Identification and Sequence of a *tet*(M) Tetracycline Resistance Determinant Homologue in Clinical Isolates of *Escherichia coli*

C. Hal Jones,¹* Margareta Tuckman,¹ Ellen Murphy,² and Patricia A. Bradford¹

Infectious Diseases Research¹ and Vaccines Discovery,² Wyeth, Pearl River, New York

Received 17 May 2006/Accepted 17 July 2006

The presence of the tetracycline resistance determinant tet(M) in human clinical isolates of *Escherichia coli* is described for the first time in this report. The homologue was >99% identical to the tet(M) genes reported to occur in *Lactobacillus plantarum*, *Neisseria meningitidis*, and *Streptococcus agalactiae*, and 3% of the residues in its deduced amino acid sequence diverge from tet(M) of *Staphylococcus aureus*. Sequence analysis of the regions immediately flanking the gene revealed that sequences upstream of tet(M) in *E. coli* have homology to Tn916; however, a complete IS26 insertion element was present immediately upstream of the promoter element. Downstream from the termination codon is an insertion sequence that was homologous to the ISVs1 element reported to occur in a plasmid from *Vibrio salmonicida* that has been associated with another tetracycline resistance determinant, tet(E). Results of mating experiments demonstrated that the *E. coli tet*(M) gene was on a mobile element so that resistance to tetracycline and minocycline could be transferred to a susceptible strain by conjugation. Expression of the cloned tet(M) gene, under the control of its own promoter, provided tetracycline and minocycline resistance to the *E. coli* host.

Tetracyclines are a family of broad-spectrum antibiotics with an excellent safety profile that, some 6 decades after their discovery, still have clinical utility, albeit somewhat limited (12, 32). Tetracyclines have been found to be effective for the treatment of human parasitic diseases and are, in fact, the drug class of choice for treating mefloquine-resistant *Plasmodium falciparum* infection. Tetracyclines also have a number of nonantibacterial effects that are presumed to play a role in the utility of the drug family for the treatment of periodontal disease and acne (12, 32). The continued spread of tetracycline resistance determinants among clinically important pathogens, aided by nonclinical uses of the compound, has severely limited the clinical utility of the drug class (12, 31, 32).

Tetracycline resistance in bacteria is mediated by four mechanisms: efflux, ribosomal protection, enzymatic inactivation, and target modification (12, 33). Efflux and ribosomal protection are widely distributed among both gram-negative and gram-positive organisms, whereas the other two mechanisms have each been described for only a few bacterial genera (12, 33, 35, 40). Since the first report of transferable tetracycline resistance in Shigella dysenteriae in 1960 (2), 23 genes encoding efflux pumps and 11 genes encoding ribosomal protection proteins have been described for bacteria (12, 31, 33). Ribosomal protection as a mechanism of tetracycline resistance was first reported for streptococci in 1986 (9). The mediators of this resistance mechanism are proteins (e.g., TetM, TetO, TetQ, and TetS) that have the ability to block the binding of and/or displace tetracycline from the 30S subunit of the ribosome (12).

The broad distribution of the ribosomal protection gene tet(M) is due to its association with highly permissive conjugative transposons, such as Tn916 in *Streptococcus* spp. and

Tn1545 in *Enterococcus* spp. (13). These elements have been identified in over 50 different bacterial genera, both gram negative and gram positive, and have played a major role in the spread of antibiotic resistance determinants between and across genera (12, 13).

Although tet(M) is widely distributed and provides functional resistance to tetracyclines when expressed in *Escherichia coli*, a tet(M) homologue had not been identified in an environmental or clinical isolate of *E. coli* until 2004, when it was identified in strains isolated from pigs and chickens (8). The analysis by Bryan et al. (8) examined the presence of 12 tetracycline resistance determinants in natural, nonselected, nonclinical *E. coli* strains from humans and animal sources and was the first report of the tet(M) determinant in an isolate of *E. coli* (8).

Tigecycline is the novel 9-*t*-butyl glycylamido derivative of minocycline that has been approved for clinical use in the treatment of complicated skin and skin structure infections and complicated intra-abdominal infections worldwide (39). During the course of the tigecycline clinical studies, all bacterial isolates were screened for susceptibility to tetracycline and minocycline among a panel of other antibiotics. Isolates of *E. coli* that were resistant to minocycline and/or tetracycline (MIC $\geq 8 \mu$ g/ml) were screened by PCR for the presence of tetracycline resistance determinants, including *tet*(M). Three isolates from two different patients were found to carry *tet*(M). This is the first report of the identification of the *tet*(M) tetracycline resistance determinant originating in a human clinical isolate of *E. coli*.

MATERIALS AND METHODS

Bacterial strains. Clinical isolates of *E. coli* (Table 1) were from the phase 3 double-blind clinical trials comparing the safety and efficacy of tigecycline to those of an active comparator for the treatment of complicated intra-abdominal infections (2002 to 2004) (6). Patient specimens were processed and bacterial pathogens were cultured by each site laboratory according to local practices. Individual

^{*} Corresponding author. Mailing address: 401 N. Middletown Rd., Bldg. 200, Rm. 3219, Pearl River, NY 10965. Phone: (845) 602-4612. Fax: (845) 602-5671. E-mail: jonesh3@wyeth.com.

TABLE 1. E. coli strains used in study

Strain	Characteristic(s)	Source or reference ^{<i>a</i>}
NCTC 50268	tet(A)	NCTC
NCTC 50365	tet(B)	NCTC
NCTC 50270	tet(C)	NCTC
NCTC 50271	tet(D)	NCTC
NCTC 50272	tet(E)	NCTC
GC2270	$tet(\mathbf{M})^b$	Wyeth Collection
DH5a	Cloning strain	18
GAR3139	tet(M) $tet(A)$	7
GAR3141	$tet(\mathbf{M})$ $tet(\mathbf{A})$	7
GAR3142	$tet(\mathbf{M})$ $tet(\mathbf{A})$	7
GAR7071	Tetracycline susceptible, levofloxacin resistant	7
GAR7090	Tetracycline susceptible, levofloxacin resistant	7
GC7939	tet(M), tet(A) transconjugant; GAR3139 donor, GAR7071 recipient	This study
GC7940	tet(M) tet(A) transconjugant; GAR3139 donor, GAR7090 recipient	This study
GC7941	tet(M) tet(A) transconjugant; GAR3141 donor, GAR7071 recipient	This study
GC7942	tet(M) tet(A) transconjugant; GAR3141 donor, GAR7071 recipient	This study
GC7949	<i>tet</i> (M) cloned into pCR-XL-TOPO	This study

^a NCTC, National Collection of Type Cultures (www.hpa.org.uk).

^b S. aureus tet(M) cloned into pUC19 (Wyeth, unpublished data).

investigators sent all bacterial isolates to a central laboratory for identification and susceptibility testing.

Susceptibility determination. Susceptibility tests were performed by broth microdilution with Mueller-Hinton II broth (MHB) as recommended by the Clinical Laboratory Standards Institute (CLSI [formerly the NCCLS]) (14, 24). A screening test for resistance to tetracycline was also performed using the disk diffusion method according to standard protocols (23).

Amplification of tetracycline resistance determinants. In order to monitor the presence of resistance determinants for tetracyclines (minocycline and tetracycline), PCR assays were developed and optimized using published sequence information (3, 4, 21, 27, 34) and sequence information directly deposited in GenBank (www.ncbi.nlm.nih.gov) for primer design. Primer sequences, primer location (starting base pair), and expected amplicon size are shown in Table 2. In addition to the resistance determinant, a primer pair specific for 16S rRNA was also included for internal standardization and quality control of the assay (30). Control strains that were previously characterized with respect to antibiotic resistance and the presence of specific determinants were utilized for assay development (Table 1). DNA was obtained from whole-cell lysates as follows. E. coli isolates were plated on Luria agar (Becton Dickenson and Company, Cockeysville, MD), and following overnight incubation, several colonies were collected with a 10-µl loop, resuspended in 500 µl of distilled water, and incubated for 5 min in a boiling water bath. The lysate was subjected to brief centrifugation (Savant SFA13K; Savant, Farmingdale, NY) at 13,000 \times g, and 1 µl of the supernatant was used as the template for amplification.

The FAILSAFE PCR system (Epicenter Technologies, Madison, WI) was used for amplification. Appropriate buffers were experimentally identified for each primer set. One microliter of the whole-cell lysate was used in the PCR assay in a 25- μ l volume reaction mixture. Cycling conditions were as follows: the initial denaturation step was for 5 min at 94°C; amplification was 30 cycles of 1 min at 56°C, 1 min at 72°C, 1 min at 94°C, and a final 1 min at 45°C; and extension was for 5 min at 75°C. The reaction products were resolved on a 0.8% agarose gel containing 0.5 μ g/ml ethidium bromide. A 1-kb ladder (Fermentas, Hanover, MD) was run on each gel as a size reference.

Sequence determination. PCR amplicons were TA cloned into pCR-XL-TOPO (Invitrogen, Carlsbad, CA) for sequence analysis using an ABI PRISM BigDye Terminator cycle sequencing ready reaction kit mix (version 3.1; Applied Biosystems, Foster City, CA). Amplification reactions were performed on a model PTC-225 cycler (Bio-Rad, Hercules, CA) for 40 cycles (96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 2 min), and the excess dye was removed by gel filtration on a 96-well Performa DTR plate (from EdgeBiosystems, Gaithersburg, MD). The samples were heat denatured for 2 min at 90 to 95°C and separated by electrophoresis on a model ABI3730 genetic analyzer (Applied Biosystems, Foster City, CA) under conditions recommended by the manufacturer. Manual sequence editing was performed using Sequencher 4.2 (Gene Codes, Ann Arbor, MI).

