal 16S
and helices 6, 10, 11, and 18 for bacterial 16S) and chimeras were excluded from
analysis. A hierarchical likelihood ratio test from Modeltest v3.7 (48) used within
PAUP* version 4.b10 (58) was used to determine the distance correction that
best described the sequence data. For archaeal 16S rRNA genes, a Tamura-Nei
distance model was used with unequal base frequencies, a gamma shape of
0.6757, and a percent invariable sites value of 0.1773. For bacterial 16S rRNA
genes, a general time-reversible model was used with gamma shape 0.7539 and
a percent invariable sites value of 0.2141. Nonchimeric mcrA and dsrAB se-
quences were translated into amino acids using SeqPup 0.9 (http://iubio.bio
.indiana.edu/soft/molbio/seqpup/java/seqpup-doc.html) and then aligned using
ClustalW (63). Manual adjustments of mcrA and dsrAB sequence alignments
were performed using SeqPup 0.9. Unalignable regions were not included in

phylogenetic inferences. PAUP* version 4.b10 was used for all tree construction
and bootstrap calculations. Trees were visualized with Treeview 1.6.6 (46).

Nucleotide sequence accession numbers. The sequences are available from
GenBank under the following numbers: 16S rRNA gene and rRNA sequences,
DQ521754 to DQ521825; dsrAB genes, DQ521826 to DQ521856; mcrA genes,
DQ521857 to DQ521864.

RESULTS

Geochemical conditions. The deep subsurface of GC205 en-
compasses a salt diapir that allows petroleum to migrate up-
ward through fractures in the sediments (26, 53). Accordingly,
petroleum deposits and small carbonate crusts could be seen at
the bottom of core 4566-5. Geochemical evidence for micro-
bial activity was present in pore water chemical constituents.
Sulfate concentrations decreased from 28 mM at the sediment-
water interface to 7 mM at the SMI (Fig. 2A). This decrease
was not caused by upwardly advecting sulfate-free brine and
therefore indicated the activity of sulfate-reducing bacteria
(32). Conversely, methane concentrations increased with depth
in the sediment column from 0 mM at the sediment-water
interface to �220 �M in the SMI (Fig. 2A). Upwardly diffusing
methane is therefore removed in the presence of sulfate within
the SMI. The �13C of methane increased as it diffused toward
the sediment-water interface (Fig. 2B), indicating that anaer-
obic methane oxidizers preferentially removed the lighter iso-
tope.

The %TOC and C/N ratios both increased with depth, indi-
cating a sizable N-depleted source of subsurface organic car-
bon that could be petroleum derived (Fig. 2C). The �13C of
sedimentary TOC in the SMI at 18-cm depth (�26‰) was 13C
depleted relative to the background signal of �20.2‰ to
�22‰, measured at non-methane seep Gulf of Mexico sedi-
ments at similar water depths and locations (15, 32). There-

TABLE 4. Phylogenetic affiliations of bacterial 16S rRNA gene
clone libraries at each depth below the seafloor

Phylogenetic affiliation
No. of clones

0–3 cm 15–18 cm

Deltaproteobacteria
Desulfosarcina/Desulfococcus 4 3
Desulfobacteria (Eel-1) 4
Syntrophus 1
Desulfobulbus/Desulfocapsa 4
Eel-2 13
Other deltaproteobacteria 9

Epsilonproteobacteria 1 1

Gammaproteobacteria 1
Acidobacteria 7
Hypersaline group I 3
JS1 14
Hypersaline group II 6
Planctomycetales 1 2
OP8 1 2
Actinobacteria 4
Chloroflexi 4
Hydrocarbon-associated group 7
KB-1 5

Total no. of clones 23 74

TABLE 3. Phylogenetic affiliations of dsrAB clone libraries at each
depth below the seafloor

Phylogenetic affiliation
No. of clones

0–3 cm 15–18 cm 18–21 cm

GOM dsr I 24 11 16
Group IV 7 4
Desulfobacterium anilini 7 42
Syntrophobacteraceae 6
Desulfosarcina/Desulfococcus 3 1

Total no. of clones 47 58 16
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fore, other 13C-depleted carbon sources, such as petroleum at
�26.7‰ (26) or methane at �60‰ (this study), contributed
to the TOC in the SMI. Evidence for the influence of subsur-
face salt deposits comes from chloride profiles, which showed
an increase to 2,200 mM at 18 cm (Fig. 2D), roughly four times
that of local seawater, which is 550 mM (32). These trends in
%TOC, C/N ratio, and chloride show that these sediments are
directly affected by a subsurface intrusion of a salt diapir and
petroleum deposits.

