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ABSTRACT

The Escherichia coli chromosome is condensed
into an ill-defined structure known as the nucleoid.
Nucleoid-associated DNA-binding proteins are
involved in maintaining this structure and in medi-
ating chromosome compaction. We have exploited
chromatin immunoprecipitation and high-density
microarrays to study the binding of three such pro-
teins, FIS, H-NS and IHF, across the E.coli genome
in vivo. Our results show that the distribution of
these proteins is biased to intergenic parts of the
genome, and that the binding profiles overlap.
Hence some targets are associated with combina-
tions of bound FIS, H-NS and IHF. In addition, many
regions associated with FIS and H-NS are also
associated with RNA polymerase.

INTRODUCTION

In eukaryotic organisms, DNA is compacted by histones,
which organize DNA into nucleosomes that are further orga-
nized into the higher order structures that form chromatin.
Recently, the use of chromatin immunoprecipitation (ChIP),
in combination with high-density microarrays (ChIP-chip),
has allowed the distribution of some histones to be mapped
across the Saccharomyces cerevisiae genome (1,2). These
studies showed that, although histones associate with both
coding and non-coding parts of the genome, they are depleted
at promoters. Consistent with this, Nagy and co-workers (3)
were able to fractionate the yeast genome on the basis of
histone density. Eukaryotic chromatin is remodelled by tran-
scription (4) and this remodelling can involve both the
removal and the recruitment of histones (5,6).

By comparison, the mechanisms used by prokaryotes to
organize their chromosomal DNA are poorly understood.
Bacterial DNA forms a highly condensed, yet undefined,
structure called the nucleoid, that is thought to be ordered
by supercoiling, macromolecular crowding, RNA and

nucleoid-associated proteins, the prokaryotic equivalent of
histones (7-9). Extensive studies with Escherichia coli have
shown that many of these nucleoid-associated proteins com-
pact chromosomal DNA (10-13) and can also function as
transcription factors (14,15). Thus, factor for inversion stimu-
lation (FIS), histone-like nucleoid structuring protein (H-NS)
and the integration host factor (IHF) are nucleoid-associated
proteins, whose individual subunits are present at 60 000,
20 000 and 12 000 copies, respectively, in rapidly growing
E.coli cells (16). All three proteins bind to A:T rich DNA tar-
gets and alter DNA topology. For H-NS, these DNA sites are
highly degenerate but some DNA-binding specificity is
displayed by FIS and IHF. Upon binding, FIS bends DNA
by between 50° and 90° (17), whilst IHF induces a bend of
160° (18). H-NS is thought to oligomerize at intrinsically
curved DNA sequences and, once bound, may induce further
DNA bending (19). In addition to their role as chromosome
shaping proteins, FIS, H-NS and IHF function as gene-
specific transcription factors. For example, H-NS represses
the transcription of many non-essential genes (20,21). Simi-
larly, during rapid growth, FIS represses many promoters
(22), though its best-characterized role is as an activator at
the rrn operons (23).

Little is known about the genome-wide distribution of the
various nucleoid proteins. This is illustrated by the fact that
only 63, 36 and 55 targets for FIS, H-NS and IHF respec-
tively are listed in the Ecocyc database [www.ecocyc.org
(24)]. There have been several attempts to study the distribu-
tion of FIS, H-NS and IHF across bacterial genomes. Robison
and co-workers (25) used bioinformatics to search the E.coli
genome for DNA sequences that resemble the binding sites
for FIS, H-NS and IHF. The study identified >10 000 binding
sites for each factor and, although <10% of the E.coli genome
is non-coding, >23% of the predicted targets for each protein
were in non-coding DNA. Other attempts to study the distri-
bution of nucleoid-associated proteins have relied on com-
paring the transcriptomes of wild-type and mutant cells
(20,22,26). The distribution of the protein under study is
then inferred from changes in transcription resulting from a
mutation in its gene. However, such approaches are unable
to distinguish primary from secondary effects, and they
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yield no information about the distribution of nucleoid pro-
teins between coding and non-coding DNA.

The aim of this study was to measure directly the binding
of FIS, H-NS and IHF across the entire E.coli genome using a
ChIP-chip analysis. We show that, in contrast to eukaryotic
histone proteins, the binding of these proteins is biased
towards non-coding parts of the genome. We identified over-
lap in the DNA-binding profiles of FIS and H-NS, and many
regulatory regions bound with these two proteins were also
associated with RNA polymerase. Some binding sites for
nucleoid proteins were found in coding DNA and, for FIS
and H-NS, some of these sites are in regions of the genome
that are highly transcribed.

MATERIALS AND METHODS
Bacterial growth conditions

Experiments were performed using E.coli strain MG1655
grown to mid-log phase (ODgsy 0.3-0.4) at 37°C in M9
minimal media supplemented with fructose. Our choice of a
minimal and defined growth condition allowed us to monitor
the effect of adding specific reagents to E.coli cultures. Thus,
for induction of the lac operon, 2 mM isopropyl-p-D-
thiogalactopyranoside (IPTG) was added and cross-linking
with formaldehyde was initiated at different time points.
Salicylic acid was added to a final concentration of 5 mM
and cross-linking was initiated after 40 min.