Genomic analysis. Sequences were identified by BLAST analysis (5) against sequences in the GenBank database (www.ncbi.nlm.nih.gov).

Conjugation studies. Conjugation experiments were performed using filter mating (1). Overnight cultures of tetracycline-resistant, levofloxacin-susceptible donor (GAR3139 and GAR3141) and tetracycline-susceptible, levofloxacin-resistant recipient (GAR7071 and GAR7090) strains, grown in Luria broth, were seeded at a 1:50 dilution in separate flasks of brain heart infusion broth (BD, Sparks, MD). Following growth to early log phase (approximately 2 h) with shaking at 37°C, 5 ml each of the donor and the recipient cultures were mixed and pelleted by centrifugation $(1,500 \times g)$. The supernatant was decanted, and the pellet was carefully spread onto a nitrocellulose filter (type HA, 45-µm pore size; Millipore, Billerica, MA) and placed on a brain heart infusion broth plate. The plate was incubated for 4 hours at 37°C, after which time the filter was removed from the plate and placed in a tube with 5 ml sterile saline. The tube was vortexed in order to dislodge the cells from the filter, and serial 10-fold dilutions were prepared in sterile saline. Controls containing only the donor or the recipient were similarly processed. One hundred microliters of each dilution was spread on LB plates supplemented with 10 μ g/ml tetracycline and 10 μ g/ml levofloxacin. Controls were also spread onto LB agar plates containing 10 μ g/ml tetracycline or 10 µg/ml levofloxacin or were not subjected to selection. Plates were incubated overnight at 37°C, and colonies were picked onto LB plates containing 10 µg/ml tetracycline and 10 µg/ml levofloxacin for further characterization. RiboPrinting was performed according to the manufacturer's instructions (Dupont-Qualicon, Wilmington, DE) to confirm the transfer of the resistance determinant from donor to recipient.

Southern blotting. Detection of tet(M) by hybridization was carried out using a PCR digoxigenin probe and hybridization kit (Roche Molecular Systems, Summerville, NJ) according to the manufacturer's instructions. Chromosomal DNA preparations digested with AccI [single site in tet(M)] were transferred to a nylon membrane (Roche Molecular Systems). The digoxigenin-labeled ~1.0-kb tet(M) PCR fragment (Table 2) was used as the probe. Membrane-bound DNA was hybridized at 30°C overnight, washed with 0.1× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) at 68°C, developed with the alkaline phosphatase substrate CDP-Star, and visualized on X-ray film.

Cloning. *E. coli tet*(M) was cloned, along with its resident promoter sequences, by using the ectet(M) clone PCR primer pair (Table 2). The amplicon was TA cloned into pCR-XL-TOPO according to manufacturer's instructions (Invitrogen, Carlsbad, CA).

Nucleotide sequence accession number. The complete sequence of the *E. coli tet*(M) gene and the flanking sequences has been deposited in GenBank (accession number DQ534550).

RESULTS

Identification and cloning of *E. coli tet*(M). Of the 1,462 *E. coli* clinical isolates screened from the tigecycline phase 3 clinical trials, 333 (23%) were minocycline resistant (MIC \ge 8 µg/ml) and 234 (16%) were tetracycline resistant (MIC \ge 8 µg/ml) but susceptible to minocycline (MIC \le 4 µg/ml). Three isolates (GAR3139, GAR3141, and GAR3142), isolated from two patients from Taiwan, of the 567 screened with the *tet*(M) primer set resulted in products of the appropriate size (~1 kb) (Fig. 1 and data not shown). All three strains were also positive for the *tet*(A) determinant.

One strain from each patient was chosen for further study. In order to recover the 5' and 3' ends of the *E. coli tet*(M) gene, internal primers were designed from the cloned sequence and paired with corresponding upstream [ectet(M)up] and downstream [ectet(M)dwn] primers derived from the reference

Target	Sequence $(5'-3')^a$	Start point (bp) ^b	Amplicon size (bp)	Reference sequence accession no. ^c
tet(A)	F: 5' GTA ATT CTG AGC ACT GTC GC R: 5' CTG CCT GGA CAA AAT TGC TT	25 981	956	AJ313332
tet(B)	F: 5' GTT ACT CGA TGC CAT GGG GA R: 5' GAA GGT CAT CGA TAG CAG GA	36 1157	1,121	AB089594
<i>tet</i> (C)	F: 5′ GCG CT <u>R</u> TAT GC <u>R</u> <u>D</u> TG ATG C R: 5′ TGG TCG TCA TCT ACC TGC	148 996	748	J01749
tet(D)	F: 5′ GCG CT <u>R</u> TAT GC <u>R</u> <u>D</u> TG ATG C R: 5′ CAT CCG GAA GTG ATA GC	142 890	748	X65876
<i>tet</i> (E)	F: 5' GCG CT <u>R</u> TAT GC <u>R</u> <u>D</u> TG ATG C R: 5' CTA CCT GAC CGA CAC G	162 1011	849	L06940
$tet(M)^d$	F: 5′ ATA GA <u>Y</u> ACG CCA GG <u>M</u> CAT A R: 5′ GGA GCC CAG AAA GGA TT <u>Y</u> GG	698 1768	1,070	M21136
ectet(M)up	F: 5' GTG ATT CTA AAG TAT CC R: 5' TAG GAT ACA GTT CTA CC	342 928	586	M21136
ectet(M)dwn	F: 5' CAA GAA AAG TAT CAT GTG G R: 5' TTT CAT CTT ATT TAA CAA GAA ACC	1666 2403	737	M21136
ectet(M)up1000	F: 5' CAA CTA TCA TAG AAA AGG AAT ACG R: 5' TTC CCA CTG AAA AGA GGT TAT TCC	11016 630	1,004	U09422 M21136
ectet(M)up500	F: 5' TCA AGC TCT ATC CTA CAG C R: 5' TTC CCA CTG AAA AGA GGT TAT TCC	11502 630	532	U09422 M21136
ectet(M)dwn500	F: 5' ATA GTC GGA TAG ATA AAG TAC G R: 5' AAC TTG GTA AAA AGC ACC C	2353 14495	475	M21136 U09422
ectet(M)dwn1000	F: 5' ATA GTC GGA TAG ATA AAG TAC G R: 5' GAC AAG AAC CCA ATG TAA GG	2353 14973	955	M21136 U09422
ectet(M)clone	F: 5' TTA CAA ATA TGC TCT TAC GTG C R: 5' TTT CAT CTT ATT TAA CAA GAA ACC	152 2403	2,251	M21136
16S rRNA	F: 5' GCCAGCAGCGCGGTAATACG R: 5' GGACTACCAGGGTATCTAATCC	537 808	271	M87484

TABLE 2. Primers used in this study

^a IUB codes (underlined) are as follows: R, A + G; Y, C + T; D, G + A + T; and M, A + C. F, forward; R, reverse.

^b Numbering is per the referenced sequence.

^c GenBank accession numbers (www.ncbi.nlm.nih.gov).

^d Primers were modified from reference 34.

Staphylococcus aureus (M21136) sequence (25) (Table 2; Fig. 2). PCR resulted in products of the appropriate size, which were cloned and sequenced to complete and reconstruct the sequence of the *E. coli tet*(M) homologue in silico (Fig. 3). The DNA sequences from the two isolates (GAR3139 and GAR3141) analyzed differed by a single nucleotide; however, the substitution was silent (data not shown).

Although highly similar (approximately 90% or greater at the amino acid level) to the 23 full-length *tet*(M) sequences present in GenBank (www.ncbi.nlm.nih.gov), the *E. coli tet*(M) coding sequence was found to be most similar, \geq 99.5% at the amino acid level, to the published sequences from *Streptococcus agalactiae* (accession no. AAM99809), *Lactobacillus plantarum* (AAN40886), and *Neisseria meningitidis* (CAA52967), differing by 1, 2, and 3 residues, respectively (15, 17, 38). The results of a phylogenetic analysis of the 23 full-length *tet*(M) genes and the sequence from *E. coli* GAR3141 are presented in Fig. 4. An amino acid alignment of the *E. coli* Tet(M) protein and the Tet(M) proteins from *N. meningitidis* (accession no. CAA52967), *S. agalactiae* (AAM99809), *L. plantarum* (AAN40886), and the *S. aureus* (M21136) and *Enterococcus faecalis* (X56353) strains are shown in Fig. 5. Compared to the *S. aureus* sequence used in the design of the PCR primers (25), the encoded *E. coli* protein differed at 20 amino acid residues.