Diversity of mcrA. The nomenclature used to describe the
diversity of mcrA lineages found in this study follows that of
Hallam et al. (17). Methanogen and ANME community com-
positions, as indicated by the distribution of mcrA clones, were
similar between sediments in the SMI-1 and SMI-2 sections
(Fig. 3). Both sections were dominated by clones that grouped
closely with the mcrA genes from fosmids called group a (97%
of 63 clones for SMI-1 and 100% of 11 clones from SMI-2),
which are contiguous with 16S rRNA gene sequences from
ANME-1 (17, 18). The remaining two clones (from SMI-1) fell
into group e within the Methanosarcinales, along with se-
quences from Cascadia Margin hydrates, Kuroshima Knoll
methane seeps, a terrestrial mud volcano, and methane-oxidiz-
ing enrichments containing ANME-1 and ANME-2 archaea.
While an association with AOM cannot be ruled out for group
e sequences (17), they could equally likely represent typical
methanogen members of the Methanosarcinales, which can dis-
proportionate acetate and methylated compounds. Utilization
of noncompetitive substrates might allow these members of the
Methanosarcinales to be present in the AOM zone, where sul-
fate reducers compete for organic carbon sources. No mcrA

genes from ANME-2 archaea were amplified from either SMI
layer, even though the primer sets used in this study have been
shown to amplify mcrA from members of the ANME-2 group
in other marine sediments (17, 23). No mcrA genes were am-
plified from the surface sediments, even though two primer
sets and nested-PCR reamplifications were employed.

Diversity of archaeal 16S rRNA genes and rRNA. Clones
from the ANME-1b group dominated the archaeal 16S clone
libraries from the SMI-1 and SMI-2 sediment horizons (Table
2 and Fig. 4). The ANME-1a and ANME-1b designations are
based on the ANME phylogeny described by Knittel et al.
(29). No ANME-1 sequences were present in general archaeal
16S clone libraries of surface sediments, indicating that the
ANME-1b sequences were associated only with the SMI (Ta-
ble 2). No ANME-2 sequences were amplified from any sedi-
ment layer with archaeal 16S rRNA gene primers. The SMI-1
sediment layer was reexamined for the presence or absence of
ANME-2 groups, using primer EelMS932, a probe specific for
ANME-2 (5), in combination with the general forward primer
A8f. This primer combination yielded ANME-1b sequences
and other members of the Methanosarcinales, but not ANME-2
(Table 2). In order to more carefully ascertain the absence of
ANME-2, PCR of the SMI-1 section was performed using one
forward primer specific for ANME-2a and two specific for
ANME-2c (29), in combination with EelMS932r. Amplicons of
the correct size were never detected, even using a temperature
range of 45 to 65°C and 40 cycles per PCR run. However,
bands about 100 base pairs larger than the size of the correct
amplicon at 47°C using the ANME-2a forward primers were
examined through band excision, cloning, and sequencing and
were not found to contain rRNA genes.

The next largest group of clones from SMI-1 fell within
GOM arc I in the Methanosarcinales, along with other se-
quences from methane hydrate-rich sediments in the Gulf of
Mexico (Table 2). This group was previously called ANME-2d
(37, 38); however, it is not monophyletic with ANME-2a, 2b,
2c, or 3, nor has it been shown to assimilate methane and/or to
form consortia with sulfate reducers. In the absence of these
tests, 16S rRNA gene similarities alone do not support con-
ferring an AOM metabolism on GOM arc I. The closest sister
lineages to this group are uncultured clones from methane-
producing, nonmarine, hydrocarbon-rich soils (Fig. 4), making
it likely that GOM Arc I is a group of uncultured methano-
genic Methanosarcinales. Eleven more sequences from the SMI
fall just outside of the Methanosarcinales and Methanomicro-
biales and group with sequences from other hydrocarbon-rich
sediments. They are represented by clones SMI1-GC205-Arc9
and SMI2-GC205-Arc36 (Fig. 4).

