Table 3.
Assessment of multiple sequence alignment programs using reference-independent sequence and structural similarity scores on 1207 representative SCOP40 domain pairs with identity <20%
| Method | Structural similarity | Sequence similarity | ||||||
|---|---|---|---|---|---|---|---|---|
| DALI Z-score | GDT-TS | TM-score | 3D-score | LBcona | LBconb | Sequence identity | Blosum62 score | |
| HMM_1_1_0 | 0.1178 | 0.2510 | 0.3005 | 0.2499a | 0.2181 | 0.2828 | 0.0953 | 0.1687 |
| HMM_1_1_1 | 0.1200a | 0.2519a | 0.3010a | 0.2514a | 0.2190a | 0.2838 | 0.0955 | 0.1688 |
| HMM_3_1_1 | 0.1217a | 0.2540a | 0.3034a | 0.2532a | 0.2215a | 0.2872a | 0.0938 | 0.1665 |
| HMM_1_3_1 | 0.1226a | 0.2564a | 0.3061a | 0.2557a | 0.2230a | 0.2892a | 0.0944 | 0.1662 |
| HMM_3_3_1 | 0.1231a | 0.2570a | 0.3070a | 0.2563a | 0.2240a | 0.2909a | 0.0932 | 0.1651 |
| ProbCons | 0.1003 | 0.2324 | 0.2767 | 0.2307 | 0.2060 | 0.2670 | 0.0983 | 0.1719 |
| MAFFT-fftnsi | 0.0982 | 0.2333 | 0.2814 | 0.2297 | 0.2004 | 0.2632 | 0.0917 | 0.1621 |
| MAFFT-einsi | 0.1136 | 0.2425 | 0.2886 | 0.2410 | 0.2105 | 0.2763 | 0.0940 | 0.1666 |
| MAFFT-linsi | 0.1135 | 0.2485 | 0.2982 | 0.2467 | 0.2143 | 0.2820 | 0.0923 | 0.1632 |
| MAFFT-ginsi | 0.1126 | 0.2454 | 0.2960 | 0.2429 | 0.2152 | 0.2803 | 0.0972 | 0.1725 |
| MUSCLE | 0.0980 | 0.2297 | 0.2777 | 0.2266 | 0.1941 | 0.2535 | 0.0939 | 0.1686 |
| ClustalW | 0.0723 | 0.1916 | 0.2318 | 0.1876 | 0.1551 | 0.2030 | 0.0733 | 0.1344 |
The first five methods are MUMMALS implementing different HMMs. The format of the HMM names (‘HMM_solv_ss_u’) is explained in Table 1. The best scores of MUMMALS and the best scores of other programs (ProbCons, MAFFT with different options, MUSCLE, ClustalW) are in bold.
aMUMMALS with this model is statistically better than the best of other programs according to Wilcoxon signed-rank test (P < 0.01).