Upstream sequence determination. In order to capture upstream sequence information, we designed forward-facing primers based on Tn916 sequences located 500 and 1,000 base pairs upstream of the *S. aureus* coding sequence [ectet(M)up500 and ectet(M)up1000, respectively] and a reverse primer internal to the *E. coli* gene (Table 1; Fig. 2). Attempts to use the primer pair to clone 1,000 base pairs of upstream sequence were unsuccessful; however, the primer pair designed to clone 500 base pairs of upstream sequence resulted in a product. Interestingly, the PCR product was approximately

FIG. 1. PCR detection of *tet* resistance markers in *E. coli* clinical isolates. The PCR primer pairs for the detection of *tet*(A) (A) and *tet*(M) (B) are presented in Table 1. Templates were prepared from GAR3139 (lane 2), GAR3141 (lane 3), GAR7071 (lane 4), GAR7090 (lane 5), GC7939 (lane 6), GC7940 (lane 7), GC7941 (lane 8), GC7942 (lane 9), GC2270 as a positive control (lane 10), and DH5 α (lane 11). As a control for lysate preparation, gel loading, and the PCR conditions, primers for 16S rRNA were included in the assay. Molecular weight standards were loaded in lane 1 for reference.

1.3 kb instead of the expected 500 bp, suggesting that the region upstream from the *E. coli tet*(M) coding sequence diverged from the published *S. aureus* sequence. Sequence analysis revealed that the inserted sequence was identical to the IS26 sequence encoding the transposase gene *tnpA*, initially described by Mollet et al. (22). The IS26 element inserted 113 bp upstream of the -35 element of the *tet*(M) promoter (25, 37). The promoter elements (-10, -35, +1 start site) of the *tet*(M) gene as well as the translational start site and putative regulatory control region within the leader peptide are completely conserved in *E. coli*, by comparison to the sequence published by Nesin et al. (25) (Fig. 3).

Downstream sequence determination. Downstream sequence information was obtained using reverse-facing primers based on Tn916 sequences 500 and 1,000 base pairs downstream of the *S. aureus tet*(M) coding sequence [ectet(M)dwn500 and ectet(M) dwn1000, respectively] and a forward-facing primer internal to the *E. coli* gene (Table 1; Fig. 2). Again, the attempt to clone the larger downstream fragment using the Tn916 primer 1 kb from the end of the coding sequence was unsuccessful. However, the use of the ectet(M)dwn500 primer resulted in a fragment approximately 700 bp in length that, upon sequencing, revealed a 200-bp insertion sequence that was identical to a sequence previously reported to occur in the *V. salmonicida* plasmid pRVS1 and referred to as ISVs1 (36). The ISVs1

FIG. 2. Cloning strategy and schematic diagram of the *E. coli tet*(M) gene and flanking regions. Locations of primers are indicated with arrows. The IS26 and ISVs1 insertions are also shown diagrammatically along with the tet(M) promoter region.

А

Ρ

А

D

K

T

N

1 TTCAAGCTCT ATCCTACAGC GACAGCCAGT GAACTTTCCT ACTATGTGAA TGACGGGATA TTAAAACCAA

71 TCGGAAAAGA GTACATCTTT CAAGAACTGG TAAATCCTAT TCACAATCGT AAGGATAATC AAGTCACGGT

141 ATCGCTGACA GTGGAGTATA TCGACCAGCA GACCAAAGCA ACGCAGGTAT CTCAATTTGA TT<u>GGCACTGT</u> 8bp dr is26 itr-r

211 **TGCAAA**GTTA GCGATGAGGC AGCCTTTTGT CTTATTCAAA GGCC TTA CAT TTC AAA AAC TCT GCT TAC CAG

M E F V R S V L

282 GCG CAT TTC GCC CAG GGG ATC ACC ATA ATA AAA TGC TGA GGC CTG GCC TTT GCG TAG TGC ACG R Μ EG LΡ DG YY F A SA Q GK R \mathcal{L} А R 345 CAT CAC CTC AAT ACC TTT GAT GGT GGC GTA AGC CGT CTT CAT GGA TTT AAA TCC CAG CGT GGC Μ VEΙ G Κ Ι TА Y А Τ Κ Μ SΚ F G LTА 408 GCC GAT TAT CCG TTT CAG TTT GCC ATG ATC GCA TTC AAT CAC GTT GTT CCG GTA CTT AAT CTG putative transposase ORF М Ι F Ν Н V Ρ L А V V L Ν G Ι Ι R K LΚ G Η D CEΙ VΝ Ν R Y Κ Ι Q 471 TCG GTG TTC AAC GTC AGA CGG GCA CCG GCC TTC GCG TTT GAG CAG AGC AAG CGC GCG ACC ATA S V F Ν V R R А Ρ А F А F Ε Q S Κ R А Τ Ι R Η EVS PС R G ER Κ LL А LΑ R G Y534 GGC GGG CGC TTT ATC CGT GTT GAT GAA TCG CGG GAT CTG CCA CTT CTT CAC GTT GTT GAG GAT G G R F Т R V Е S R D L Ρ T₁ L Η V V Е D

FIG. 3. Nucleotide sequence of the *E. coli tet*(M) gene and flanking regions. The encoded amino acid sequence of *tet*(M) and the putative transposase are presented by the single-letter code under the respective nucleotide sequence. The deduced amino acid sequence of the IS26 transposase *tnpA* encoded on the noncoding strand of IS26 is shown in italics for clarity. Transcriptional control elements for *tet*(M) and the start point for the Tet(M) leader peptide are indicated in boldface. The terminal repeat features for IS26 and ISVs1 are also shown in bold and underlined, and the 8-bp direct repeat sequence for IS26 is presented in bold. The silent point mutation at position 2570 that differentiates the *tet*(M) sequence from those of strains GAR3139 and GAR3141 is indicated in bold and underlined. DR, direct repeat; ITR-R, right inverted terminal repeat; ORF, open reading frame; ITR-L, left inverted terminal repeat; IRL, inverted repeat left.

Ρ

Τ

0

K

W

K

V

Ν

Ν

L

Ι

R

F

Ι

7156	JONES	ET AL.

J. BACTERIOL.

597	TTT	ACC	CAG	AAA	CCG	GTA	TGC	AGC	TTT	GCT	GTT	ACG	ACG	GGA	GGA	GAG	ATA	AAA	ATC	GAC	AGT
	F	Т	Q	K	Ρ	V	С	S	F	A	V	Т	Т	G	G	Е	I	K	I	D	S
	K	G	L	F	R	Y	А	А	Κ	S	Ν	R	R	S	S	L	Y	F	D	V	Т
660	GCG	GCC	CCG	GCT	GTC	GAC	GGC	CCG	GTA	CAG	ATA	CGC	CCA	GCG	GCC	ATT	GAC	CTT	CAC	GTA	GGT
	А	A	Ρ	A	V	D	G	Ρ	V	Q	Ι	R	Ρ	A	A	Ι	D	L	Η	V	G
	R	G	R	S	D	V	А	R	Y	L	Y	А	W	R	G	Ν	V	K	V	Y	Т
723	TTC	ATC	CAT	GTG	CCA	CGG	GCA	AAG	ATC	GGA	AGG	GTT	ACG	CCA	GTA	CCA	GCG	CAG	CCG	TTT	TTC
	F	I	Η	V	Ρ	R	A	K	I	G	R	V	Т	P	V	Ρ	A	Q	Ρ	F	F
	E	D	М	Н	W	Р	С	L	D	S	Ρ	Ν	R	W	Y	W	R	L	R	K	E
786	CAT	TTC	AGG	CGC	ATA	ACG	CTG	AAC	CCA	GCG	GTA	AAT	CGT	GGA	GTG	ATC	GAC	ATT	CAC	TCC	GCG
	Н	F	R	R	I	Т	L	Ν	Ρ	A	V	Ν	R	G	V	I	D	I	Н	S	А
	Μ	E	P	А	Y	R	Q	V	W	R	Y	Ι	Т	S	Η	D	V	Ν	V	G	R
849	TTC	AGC	CAG	CAT	CTC	CTG	CAG	CTC	ACG	GTA	ACT	GAT	GCC	GTA	TTT	GCA	GTA	CCA	GCG	TAC	GGC
	F	S	Q	Η	L	L	Q	L	Т	V	Т	D	A	V	F	A	V	Ρ	A	Y	G
	Ε	А	L	Μ	Ε	Q	L	E	R	Y	S	Ι	G	Y	K	С	Y	W	R	V	А
912	CCA	CAG	AAT	GAT	GTC	ACG	CTG	AAA	ATG	CCG	GCC	TTT	GAA	TGG	GTT	CAT	GTG	CAG	CTC	CAT	CAG
	Р	Q	Ν	D	V	Т	L	К	Μ	P	A	F	Е	W	V	Н	V	Q	L	Н	Q
	W	L	Ι	Ι	D	R	Q	F	Η	R	G	Κ	F	Ρ	Ν	М	Η	L	Ε	Μ	
																•		- 1	5 <i>26</i> I	'npA	
975	CAA	AAG	GGG	ATG	ATA	AGT	TTA	TCA	CCA	CCG	ACT	A TT	TGC	AAC	AGT	GCC	ATT	TGA	TTTG	GTAC	ТΤ
	Q	K	G	Μ	Ι	S	L	S	Р	P	Т	I	С	Ν	S	A	I				
													IS <i>2</i>	6 IT:	R-L		8bj	p DR			

FIG. 3—Continued.