The only archaeal group found in all three sediment depths
was marine benthic group D (MBG-D) (64), synonymous with
marine group III (MG-III) (9), a lineage within the Thermo-
plasmatales that generally occurs in marine sediments and hy-
drothermal environments (14, 38, 59). In our study, clones of
the MBG-D archaea were mostly obtained from surface sedi-
ments (48% of 46 clones) and from the A21f-915r amplifica-
tion of the SMI-1 section (94% of 36 clones) (Table 2). Two
sequences from the SMI-2 section also formed sister lineages
to MBG-D (Fig. 4).

Most of the crenarchaeotal clones fell within MBG-B (64),
which is synonymous with the deep-sea archaeal group (22).

FIG. 2. Geochemical pore water and sediment measurements with
depth in core 5, dive 4566, GC205, Gulf of Mexico. (A) Concentrations
of sulfate (*) and methane (F); the shaded regions labeled SURF,
SMI-1, and SMI-2 indicate sediment sections used for clone libraries.
(B) �13C of methane (F). (C) %TOC (}) and C/N ratio (�). (D) Chlo-
ride concentration (Œ). The error bars in panels A and B represent the
95% confidence intervals of instrumental error. The error bars in
panels C and D represent the 95% confidence intervals for triplicate
measurements of each sample.
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This group is mostly found in surficial and deep marine sedi-
ments and hydrothermal environments (22, 29). MBG-B ar-
chaea dominated the surface clone library (48% of 46 clones)
and were represented by two sequences in the SMI. All other
crenarchaeotal sequences from surface sediments fell within
MG-I, a pelagic group that includes the sponge symbiont Cen-
archaeum symbiosum and the ammonia oxidizer Nitrosopumi-
lus maritimus (Table 2; Fig. 4).

To elucidate the phylogenetic composition of the popula-
tion that was most likely active, total rRNA was extracted
from the SMI-1 section, followed by RT-PCR to amplify 16S
rRNA sequences. Out of 21 clones, 20 grouped within the
ANME-1b, and 1 clone fell within the GOM arc I group in
the Methanosarcinales (Table 2). The general agreement
between rRNA and rRNA gene sequences in A8f-A1492r
clone libraries indicated that the ANME-1b and the Meth-
anosarcinales-related rRNA gene clones represented active
organisms at this depth.

Diversity of dsrAB. dsrAB sequences were more diverse than
mcrA sequences at all three depths, with a total of five distinct
groups represented and no large-scale changes in sulfate re-
ducer community composition with depth (Fig. 5). The largest
group of dsrAB sequences retrieved from SMI-1 (72% of 58
clones) grouped with dsrAB sequences from the aromatic-hy-
drocarbon degraders Desulfobacterium anilini and isolate
mXyS1 (Table 3). All cultured members of this group obli-
gately degrade hydrocarbons commonly found in natural pe-
troleum deposits.

A large proportion of sequences from all three depths fell
into two deeply branching clades, group IV (10) and GOM dsr
I (Table 3 and Fig. 5). Group IV also contains sequences
retrieved from Guaymas Basin, a sedimented, petroleum-rich
hydrothermal-vent site; Plum Island, a New England salt
marsh; Kysing Fjord, a shallow brackish fjord in Denmark; and
other marine sediments. At present, group GOM dsr 1 does
not have cultured relatives or closely related dsrAB phylotypes