-10

Vol. 188, 2006

1039 GAAAAGAACG GGAGTAATTG GAAGATTGTA AAATAACAAA TATTGGTACA TGATTACAGA TACTTTGTAA

1109 TCATGTACTC TTTTTGATAA AAAATTGGAG ATTCC<u>TTTAC A</u>AATATGCTC TTACGTGC<u>TA TTA</u>TTTAAGT

1179 GACTATTTAA AAGGAGTTAA TAAATATGCG GCAAGGTATT CTTAAATAAA CTGTCAATTT GATAGCGGGA

-35

+1

1249 ACAAATAATT AGATGTCCTT TTTTAGGAGG GCTTAGTTTT TTGTACCCAG TTTAAGAATA CCTTTATCAT 1319 gtgattctaa agtatccaga gaatatctgt **Atg**ctttgta tacctatggt tatgcataaa aatcccagtg

Leader peptide

1389 ATAAAAGTAT TTATCACTGG GATTTTTATG CCCTTTTGGG TTTTTGAATG **GAGGA**AAATCAC ATG AAA ATT $\mathbf{TetM} \longrightarrow \mathbf{M} \quad \mathbf{K} \quad \mathbf{I}$

1460 ATT AAT ATT GGA GTT TTA GCT CAT GTT GAT GCA GGA AAA ACT ACC TTA ACA GAA AGC TTA TTA Ι Ν Ι G V \mathbf{L} Α Η V D А G Κ Т Т L Т Е S \mathbf{L} \mathbf{L} 1523 TAT AAC AGT GGA GCG ATT ACA GAA TTA GGA AGC GTG GAC AAA GGT ACA ACG AGG ACG GAT AAT S Υ Ν S G А I Т Ε L G V D Κ G Т Т R Т D Ν 1586 ACG CTT TTA GAA CGT CAG AGA GGA ATT ACA ATT CAG ACA GGA ATA ACC TCT TTT CAG TGG GAA Т T. T. Ε R Q R G Т Т Ι Q Т G Ι Т S F 0 W Б 1649 AAT ACG AAG GTG AAC ATC ATA GAC ACG CCA GGA CAT ATG GAT TTC TTA GCA GAA GTA TAT CGT Κ Ν I I D Т Р G Н М D F L А Ε Ν Т V V Υ R 1712 TCA TTA TCA GTT TTA GAT GGG GCA ATT CTA CTG ATT TCT GCA AAA GAT GGC GTA CAA GCA CAA S L S D G А Ι L L Ι S Α Κ D G 0 V L V 0 А FIG. 3—Continued.

7158	JOI	NES E	T AL.																J.	BACTI	ERIOL.
1775	ACT	CGT	ATA	ΤΤΑ	TTT	CAT	GCA	CTT	AGG	AAA	ATG	GGG	ATT	CCC	ACA	ATC	TTT	TTT	ATC	AAT	AAG
	Т	R	I	L	F	Н	А	L	R	K	Μ	G	Ι	Ρ	Т	Ι	F	F	I	Ν	K
1838	ATT	GAC	CAA	AAT	GGA	ATT	GAT	TTA	TCA	ACG	GTT	TAT	CAG	GAT	ATT	AAA	GAG	AAA	CTT	TCT	GAC
	Ι	D	Q	Ν	G	Ι	D	L	S	Т	V	Y	Q	D	I	K	Е	K	L	S	D
1901	gaa	ATT	GTA	ATC	AAA	CAG	AAG	GTA	GAA	CTG	TAT	CCT	AAT	ATG	TGT	GTG	ACG	AAC	TTT	ACC	gaa
	E	I	V	I	K	Q	K	V	E	L	Y	P	Ν	М	С	V	Т	Ν	F	Τ	Ε
1964	TCT	GAA	CAA	TGG	GAT	ACG	GTA	ATA	GAG	GGA	AAC	GAT	GAC	CTT	TTA	GAG	AAA	TAT	ATG	тсс	GGT
	S	Е	Q	W	D	Т	V	I	E	G	Ν	D	D	L	L	E	K	Y	M	S	G
2027	AAA	ТСА	ΤΤΑ	GAA	GCA	TTG	GAA	CTC	GAA	CAA	GAG	GAA	AGC	ATA	AGA	TTT	CAT	AAT	TGT	TCC	CTG
	K	S	L	E	А	L	E	L	E	Q	Ε	E	S	I	R	F	Н	Ν	С	S	L
2090	TTC	CCT	GTT	TAT	CAC	GGA	AGT	GCA	AAA	AAC	AAT	ATA	GGG	ATT	GAT	AAC	CTT	ΑΤΑ	GAA	GTG	ATT
	F	P	V	Y	Η	G	S	A	K	Ν	Ν	I	G	I	D	Ν	L	I	E	V	I
2153	ACG	AAT	AAA	TTT	TAT	TCA	TCA	ACA	CAT	CGA	GGT	CCG	TCT	GAA	CTT	TGC	GGA	AAT	GTT	TTC	AAA
	Т	Ν	К	F	Y	S	S	Т	Н	R	G	P	S	Ε	L	С	G	Ν	V	F	K
2216	ATT	GAA	TAT	ACA	AAA	AAA	AGA	CAA	CGT	СТТ	GCA	TAT	ΑΤΑ	CGC	CTT	TAT	AGT	GGA	GTA	СТА	CAT
	Ι	E	Y	Τ	К	К	R	Q	R	L	A	Y	Ι	R	L	Y	S	G	V	L	H
2279	ΤΤΑ	CGA	GAT	TCG	GTT	AGA	GTA	TCA	GAA	AAA	GAA	AAA	ATA	AAA	GTT	ACA	GAA	ATG	TAT	ACT	ТСА
	L	R	D	S	V	R	V	S	Ε	К	Ε	K	I	K	V	Т	E	М	Y	Т	S
0040	ልጥል	ላ ላ ጥ	COT	CAA	т т л	TOT	7 7 C	7	CAT	202	COT	TT A TT	TOT	663	C 7 7	7 T T	OTT	አዋሞ	TTO	0.0.0	7 7 1
Z34Z	т	AA I	GGT	GAA	T.	TGT C	AAG K	AII T	GAI	AGA	GC I	T A T	ICI	GGA	GAA	AI L	GTT V	AI L	T		AA I
	Т	IN	Ð	£	Ц	C	L	1	FI	G. 3—	A Contin	⊥ ued.	G	G	L	Т	v	Т	Ц	Ŷ	τN

Vol. 1	Vol. 188, 2006 E. COLI tet(M) 7159																				
2405	GAG	TTT	TTG	AAG	ΤΤΑ	AAT	AGT	GTT	CTT	GGA	GAT	ACA	AAA	СТА	TTG	CCA	CAG	AGA	AAA	AAG	ATT
	Ε	F	L	K	L	Ν	S	V	L	G	D	Τ	К	L	L	Р	Q	R	K	К	Ι
2468	GAA	AAT	CCG	CAC	CCT	СТА	СТА	CAA	ACA	ACT	GTT	GAA	CCG	AGT	AAA	CCT	GAA	CAG	AGA	GAA	ATG
	Е	Ν	Ρ	Н	Ρ	L	L	Q	Т	Т	V	E	Ρ	S	K	Ρ	Ε	Q	R	Е	Μ
2531	TTG	СТТ	GAT	GCC	CTT	TTG	GAA	ATC	ТСА	GAT	AGT	GAT	сс д	СТТ	СТА	CGA	TAT	TAC	GTG	GAT	TCT
	L	L	D	A	L	L	Ε	Ι	S	D	S	D	Ρ	L	L	R	Y	Y	V	D	S
2594	ACG	ACA	CAT	GAA	ATT	ATA	CTT	ТСТ	TTC	TTA	GGG	AAA	GTA	CAA	ATG	GAA	GTG	ATT	AGT	GCA	CTG
	Т	Т	Н	Ε	Ι	I	L	S	F	L	G	K	V	Q	Μ	Ε	V	I	S	A	L
2657	TTG	CAA	GAA	AAG	TAT	CAT	GTG	GAG	ATA	GAA	СТА	AAA	GAG	CCT	ACA	GTC	ATT	TAT	ATG	GAG	AGA
	L	Q	Ε	K	Y	Н	V	Ε	I	Ε	L	K	E	Ρ	Т	V	I	Y	М	Ε	R
2720	CCG	TTA	AAA	AAT	GCA	GAA	TAT	ACC	ATT	CAC	ATC	GAA	GTG	CCG	CCA	AAT	CCT	TTC	TGG	GCT	TCC
	P	L	K	Ν	A	Ε	Y	Т	I	Н	I	E	V	P	P	Ν	Ρ	F	W	A	S
2783	ATT	GGT	ΤΤΑ	ТСТ	GTA	TCA	CCG	CTT	CCG	TTG	GGA	AGT	GGA	ATG	CAG	TAT	GAG	AGC	TCG	GTT	ТСТ
	Ι	G	L	S	V	S	P	L	P	L	G	S	G	Μ	Q	Y	E	S	S	V	S
2846	CTT	GGA	TAC	TTA	AAT	CAA	TCA	TTT	CAA	AAT	GCA	GTT	ATG	GAA	GGG	ATA	CGC	TAT	GGT	TGC	GAA
	L	G	Y	L	Ν	Q	S	F	Q	Ν	A	V	М	E	G	I	R	Y	G	С	E
2909	CAA	GGA	ΤΤΑ	TAT	GGT	TGG	AAT	GTG	ACG	GAT	TGT	AAA	ATC	TGT	TTT	AAG	TAT	GGC	ΤΤΑ	TAC	TAT
	Q	G	L	Y	G	W	Ν	V	Т	D	С	K	I	С	F	K	Y	G	L	Y	Y
2972	AGC	ССТ	GTT	AGT	ACC	CCA	GCA	GAT	TTT	CGG	ATG	CTT	GCT	CCT	ATT	GTA	TTG	GAA	CAA	GTC	ΤΤΑ
	S	Ρ	V	S	Т	Ρ	A	D	F	R	Μ	L	A	Ρ	I	V	L	Ε	Q	V	L
3035	AAA	AAA	GCT	GGA	ACA	GAA	TTG	TTA	GAG	CCA	TAT	CTT	AGT	TTT	AAA	ATT	TAT	GCG	CCA	CAG	GAA
	K	K	А	G	Т	Ε	L	L	E FI	P G. 3—	Y Contin	L ued.	S	F	K	Ι	Y	A	Ρ	Q	Ε

7160	JOI	NES E	T AL.																J.	BACTI	ERIOL.
3098	TAT	CTT	TCA	CGA	GCA	TAC	AAC	GAT	GCT	CCT	AAA	TAT	TGT	GCG	AAC	ATC	GTA	GAC	ACT	CAA	TTG
	Y	L	S	R	А	Y	Ν	D	А	Ρ	K	Y	С	А	Ν	Ι	V	D	Т	Q	L
3161	AAA	AAT	AAT	GAG	GTC	ATT	CTT	AGT	GGA	GAA	ATC	ССТ	GCT	CGG	TGT	ATT	CAA	GAA	TAT	CGT	AGT
	K	Ν	Ν	E	V	Ι	L	S	G	E	Ι	Ρ	A	R	С	Ι	Q	Ε	Y	R	S
3224	GAT	ΤΤΑ	ACT	TTC	TTT	ACA	AAT	GGA	CGT	AGT	GTT	TGT	ΤΤΑ	ACA	GAG	ΤΤΑ	AAA	GGG	TAC	CAT	GTT
	D	L	Т	F	F	Т	Ν	G	R	S	V	С	L	Τ	E	L	K	G	Y	Н	V
3287	ACT	ACC	GGT	GAA	CCT	GTT	TGC	CAG	ССС	CGT	CGT	CCA	AAT	AGT	CGG	ATA	GAT	AAA	GTA	CGA	TAT
	Τ	Т	G	E	Р	V	С	Q	P	R	R	P	Ν	S	R	I	D	K	V	R	Y
3350	ATG	TTC	AAT	AAA	ATA	ACT	TAG	TGTA	ATTT	FAT (GTTG	TAT	AT AZ	AATA	IGGT	r tc:	FTGT	ΓΑΑΑ	TAA	GATG	AAA
	М	F	Ν	K	I	Т															
3421	TAI	TTT	ATAA	TAA	AGA	FTTG	AAT	TAAA	AGTG	ТАА	AGGI	AGGA	GAT	AGTI	TTAT	ATA	AACI	ACA	AGT	GGAI	'ATT
3491	GTG	STCC	IGTA	TGI	'GGA <i>I</i>	ATA	AAA	CACO	GATT	AAA	GAT	AGG	GAA	GATA	ACT G	GGG	TTCI	AGG	GAT	TTTC	:ccc
																	I	SVs.	<i>1</i> IR	L	
3561	TCI	'AAA(gtaa	CAI		rcgc	CAC	AACC	сстс	GCA	GTT	ATG	GCT	TGTG	GAG	CTG	GGTI	TACC	TTT	CATI	TTA

3631 GACTTCATTT TCAACAATAG GCCTAGTTAT TTCCTGTAAA TCAGGTAGTT TGCGGTTACT AGCGAACTGA

3701 TAAGTGCCGC TCAGATTAAT GTTCTGCCAT GCAACGGGTG CTTTTTACCA AGTT FIG. 3—Continued.

sequence inserted 170 bp downstream of the tet(M) stop codon (Fig. 3). The downstream sequence encoding the putative tet(M) transcriptional terminator was not captured for analysis.

Conjugation studies. It was of some interest to determine if the *E. coli tet*(M) gene was associated with a mobile element, as the sequence analysis revealed that at least two insertion sequences were located proximal to the gene. As shown in Table 3, resistance to both tetracycline and minocycline was successfully transferred by conjugation from both GAR3139 and GAR3141 to two tetracycline-susceptible recipient strains (GAR7071 and GAR7090). Ribotyping was used to confirm that the resistance determinants moved from the donor to the

recipient (data not shown). In both cases, PCR analysis revealed that both the *E. coli tet*(M) and the *tet*(A) gene were mobilized into the donor. Analysis by direct PCR and Southern blotting using a PCR amplicon [*tet*(M) forward and reverse primers (Table 2)] as the probe demonstrated the presence of the *E. coli tet*(M) gene in the recipient strains (data not shown). MIC analysis of the recipient strains (Table 3) indicated that the *tet*(M) gene is functional in the transconjugants, as *tet*(A) does not efficiently efflux minocycline (28).

Cloning and expression of *E. coli tet*(M). The *E. coli tet*(M) gene was cloned, along with its resident promoter, from the clinical isolate and expressed in *E. coli*. As shown in Table 3, the cloned *E. coli*-derived *tet*(M) gene conferred resistance to

FIG. 4. Phylogenetic tree. An unrooted phylogenetic tree was created from a ClustalW (10) alignment of 24 unique Tet(M) protein sequences. A neighbor-joining tree was drawn by PhyloDraw 0.8 (11). The bar indicates an evolutionary distance of 0.01 amino acid substitution per position. Sequences are derived from *Bacillus* sp. (GenBank accession no. AAM19211), *Clostridium difficile* (accession no. AAO24820), *Clostridium perfringens* (accession no. AAK17952), *Clostridium septicum* (accession no. BAB71968), *E. coli* (this paper), *E. faecalis* 1 (accession no. CAA63530), *E. faecalis* 2 (accession no. CAA39796), *E. faecalis* 3 (accession no. CAA27977), *Enterococcus faecium* (accession no. EAN10521), *Erysipelothrix rhusiopathiae* (accession no. BAB82500), *Gardnerella vaginalis* 1 (accession no. AAB05245), *Gardnerella vaginalis* 2 (accession no. CAA52997), *L. plantarum* (accession no. AAN40886), *Neisseria meningitidis* (accession no. CAA52967), *S. agalactiae* (accession no. CAE46077), *S. mitis* 2 (accession no. CAE46076), *Streptococcus oralis* (accession no. CAE46078), *S. pneumoniae* 1 (accession no. CAE46077), *S. mitis* 2 (accession no. CAE46076), *Streptococcus oralis* (accession no. CAE46078), *S. pneumoniae* 1 (accession no. AAR22397), and *Ureaplasma urealyticum* (accession no. AAA73978).

tetracycline and minocycline on the recombinant *E. coli* host strain.

DISCUSSION

The first tetracycline, chlortetracycline (Aureomycin), was identified and developed through the ingenuity and dedication of Benjamin Duggar and Lederle Laboratories in the late1940s (16). Tetracycline resistance mechanisms appeared soon after this antibiotic class was introduced into the marketplace in 1948. Although the efflux mechanism of tetracycline resistance quickly appeared in enteric pathogens (2), the ribosomal protection mechanism of resistance had not been detected in enteric organisms until 2004 (8). This is curious as both resistance mechanisms are associated with mobile elements and the *tet*(M) gene has been detected in other gram-negative hosts, such as *Neisseria*, *Haemophilus* spp., and *Campylobacter* spp.(12).

We report the identification tet(M) in clinical isolates of *E. coli* from two patients enrolled in phase 3 clinical trials for the recently approved broad-spectrum antibiotic tigecycline (6, 26). Both patients were undergoing treatment for complicated intra-abdominal infections at the same hospital in Taiwan. The tet(M) genes from the clinical isolates were most similar to tet(M) genes from *S. agalactiae*, *L. plantarum*, and *N. menin-gitidis*.

Based on the premise that the source of the *E. coli tet*(M) gene was the Tn916/Tn1545 family of conjugative transposons (13), PCR primers were designed based on Tn916 sequences located upstream and downstream of the *tet*(M) open reading frame in order to recover the entire gene and flanking regions. The fact that this approach worked indicated that Tn916 sequences were contained in the element that mobilized into *E. coli*. However, the identification of additional insertion sequences identical to IS26 and to ISVs1 suggested that there may have been one or more intermediate hosts between the original host and the clinical *E. coli* strains. Preliminary experiments using PCR primers 1,000 bp upstream and downstream of the *tet*(M) structural gene to recover additional sequences were unsuccessful, suggesting that only limited Tn916-derived sequences remain associated with the *tet*(M) gene in *E. coli*.