FIG. 3. Least-squares distance tree based on translated partial amino aid sequences of PCR-amplified mcrA genes from GC205 sediment
depths SMI-1 (15 to 18 cm) and SMI-2 (18 to 21 cm) (boldface). Group names are based on those of Hallam et al. (17). Bootstrap values (percent)
for 1,000 repetitions each of distance (first) and parsimony (second) are listed for values of 50%. Groups that have 99% similar nucleic acid
sequences within each sediment depth are represented by a single sequence, with the number of clones out of the total in parentheses.
Environmental clones are included for comparison and are designated by their location or environmental type, clone name, and GenBank
accession number. The scale bar represents 10% estimated distance.
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FIG. 4. Least-squares distance tree of archaeal 16S rRNA gene and rRNA clones from GC205 sediment depths SURF (0 to 3 cm), SMI-1 (15
to 18 cm), and SMI-2 (18 to 21 cm) (boldface). The bootstrap values, 99% similarity groupings, distance scale, and environmental-clone names
follow the conventions in Fig. 3. For SMI-1 the 99% similar clone numbers are listed for each reverse primer used. Sequences including “RNA”
in their names are cDNAs that were reverse transcribed from total RNA; all other sequences were PCR amplified from DNA. TMEG, terrestrial
miscellaneous euryarchaeotal group (61); DSAG, deep-sea archaeal group. See the text for explanations of other phylogenetic group acronyms.
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from other environments; it may represent a sulfate-reducing
lineage with specific adaptations to the biogeochemical regime
in GC205 sediments. This cluster is well supported (100%
bootstrap) and appears to form a sister group to group IV, with
moderate bootstrap support (around 70%) (Fig. 5).

Only a few clones from both surface sediments and SMI-1
were within the DSS group, although with poor bootstrap sup-
port. In the 16S rRNA gene phylogeny, the DSS group con-
tains the putative SRB syntrophs for AOM (5, 43). Cultured
members of this group can oxidize a wide range of substrates

completely to CO2 and can utilize organic and inorganic car-
bon sources.

The only group of dsrAB genes found at a single depth was the
Syntrophobacteraceae in the surface sediments (Table 3). Cultured
members of the family Syntrophobacteraceae include syntrophic
propionate oxidizers, which can also reduce sulfate (genus Syn-
trophobacter), as well as thermophilic sulfate reducers that access
a wide variety of organic acids (genus Desulfacinum).

Diversity of bacterial 16S rRNA genes. Bacterial 16S rRNA
genes are more diverse than archaeal 16S rRNA genes in both

FIG. 5. Least-squares distance tree based on translated partial amino aid sequences of PCR-amplified dsrAB genes from GC205 sediment
depths SURF (0 to 3 cm), SMI-1 (15 to 18 cm), and SMI-2 (18 to 21 cm) (boldface). The bootstrap values, 99% similarity groupings, distance
scale, and environmental-clone names follow the conventions in Fig. 3.
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FIG. 6. Least-squares distance tree of bacterial 16S rRNA gene clones from GC205 sediment depths SURF (0 to 3 cm) and SMI-1 (15 to 18 cm)
(boldface). The bootstrap values, 99% similarity groupings, distance scale, and environmental-clone names follow the conventions in Fig. 3.

7226 LLOYD ET AL. APPL. ENVIRON. MICROBIOL.



surface and SMI-1 clone libraries (Fig. 6 and Table 4). Clone
libraries of bacterial 16S rRNA genes were not made for
SMI-2, since archaeal libraries looked very similar to those of
SMI-1. Bacterial clones in surface sediments (34% of 23
clones) and the SMI-1 layer (40% of 74 clones) fell predomi-
nantly within the deltaproteobacteria, a group containing many
SRB (Table 4). From both sediment depths, a few clones
formed branches parallel to the putative AOM syntrophic sul-
fate reducers within the DSS group (43). The remaining
deltaproteobacterial clones from the surface sediments fell
within the propionate-oxidizing Desulfobulbaceae next to other
uncultured sequences from other anoxic marine sediments
(Fig. 6). A few clones from SMI-1 were members of the Eel-1
group, a sister lineage to Desulfobacterium anilini and the
xylene-degrading isolate mXyS1. Clones from SMI-1 also fell
within the Eel-2 group, which has no close cultured relatives.
Both the Eel-1 and Eel-2 groups are characteristic of marine
methane-rich sediments and often occur in sediments where
ANME-1 phylotypes dominate over ANME-2 (43, 62), as was
the case in the current study. A single clone from SMI-1
formed a sister taxon to Syntrophus gentianae and Syntrophus
aciditrophus; cultured members of this genus ferment benzoate
and often live syntrophically with H2-consuming methanogens.
Nine near-identical SMI-1 clones (represented by SMI1-
GC205-Bac66) (Fig. 6) formed a distinct, new deltaproteobac-
terial lineage, together with sequences obtained from Guaymas
Basin sediments and tubeworm secretions.