The IS26 insertion sequence was first described in association with Tn2680, which encodes kanamycin resistance on the R plasmid, Rts1, from *Proteus vulgaris* (22). IS26 is 820 bp long and carries 14-bp perfect inverted terminal repeats flanking the *tnpA* gene (20). Upon integration, IS26 creates an 8-bp duplication at the insertion site; the sequence ATTTGATT is found as a direct repeat flanking the IS26 inverted terminal repeat at the insertion site of the element upstream of the *tet*(M) promoter in *E. coli*. The ISVs1 insertion sequence has been described only in association with a 170-MDa resistance plasmid, pRVS1, which encodes a Tet(E) homologue in *V. salmonicida*

		1	0	20	30	40	50 (50 ⁻	70 80
Е.	coli	MKIINIGVLA	AHVDAGKTI	ILTESLLYNSC	AITELGSVDK	GTTRTDNTLLE	RQRGITIQTO	ITSFQWENTK	VNIIDTPGHMD
L.	plantarum	MKIINIGVLA	AHVDAGKTI	CLTESLLYNSG	AITELGSVDK	GTTRTDNTLLE	ERQRGITIQTG	ITSFQWENTK	VNIIDTPGHMD
Ν.	meningitidis	MKIINIGVLA	AHVDAGKTI	ILTESLLYNSG	AITELGSVDK	GTTRTDNTLLE	ERQRGITIQTO	ITSFQWENTK	VNIIDTPGHMD
s.	agalactiae	MKIINIGVLA	AHVDAGKTI	LTESLLYNSG	AITELGSVDK	GTTRTDNTLLE	ERQRGITIQTO	ITSFQWENTK	VNIIDTPGHMD
Е.	faecalis	MKIINIGVLA	AHVDAGKTI	CLTESLLYNSG	AITELGSVDK	GTTRTDNTLLE	ERQRGITIQTG	ITSFQWENTK	VNIIDTPGHMD
s.	aureus	MKIINIGVLA	AHVDAGKTI	rltesllynsG	AITELGSVDK	GTTRTDNTLLE	ERQRGITIQTO	ITSFQWENTK	VNIIDTPGHMD
						-	1	•	· · · · · ·
		9	0	100	110	20 2	130 1	40 1	50 160
Е.	coli	FLAEVYRSLS	SVLDGAILI	ISAKDGVQAÇ	TRILFHALRKN	GIPTIFFINE	KIDQNGIDLST	VYQDIKEKLS	DEIVIKQKVEL
L.	plantarum	FLAEVYRSLS	SVLDGAILI	LISAKDGVQAÇ	TRILFHALRKN	4GIPTIFFINE	KIDQNGIDLST	VYQDIKEKLS	AEIVIKQKVEL
Ν.	meningitidis	FLAEVYRSLS	SVLDGAILI	LISAKDGVQAÇ	TRILFHALRKN	4GIPTIFFINE	KIDQNGIDLSI	VYQDIKEKLS	AEIVIKQKVEL
s.	agalactiae	FLAEVYRSLS	SVLDGAILI	LISAKDGVQAÇ	TRILFHALRKN	IGIPTIFFIN	KIDQNGIDLST	VYQDIKEKLS	AEIVIKQKVEL
Е.	faecalis	FLAEVYRSLS	SVLDGAILI	LISAKDGVQAÇ	TRILFHALRKN	4GIPTIFFINH	KIDQNGIDLSI	VYQDIKEKLS	AEIVIKQKVEL
s.	aureus	FLAEVYRSLS	SVLDGAILI	LISAKDFVQAÇ	TRILFHALRKN	AGIPTIFFINE	KIDQNGIDLSI	VYQDIKEKLS	AEIVIKQKVEL
								1	
		1	70	180	190 2	200 2	210 2	.20 2	30 240
Е.	coli	1 YPNMCVTNF	70 L TeseQwdti	180 /IEGNDDLLEK	190 2 YMSGKSLEALH	200 2 LEQEESIRFH	210 2 HNCSLFPVYHG	20 2 SAKNNIGIDN	30 240 LIEVITNKFYS
E. L.	coli plantarum	1 YPNMCVTNF YPNMCVTNF	70 IESEQWDTN IESEQWDTN	180 /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH	200 2 Eleqeesirff Eleqeesirff	210 2 INCSLFPVYHG	20 2 SAKNNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS
Е. L. N.	coli plantarum meningitidis	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF	70 TESEQWDTN TESEQWDTN TESEQWDTN	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF	NCSLFPVYHG NCSLFPVYHG NCSLFPVYHG	20 2 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. N. S.	coli plantarum meningitidis agalactiae	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF	70 IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF	102102 INCSLFPVYHG INCSLFPVYHG INCSLFPVYHG INCSLFPVYHG	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. N. S. E.	coli plantarum meningitidis agalactiae faecalis	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNVCVTNF	70 TESEQWDT\ TESEQWDT\ TESEQWDT\ TESEQWDT\ TESEQWDT\	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFH ELEQEESIRFH ELEQEESIRFH ELEQEESIRFH ELEQEESIRFK	NCSLFPVYHG NCSLFPVYHG NCSLFPVYHG NCSLFPVYHG NCSLFPVYHG	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. N. S. S.	coli plantarum meningitidis agalactiae faecalis aureus	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNVCVTNF YPNVCVTNF	70 IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI	210 2 HNCSLFPVYHG HNCSLFPVYHG INCSLFPVYHG NCSLFPVYHG NCSLFPLYHG	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. S. E. S.	coli plantarum meningitidis agalactiae faecalis aureus	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF	70 IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI	210 2 HNCSLFPVYHG HNCSLFPVYHG HNCSLFPVYHG NCSLFPVYHG NCSLFPLYHG NCSLFPLYHG	20202 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. S. E. S.	coli plantarum meningitidis agalactiae faecalis aureus	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF 2	70 IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH	200 2 ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF ELEQEESIRFF	210 2 INCSLFPVYHG INCSLFPVYHG INCSLFPVYHG INCSLFPVYHG INCSLFPLYHG INCSLFPLYHG	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS
E. L. S. S. E.	coli plantarum meningitidis agalactiae faecalis aureus coli	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF 2 STHRGPSEL0	70 IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ IESEQWDT\ 50 CGNVFKIES	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK 260 /TKKRORLAYI	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH 270 2 RLYSGVLHLRI	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI 2280 2 SVRVSEKEKI	210 2 HNCSLFPVYHG HNCSLFPVYHG HNCSLFPVYHG NCSLFPLYHG NCSLFPLYHG NCSLFPLYHG 290 3 KVTEMYTSIN	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKNIGIDN SAKSNIGIDN SAKSNIGIDN 3003 GELCKIDRAY	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS 10 320 SGEIVILONEF
E. L. S. S. E.	coli plantarum meningitidis agalactiae faecalis aureus coli plantarum	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF 2 STHRGPSEL0 STHRGPSEL0	70 IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV 50 CGNVFKIES	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK 260 //TKKRQRLAYI	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH 270 2 RLYSGVLHLRI RLYSGVLHLRI	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI 280 2 DSVRVSEKEKI	210 2 HNCSLFPVYHG HNCSLFPVYHG NCSLFPVYHG NCSLFPLYHG NCSLFPLYHG 290 3 KVTEMYTSIN	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKNIGIDN SAKSNIGIDN SAKSNIGIDN 3003 GELCKIDRAY	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS 10 320 SGEIVILQNEF SGEIVILQNEF
E. L. N. S. E. L.	coli plantarum meningitidis agalactiae faecalis aureus coli plantarum meningitidis	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNVCVTNF YPNMCVTNF 2 STHRGPSEL STHRGPSEL STHRGPSEL	70 IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV S0 CGNVFKIES CGNVFKIES	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK 260 /TKKRQRLAYI /TKKRQRLAYI	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH 270 2 RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI 280 2 DSVRVSEKEKI DSVRVSEKEKI	210 2 HNCSLFPVYHG HNCSLFPVYHG NCSLFPVYHG NCSLFPLYHG NCSLFPLYHG 290 3 KVTEMYTSIN KVTEMYTSIN	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN COO3 GELCKIDRAY GELCKIDRAY	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS 10 320 SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF
E. L. N. S. E. S. E. N. S.	coli plantarum meningitidis agalactiae faecalis aureus coli plantarum meningitidis agalactiae	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF 2 STHRGPSEL STHRGPSEL STHRGPSEL	70 IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV IESEQWDTV S0 CGNVFKIES CGNVFKIES CGNVFKIES	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH 270 2 RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI	200 2 ELEQEESIRFI ELEQEESIRFI ELEQEESIRFI CLEQEESIRFI CLEQEESIRFI 280 2 DSVRVSEKEKI DSVRVSEKEKI DSVRVSEKEKI	210 2 HNCSLFPVYHG HNCSLFPVYHG NCSLFPVYHG NCSLFPLYHG NCSLFPLYHG 290 3 KVTEMYTSIN KVTEMYTSIN KVTEMYTSIN	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN GELCKIDRAY GELCKIDRAY GELCKIDRAY	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS 10 320 SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF
E.N.S.E.E.N.S.E.	coli plantarum meningitidis agalactiae faecalis aureus coli plantarum meningitidis agalactiae faecalis	1 YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF YPNMCVTNF 2 STHRGPSEL STHRGPSEL STHRGPSEL STHRGPSEL	70 TESEQWDTV TESEQWDTV TESEQWDTV TESEQWDTV TESEQWDTV TESEQWDTV CGNVFKIES CGNVFKIES CGNVFKIES CGNVFKIES	180 /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IEGNDDLLEK /IKKRQRLAYI /TKKRQRLAYI /TKKRQRLAYI	190 2 YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH YMSGKSLEALH 270 2 RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI RLYSGVLHLRI	200 2 DELEQEESIRFI DELEQEESIRFI DELEQEESIRFI DELEQEESIRFI 280 2 DSVRVSEKEKI DSVRVSEKEKI DSVRVSEKEKI DSVRVSEKEKI	210 2 HNCSLFPVYHG HNCSLFPVYHG HNCSLFPVYHG NCSLFPLYHG NCSLFPLYHG 290 3 KVTEMYTSIN KVTEMYTSIN KVTEMYTSIN KVTEMYTSIN	2020 SAKNNIGIDN SAKNNIGIDN SAKNNIGIDN SAKSNIGIDN SAKSNIGIDN 3003 GELCKIDRAY GELCKIDRAY GELCKIDRAY GELCKIDRAY	30 240 LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS LIEVITNKFYS 10 320 SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF SGEIVILQNEF

FIG. 5. Amino acid alignment. *E. coli* Tet(M) was aligned with Tet(M) from *L. plantarum* (GenBank accession no. AAN40886), *N. meningitidis* (accession no. CAA52967), *S. agalactiae* (accession no. AAM99809), *E. faecalis* (accession no. CAA39796), and *S. aureus* (accession no. AAA26678). Amino acid residues differing from those of the *E. coli* protein are shown in boxes in the alignment.