Other proteobacterial clones include a gammaproteobacte-
rial clone near the methyl-oxidizing genus Methylobacter and
two clones within the epsilonproteobacteria; cultured species
of this group are generally chemolithotrophic O2- or NO3-
respiring H2 or S oxidizers (Fig. 6) (60).

Among nonproteobacterial clones, most clones in the sur-
face sediments (31%) were members of the Holophaga/Ac-
idobacteria, a cosmopolitan lineage in marine sediments (49).
Cultured representatives of this group share little physiological
similarity with each other and thus do not allow physiological
inferences for uncultured relatives; Holophaga foetida is an
acetogen, and Geothrix fermentens is a nonacetogenic Fe(III)
reducer. The surface sediments also harbored members of the
Firmicutes/Actinobacteria, which are abundant in marine, fresh-
water, and terrestrial habitats and have a range of physiologies.

SMI-1 harbored several uncultured bacterial lineages that
are characteristic of marine sediments and hypersaline habi-
tats: chloroflexi occur frequently in hydrocarbon-rich sedi-
ments and the deep subsurface (62); the JS1 group is found in
marine sediments and the subsurface (66); the Kebrit Deep I
(KB-I), hypersaline group I (HS-I), and HS-II from hypersa-
line marine basins and seeps (11), and hydrocarbon group I
from hydrocarbon-rich sediments (31). The HS-I, HS-II, and
hydrocarbon group I designations are proposed in this study to
simplify discussion of these groups. Two clones from SMI-1
and one clone from surface sediments belong to the candidate
division OP8, an uncultured phylum-level lineage found in
hydrothermal vents, hot springs, mud volcanoes, oil spills, and
marine sediments.

Three clones from the sediment surface and SMI-1 grouped
within the Planctomycetes, a phylum that includes the genera
Pirellula and Planctomyces, aerobic or nitrogen-respiring ma-

rine heterotrophs, and the anaerobic ammonia-oxidizing genus
Scalindua.

DISCUSSION

The ANME-1b archaeal community. Studies of the micro-
bial populations responsible for AOM almost always find cooc-
curring populations of ANME-1a, ANME-1b, various sub-
groups of ANME-2, and sometimes ANME-3 (14, 20, 29, 31,
36, 38, 39, 41, 43–45, 62). So far, communities known to be
dominated by ANME-1 are limited to benthic microbial mats
and carbonate reefs in the Black Sea (4, 29, 36). To our knowl-
edge, our study is the first to describe a natural sedimentary
ANME population consisting only of ANME-1b archaea.

In the GC205 sediments, ANME-2 sequences could not be
detected with two sets of general archaeal 16S and mcrA prim-
ers that are known to amplify these groups. Furthermore, the
ANME-2-targeted probe EelMS932r (5, 44) amplified only
clones from ANME-1b and other euryarchaeota (Table 2).
EelMS932r, in combination with forward primers targeting the
most common ANME-2 subgroups, ANME-2a and ANME-2c,
amplified no ANME-2 sequences, even though low-stringency
PCR techniques were used. Therefore, it appears that these
SMI sediment layers harbor an AOM community whose ar-
chaeal component comprises only ANME-1b archaea. Since
ANME-1b dominates the rRNA library, as well as that of
rRNA genes, ANME-1b is not only present but may be active
in these sediments. This result also has implications for the
identification of mcrA phylotypes. Due to the absence of the
ANME-1a subgroup in 16S rRNA gene and rRNA clone li-
braries, the tightly clustered ANME-1 mcrA sequences re-
ported here should represent the ANME-1b subgroup (Fig. 3).