(36). The sequence of ISVs1 deposited in GenBank encodes a 96-residue truncated transposase gene product, whereas the sequence associated with tet(M) encodes the C-terminal 36 residues of the transposase. The sequence in the present report also encodes the complete left inverted terminal repeat region of 43 base pairs.

The IS26 element inserted 113 bp upstream of the tet(M) promoter sequence. All upstream transcriptional and translational control sequences were maintained intact in the *E. coli* gene compared to that reported by Nesin et al. (25). Due to the inability to amplify downstream sequences beyond the ISVs1 insertion, we were unable to confirm the presence of the tet(M) terminator region reported by previous investigators (37).

We propose that the *E. coli tet*(M) gene originated in a Tn916 host, most likely a streptococcal species, although the limited flanking sequence data indicate that most Tn916 sequences have been lost. As ISVs1 insertion element sequences have not, until this report, been reported to occur in any organism except *V. salmonicida* (36), we further propose that

the element passed through V. salmonicida and additional gram-negative hosts, acquiring IS26 before moving into E. coli.

In order to get an unbiased view of the presence and types of *tet* genes in natural (nonclinical) nonselected populations of bacteria in the environment, Bryan et al. (8) screened 1,263 isolates from 12 animal sources and humans for 14 tetracycline resistance genes. The investigators report the presence of tet(M) in a number of isolates sourced from both pigs and chickens. A partial sequence, 386 bp, of the tet(M) amplicon was found to be 98% identical to the tet(M) gene from *E. faecalis* (8). As the complete sequence, including flanking regions, was not reported nor submitted to GenBank, a comparison to the sequences from human clinical isolates was not possible.

The work of a number of investigators (8, 19) suggests that the environmental exposure of humans and animals to tetracyclines and other antibiotics drives the development and dissemination of resistance determinants by horizontal gene transfer. Nevertheless, until recently, the *tet*(M) tetracycline

			30	340	350	360	370	380	390	400
-	1:									
ь. т	coll	LKLNSVLGDI	I ALLP VRAP	ATENPHPTI ATENDUDIT	OTTVEPSKE	EQREMITDAT	LEISDSDFLI	NIIVUSIIHE	TTP25 PGVAČ	MENTC MENTC
ш. М	prancarum	LKLNSVLGDI	I NLLP VRNP PVI I DODVV	ALENPRPLI ATENDUDIT	DTTVEDOVI	EQREMLLDAL	TEISDSDELI	RIIVDSIIHE	TTTPETCKAČ	MEVIS
и. С	agalagtiag	LKLNGVLGDI	ΓΝΊΕΡ ΟΝΛΓ Γνι το Οργγ		OTTVEDEVI	EQREMITDAT	LEISUSDPLI	DVVDOTTI	TTTPE FOUND	MENT C
о. г	foocalie	LKLNGVLCDI	ι αιμερώκας Γκι το Ορκά	TENPUPTT	OTTVEDENI	EQREMITDAT	TELODODLT	RIIVDSIINE	TTTPETCKAČ	MEVIC
ц. С	aurous	TKTN2ATCD1	I KLLPORKK	TENPHPLI	OTTVEPSKI	FOREMLIDAL	LEISDSDFLI	RYYVDSTTH	TITPETCKAC	MEVIS
0.	aureus					EQREPHINKI			111101.1101(.4Č	JULLA LO
				1		1	1			
		41	LO	420	430	440	450	460	470	480
Е.	coli	ALLQEKYHVE	EIELKEPTV	/IYMERPL#	NAEYTIHIE	VPPNPFWASI	GLSVSPLPLO	SGMQYESSVS	JLGYLNQSFQN	JAVMEG
L.	plantarum	ALLQEKYHVE	EIELKEPTV	/IYMERPLF	NAEYTIHIE	VRPNPFWASI	GLSVSPLPLO	SGMQYESSVS	SLGYLNQSFQN	JAVMEG
Ν.	meningitidis	ALLQEKYHVE	EIELKEPTV	/IYMERPLF	NAEYTIHIE	VPPNPFWASI	GLSVSPLPLO	SGMQYESSVS	SLGYLNQSFQN	JAVMEG
s.	agalactiae	ALLQEKYHVE	EIELKEPTV	/IYMERPLF	NAEYTIHIE	VPPNPFWASI	GLSVSPLPLO	SGMQYESSVS	JLGYLNQSFQN	JAVMEG
Е.	faecalis	ALLQEKYHVE	IEITEPTV	/IYMERPLF	NAEYTIHIE	VPPNPFWASI	GLSVSPLPLO	SGMQYESSVS	SLGYLNQSFQN	JAVMEG
s.	aureus	ALLQEKYHVE	IELKEPTV	/IYMERPLH	NAEYTIHIE	CVPPNPFWASI	GLSVSPLPLO	SGMQYESSVS	SLGYLNQSFQN	JAVMEG
				1			1			
		49	90	500	510	520	530	540	550	560
Е.	coli	IRYGCEQGLY	GWNVTDCF	(ICFKYGL)	YSPVSTPAL	FRMLAPIVLE	QVLKKAGTEI	LEPYLSFKIY	APQEYLSRAY	NDAPK
L.	plantarum	IRYGCEQGLY	GWNVTDCF	KICFKYGLY	YSPVSTPAL	FRMLAPIVLE	_ QVLKKAGTEI	LEPYLSFKIY	APQEYLSRAY	NDAPK
Ν.	meningitidis	IRYGCEQGLY	GWNVTDCF	KICFKYGLY	YSPVSTPAL	FRMLAPIVLE	QVLKKAGTEI	LEPYLSFKIY	PQEYLSRAY	NDAPK
s.	agalactiae	IRYGCEQGLY	GWNVTDCF	KICFKYGLY	YSPVSTPAI	FRMLAPIVLE	QVLKKAGTEI	LEPYLSFKIY	APQEYLSRAY	NDAPK
Е.	faecalis	IRYGCEQGLY	GWNVIDCK	KICFKYGLY	YSPVSTPAL	FRMLAPIVLE	QVLKKAGTEI	LEPYLSFKIY	APQEYLSRAY	NDAPK
s.	aureus	IRYGCEQGLY	GWNVTDCF	KICFKYGLY	YSPVSTPAI	FRMLTPIVLE	QAFRKAGTEI	LEPYLSFK	APQEYLSRAY	NDAPK
		——————————————————————————————————————								
		57	70	580	590	600	610	620	630	
Е.	coli	YCANIVDTQI	KNNEVILS	GEIPARCI	QEYRSDLTE	FINGRSVCLT	ELKGYHVTTO	EPVCQPRRPN	JSRIDKVRYMF	NKIT
L.	plantarum	YCANIVDTQI	LKNNEVILS	SGEIPARCI	QEYRSDLTE	FINGRSVCLT	ELKGYHVTTO	EPVCQPRRPN	JSRIDKVRYMF	NKIT
Ν.	meningitidis	YCANIVDTQI	KNNEVILS	GEIPARCI	QEYRSDLTE	FINGRSVCLT	ELKGYHVTTO	EPVCQPRRPN	JSRIDKVRYMF	'NKIT
s.	agalactiae	YCANIVDTQI	LKNNEVILS	SGEIPARCI	QEYRSDLTE	FINGRSVCLT	ELKGYHVTTO	EPVCQPRRPN	JSRIDKVRYMF	NKIT
Е.	faecalis	YCANIVDTQI	KNNEVILS	SGEIPARCI	QEYRSDLTH	FINGRSVCLT	ELKGYHVTTO	EPVCQPRRPN	JSRIDKVRYMF	'NKIT
s.	aureus	YCANIVNTQI	LKNNEVI	GEIPARCI	QDYRNDLTH	FINGLSVCLA	ELKGYQVTIG	EPVCQIRRIN	ISRIDKVRYMF	'NKIT
					FIG. 5—Co	ntinued.				

resistance determinant had not been reported for *E. coli*. This is despite evidence that cloned tet(M) genes from *S. aureus* and *E. faecalis* have been found to be expressed and functional in *E. coli* and the demonstration of the in vivo transfer of Tn916 from *E. faecalis* to *E. coli* (29). Our data support the recent report (8) of tet(M) in *E. coli* isolates from farm animals and

extend the finding that the ribosomal protection mechanism of tetracycline resistance, mediated by tet(M), has migrated into human clinical isolates of *E coli*.