Geochemical controls at site GC205 may be responsible for
the existence of only ANME-1b archaea in this population of
anaerobic methane oxidizers. In previous studies, methane
concentrations and the presence of oxygen have been postu-
lated as selective factors for ANME-1 and ANME-2 (4, 29).
Knittel et al. (29) proposed that ANME-1 is more sensitive to
oxygen than is ANME-2. According to this hypothesis, Black
Sea carbonate structures contain predominantly ANME-1 be-
cause, unlike cold methane seeps, hydrothermal vents, and
methane hydrates, the Black Sea mats are exposed only to
anoxic bottom waters. Similarly, the sediments at site GC205
are permanently anoxic, and no resuspension by gas ebullition
or hydrate outcropping was observed at the time of sampling.
However, oxygen concentration profiles and time series for
oxygen dynamics in ANME-rich hydrate sites and methane
seeps are needed to substantiate this hypothesis.

Blumenberg et al. (4) suggested that ANME-1 outcompetes
ANME-2 in the interior sections of Black Sea carbonate chim-
neys, where methane is presumed to be limiting. However,
ANME-1 and ANME-2 archaea usually coexist near methane
hydrates or seeps with high concentrations of methane (23, 31,
37, 43). In fact, laboratory enrichments of AOM show that
ANME-1 archaea outcompete ANME-2 under a high methane
flow rate (13). In addition, ANME-1 was slightly more numer-
ous than ANME-2 at site GC232 in the Gulf of Mexico, even
under high millimolar concentrations of methane (41). At Gulf
of Mexico sites GC233 and GC232, ANME-2 and ANME-1
coexist at methane concentrations both higher and lower than
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those in the current study at site GC205 (41). Therefore, both
ANME-1 and ANME-2 archaea appear to tolerate a wide
range of methane concentrations and fluxes. At GC205, the
methane concentration at SMI-1 is relatively low for a methane
seep site (�220 �M), but the upward trend of methane with
depth indicates a substantial methane flux into the SMI. There-
fore, the dominance of ANME-1b at GC205 is not sufficiently
explained by the specific methane concentrations and fluxes at
our study site.

The dominance of ANME-1b at GC205 may be explained by
the site’s uniquely high salinity compared to previous studies.
The chloride concentration in the SMI is 2,200 mM, which is
roughly four times that of seawater and sediments near the
brine pool at GC233 (both around 35 ppt, or 550 mM Cl�)
(41). However, natural samples of predominantly ANME-1 or
ANME-2 archaea (from Black Sea carbonates and Hydrate
Ridge sediments at seawater salinities) share peak sulfate re-
duction rates at salinities around 470 mM, near seawater sa-
linity, and show a sharp decline around 785 to 945 mM (39).
The complete absence of ANME-2 and ANME-1a at salinities
of 2,200 mM in our samples suggests that a high-salt-adapted
subpopulation of ANME-1b may persist where other ANME
groups cannot. Salinity is a geochemical control factor on the
bacterial community as well; 16S rRNA gene sequences fell
within the uncultured groups KB-1, HS-I, and HS-II, which
contain sequences only from hypersaline environments (11).

Relationship between SRB and AOM. Unlike the archaeal
16S rRNA gene/rRNA and mcrA clone libraries, the bacterial
16S rRNA gene and dsrAB clone libraries are not dominated
by sequences of organisms previously associated with AOM.
According to the dsrAB clone libraries, the SRB community
composition does not change appreciably between surface sed-
iments and those at the sulfate-methane interface, indicating
that the community composition is not altered by increasing
methane concentrations downcore. The majority of dsrAB se-
quences from both the upper and the lower sections group with
GOM dsr I, the Desulfobacterium anilini group, and group IV
(Fig. 5 and Table 3). This diversity of dsrAB genes far exceeds
the known range of sulfate-reducing bacterial syntrophs driv-
ing AOM, and no groups are specifically associated with the
SMI, indicating that these sulfate-reducing communities grow
independently of anaerobic methane oxidation.

This decoupling of sulfate reducers from AOM has been
observed in similar Gulf of Mexico sediments, where rates of
sulfate reduction are much higher than rates of AOM (25, 42)
and petroleum and other hydrocarbons are the likely carbon
sources for sulfate reduction (12, 25). Petroleum degradation
is probably occurring at site GC205, since the organic matter
became N depleted with depth and the �13C values for TOC at
site GC205 reflected a petroleum source. The bacterial com-
munity composition is consistent with this process; many bac-
terial 16S rRNA gene sequences from site GC205 grouped
closely with sequences from other hydrocarbon-rich areas and
hydrocarbon-degrading enrichments. Group IV sulfate reduc-
ers, for instance, are often found in organic-rich marine sedi-
ments, rich in decaying plant biomass and/or petroleum hydro-
carbons (3, 10). A similar bacterial utilization of ancient
hydrocarbons was observed in Guaymas Basin, where the ma-
jority of living biomass is petroleum derived, as determined by
radioactive and stable carbon isotopic signatures (47). An al-

ternative scenario, methane oxidation by sulfate-reducing bac-
teria alone without syntrophic ANME groups, is unlikely, given
that we did not find any mcrA genes that were not accounted
for by archaeal 16S rRNA gene sequences. So far, no sulfate
reducer has been reported to oxidize methane directly,
whereas petroleum-derived hydrocarbons are a viable electron
and carbon source for sulfate reduction (47).

A few 16S rRNA gene and dsrAB clones fell within the DSS
group, which contains members that form consortia with
ANME archaea (5, 44). However, free-living members of the
DSS group are also widespread in marine sediments and often
constitute a dominant SRB population (3, 28, 49). To our
knowledge, no studies have positively differentiated dsrAB
genes of DSS syntrophs associated with AOM from dsrAB
genes of free-living DSS members that are abundant and ubiq-
uitous in marine sediments. Likewise, the dsrAB sequences in
this study, although related to the DSS group, cannot be as-
signed to AOM syntrophs with certainty. The 16S rRNA gene
and dsrAB clone libraries yielded DSS clones, not only from
the SMI, but also from surface sediments, where low methane
concentrations make AOM improbable, no ANME groups
were found, and a background population of free-living DSS
group bacteria is very likely. In brief, free-living and syntrophic
dsrAB phylotypes cannot be identified with certainty without
more specific techniques, such as mRNA-targeted fluores-
cence in situ hybridization.

Implications. Using 16S rRNA genes and functional genes,
we have identified how uncultured groups of bacteria and
archaea interact with the specific geochemical gradients that
characterize their habitat. Our work shows that AOM in hy-
persaline conditions is mediated by a previously recognized
clade of ANMEs (ANME-1b) and does not require the pres-
ence of a novel group with evolutionarily divergent mcrA
genes. This does not appear to be the case for hypersaline/
alkaline Mono Lake, where AOM is possibly mediated by
organisms that are unrelated to the known ANME clades (54).
Future studies should investigate (i) whether ANME-1b dom-
inance applies to larger areas of the seafloor and (ii) which
specific adaptations enable the ANME-1b group to meet the
energy challenges of maintaining osmoregularity using the low
energy-yielding process of AOM.

In contrast to the highly specific ANME-1b community sup-
ported by AOM at the sulfate-methane interface, sulfate re-
duction supports a phylogenetically diverse group of bacteria
that probably degrade hydrocarbons and/or petroleum
throughout the sediment column. The presence of deeply
branching dsrAB sequences at GC205 raises the possibility that
some of the uncultured 16S rRNA gene bacterial lineages are
sulfate reducers. The sulfate reducers identified by dsrAB gene
sequencing may represent novel forms of halophilic or halotol-
erant petroleum-degrading organisms, although isolations and
isotope determinations are required to establish the link to
petroleum.
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29. Knittel, K., T. Lösekann, A. Boetius, R. Kort, and R. Amann. 2005. Diversity
and distribution of methanotrophic archaea at cold seeps. Appl. Environ.
Microbiol. 71:467–479.
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