These findings uphold the continued transfer of antibiotic resistance determinants among various environmental and clinical bacterial populations, which is a motivating factor for

	Tet resistance	MIC (µg/ml) ^b									
E. coll strain	determinant(s) ^a	Tetracycline	Minocycline	Levofloxacin	Tobramycin						
GAR3139	tet(A), tet(M)	>64	8	0.25	0.5						
GAR3141	tet(A), tet(M)	>64	4	0.5	0.5						
GAR7071	None	2	1	>16	8						
GAR7090	None	4	4	>16	1						
GC7941	tet(A), tet(M)	>64	16	>16	4						
GC7942	tet(A), tet(M)	>64	16	>16	0.5						
GC7949	tet(M)	>64	32	ND	ND						
PCR-XL-TOPO	None	1	0.5	ND	ND						

TABLE 3. Susceptibility data

^a Genes were detected by PCR except for the GC7949 strain, which contains *tet*(M) cloned into pCR-XL-TOPO.

^b ND, not done.

the ongoing search for novel antibacterial agents in the age of resistance. As a response to the diminished utility of the tetracyclines (12, 32, 33), the novel glycylcycline agent tigecycline was recently brought to the marketplace and has shown potent in vitro activity against tetracycline- and minocycline-resistant strains (7, 28).

ACKNOWLEDGMENTS

We thank Steve Projan, Alexey Ruzin, and Peter Petersen for critical reading of the manuscript. We also thank Guy Singh for Ribo-Printing strains and Jan Kieleczawa and the Wyeth Core Sequencing facility for sequence analysis.

REFERENCES

- Agersø, Y., and D. Sandvang. 2005. Class 1 integrons and tetracycline resistance genes in *Alcaligenes*, *Arthrobacter*, and *Pseudomonas* spp. isolated from pigsties and manured soil. Appl. Environ. Microbiol. 71:7941–7947.
- Akiba, T., K. Koyama, Y. Ishiki, S. Kimura, and T. Fukushima. 1960. On the mechanism of the development of multiple-drug-resistant clones of *Shigella*. Jpn. J. Microbiol. 4:219–227.
- Allard, J. D., and K. P. Bertrand. 1993. Sequence of a class E tetracycline resistance gene from *Escherichia coli* and comparison of related tetracycline efflux proteins. J. Bacteriol. 175:4554–4560.
- Allard, J. D., M. L. Gibson, L. H. Vu, T. T. Nguyen, and K. P. Bertrand. 1993. Nucleotide sequence of class D tetracycline resistance genes from *Salmonella ordonez*. Mol. Gen. Genet. 237:301–305.
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
- Babinchak, T., E. J. Ellis-Grosse, N. Dartois, G. M. Rose, and E. Loh. 2005. The efficacy and safety of tigecycline in the treatment of complicated intraabdominal infections: analysis of pooled clinical trial data. Clin. Infect. Dis. 41:S354–S367.
- Bradford, P. A., D. T. Weaver-Sands, and P. J. Petersen. 2005. In vitro activity of tigecycline against isolates from patients enrolled in phase 3 clinical trials for complicated skin and skin structure infections and complicated intra-abdominal infections. Clin. Infect. Dis. 41(Suppl. 5):S315–S332.
- Bryan, A., N. Shapir, and M. J. Sadowsky. 2004. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical *Escherichia coli* strains isolated from diverse human and animal sources. Appl. Environ. Microbiol. **70**:2503–2507.
- Burdett, V. 1986. Streptococcal tetracycline resistance mediated at the level of protein synthesis. J. Bacteriol. 165:564–569.
- Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D. Thompson. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:3497–3500.
- Choi, J. H., H. Y. Jung, H. S. Kim, and H. G. Cho. 2000. PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16:1056–1058.
- Chopra, I., and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232–260.
- Clewell, D. B., S. E. Flannagan, and D. D. Jaworski. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3:229–236.
- CLSI. 2005. Performance standards for antimicrobial susceptibility testing; 15th informational supplement, vol. 25. CLSI/NCCLS M100-S15. CLSI, Wayne, Pa.
- Danielsen, M. 2002. Characterization of the tetracycline resistance plasmid pMD5057 from *Lactobacillus plantarum* 5057 reveals a composite structure. Plasmid 48:98–103.
- Duggar, B. M. 1948. Aureomycin: a product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci. 51:171–181.
- Gascoyne-Binzi, D. M., J. Heritage, P. M. Hawkey, and M. S. Sprott. 1994. Characterization of a *tet*(M)-carrying plasmid from *Neisseria meningitidis*. J. Antimicrob. Chemother. 34:1015–1023.
- Hanahan, D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. 166:557–580.

- Levy, S. B. 2001. Antibiotic resistance: consequences of inaction. Clin. Infect. Dis. 33(Suppl. 3):S124–S129.
- Mahillon, J., and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62:725–774.
- Martin, P., P. Trieu-Cuot, and P. Courvalin. 1986. Nucleotide sequence of the *tet*(M) tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Res. 14:7047–7058.
- Mollet, B., S. Iida, J. Shepherd, and W. Arber. 1983. Nucleotide sequence of IS26, a new prokaryotic mobile genetic element. Nucleic Acids Res. 11:6319– 6330.
- NCCLS. 2003. Methods for dilution antimicrobial disk susceptibility tests, 8th ed., vol. 20. Approved standard M2-A8. National Committee for Clinical Laboratory Standards, Wayne, Pa.
- NCCLS. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th ed., vol. 23. Approved standard M7-A6. National Committee for Clinical Laboratory Standards, Wayne, Pa.
- Nesin, M., P. Svec, J. R. Lupski, G. N. Godson, B. Kreiswirth, J. Kornblum, and S. J. Projan. 1990. Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, *tetA*(M), from a pathogenic, methicillin-resistant strain of *Staphylococcus aureus*. Antimicrob. Agents Chemother. 34:2273–2276.
- 26. Oliva, M. E., A. Rekha, A. Yellin, J. Pasternak, M. Campos, G. M. Rose, T. Babinchak, E. J. Ellis-Grosse, and E. Loh for the 301 Study Group. 2005. A multicenter trial of the efficacy and safety of tigecycline versus imipenem/ cilastatin in patients with complicated intra-abdominal infections. BMC Infect. Dis. 5:88.
- Peden, K. W. 1983. Revised sequence of the tetracycline-resistance gene of pBR322. Gene 22:277–280.
- Petersen, P. J., N. V. Jacobus, W. J. Weiss, P. E. Sum, and R. T. Testa. 1999. In vitro and in vivo antimicrobial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob. Agents Chemother. 43:738–744.
- Poyart, C., J. Celli, and P. Trieu-Cuot. 1995. Conjugative transposition of Tn916-related elements from *Enterococcus faecalis* to *Escherichia coli* and *Pseudomonas fluorescens*. Antimicrob. Agents Chemother. 39:500–506.
- Relman, D. A., T. M. Schmidt, R. P. MacDermott, and S. Falkow. 1992. Identification of the uncultured bacillus of Whipple's disease. N. Engl. J. Med. 327:293–301.
- Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:1–24.
- Roberts, M. C. 2003. Tetracycline therapy: update. Clin. Infect. Dis. 36:462–467.
 Roberts, M. C. 2005. Update on acquired tetracycline resistance genes.
- FEMS Microbiol. Lett. 245:195–203.
- Roberts, M. C., Y. Pang, D. E. Riley, S. L. Hillier, R. C. Berger, and J. N. Krieger. 1993. Detection of *tet*(M) and *tet*(O) tetracycline resistance genes by polymerase chain reaction. Mol. Cell. Probes 7:387–393.
- Ross, J. I., E. A. Eady, J. H. Cove, and W. J. Cunliffe. 1998. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42:1702–1705.
- Sørum, H., M. C. Roberts, and J. H. Crosa. 1992. Identification and cloning of a tetracycline resistance gene from the fish pathogen *Vibrio salmonicida*. Antimicrob. Agents Chemother. 36:611–615.
- Su, Y. A., P. He, and D. B. Clewell. 1992. Characterization of the *tet*(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769–778.
- 38. Tettelin, H., V. Masignani, M. J. Cieslewicz, J. A. Eisen, S. Peterson, M. R. Wessels, I. T. Paulsen, K. E. Nelson, I. Margarit, T. D. Read, L. C. Madoff, A. M. Wolf, M. J. Beanan, L. M. Brinkac, S. C. Daugherty, R. T. DeBoy, A. S. Durkin, J. F. Kolonay, R. Madupu, M. R. Lewis, D. Radune, N. B. Fedorova, D. Scanlan, H. Khouri, S. Mulligan, H. A. Carty, R. T. Cline, S. E. Van Aken, J. Gill, M. Scarselli, M. Mora, E. T. Iacobini, C. Brettoni, G. Galli, M. Mariani, F. Vegni, D. Maione, D. Rinaudo, R. Rappuoli, J. L. Telford, D. L. Kasper, G. Grandi, and C. M. Fraser. 2002. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V *Streptococcus agalactiae*. Proc. Natl. Acad. Sci. USA **99**:12391–12396.
- Wyeth Pharmaceuticals. 2005. Tygacil, package insert. Wyeth Pharmaceuticals, Inc., Collegeville, Pa.
- Yang, W., I. F. Moore, K. P. Koteva, D. C. Bareich, D. W. Hughes, and G. D. Wright. 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279:52346–52352.