Chromatin immunoprecipitation

Bacterial cells were treated with formaldehyde, harvested
and lysed, and nucleoprotein was prepared as described by
Grainger et al. (27). Immunoprecipitation was then per-
formed using monoclonal antibodies against the [ subunit
of RNA polymerase (Neoclone, Madison, USA) and H-NS
(donated by Jay Hinton) or rabbit polyclonal antibodies
against FIS [donated by Akira Ishihama, see Azam er al.
(16)] and IHF (donated by Steve Goodman). Cross-reactivity
of the anti-H-NS antibody with StpA was not observed
(M. D. Goldberg, unpublished data). Immunoprecipitated
DNA samples or total cell nucleoprotein samples were puri-
fied and labelled with Cy5 or Cy3, without amplification, as
described previously (27).

PCR analysis of immunoprecipitated DNA

Quantitative PCR analyses were performed in real-time using
an Applied Biosystems 7700 sequence detector. Relative
occupancy values shown in Figure 6 were calculated by
determining the immunoprecipitation efficiency of the target
DNA sequence in samples from cultures either with or with-
out IPTG. As internal controls, we used segments of the
rrl and mt/A genes. The fold enrichment of target sequences,
relative to the control regions, is shown as occupancy units
and error bars represent the standard deviation of the mean
of three independent experiments. Primer pairs used in this
analysis were lacZ up (5-aatcgccttgcageac-3') and lacZ
down (5'-gccattcgecattca-3"), lacY up (5'-cgecgttttactctttttcg-3)
and lacY down (5'-gcaggaaacgccaataacat-3"), lacA up (5'-atatgt-
gcgaaggcttaccg-3") and lacA down (5'-aattgcggectatatggatg-3"),
rrl up (5'-ctacggtgctgaagcaacaa-3’) and rrl down (5'-cgaag-
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ttacggcaccatttt-3'), mrlA up (5'-cgcgacagcaaacataagaa-3') and
mtlA down (5'-gttcggtaaccaccctgttg-3').

Microarray analysis of immunoprecipitated DNA

Microarrays (Oxford Gene Technology) were designed and
produced specifically to analyse DNA obtained from ChIP
experiments with E.coli MG1655 (27). Arrays consisted of
21 321 60mer oligonucleotide probes that match MG1655
sequences at intervals of ~160 bp. Unamplified DNA
obtained from immunoprecipitations and control MG1655
genomic DNA was differentially labelled and hybridized to
the microarray as described previously (27). Values shown
are the average of two independent experiments.

ChIP-chip data analysis

The Cy5/Cy3 intensity ratio was calculated for each spot and
plotted against the corresponding position on the E.coli
MG1655 chromosome. A cut-off was chosen and all probes
that had an intensity ratio greater than this value in both
experiments were selected as a target. Adjacent target probes
were merged, the target position being defined by centre of
the probe with the highest average intensity ratio. Targets
were judged to be in non-coding DNA if the peak centre
fell within 200 bp of a non-coding DNA sequence. Leeway
of 200 bp was allowed because, for some non-coding
sequences, the nearest probe was at the 5’ end of an adjacent
gene and because peak locations are only accurate to
~200 bp (27). Note that, in this study, we refer to DNA
encoding stable RNA as ‘coding’ DNA and that the ribo-
somal RNA operons were treated as a single entity. To esti-
mate the FDR one dataset was randomized with respect to the
probe positions. The number of probes passing the cut-off
was then re-calculated. This process was repeated 50 times
to determine the average number of probes that passed the
cut-off after randomization. When a stringent cut-off was
used the number of probes passing the cut-off post random-
ization was ~1% of the number that originally passed the
cut-off.

To investigate the relationship between DNA sequence and
the binding of the various factors we ranked probes on the
microarray in order of their % A:T content. Probes with the
same A:T content were grouped and the average Cy5/Cy3
ratio was calculated, using our ChIP-chip data for either
FIS, H-NS, IHF or, as a control, RNA polymerase. The %
A:T content of each group of probes was then plotted against
the average signal intensity (Figure 3). Because groups of
probes with a very high or very low % A:T content were
small they could not be used to calculate a meaningful aver-
age signal intensity they were excluded from the analysis
(this applied to <1% of the probes on the microarray).

Phenol—chloroform fractionation of E.coli
nucleoprotein

Cells were grown to mid-log phase in minimal media and
nucleoprotein was cross-linked with 1% formaldehyde.
Cells were then washed three times with Tris-buffered saline
and lysed by sonication, further sonication was used to frag-
ment the genomic DNA. Cell debris was removed by cen-
trifugation and the sample was split into two aliquots. The
first aliquot was retained as a control and the second was
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treated with phenol—chloroform to remove DNA fragments
cross-linked to large amounts of protein. The control sample
and the phenol—chloroform treated sample were then decross-
linked and processed as described for immunoprecipitation
experiments (27) before being labelled with Cy3 and Cys5,
respectively, and hybridized to the microarray.

RESULTS

DNA fragments associated with FIS, H-NS, IHF and
RNA polymerase in vivo

Previously, we analysed the distribution, in vivo, of RNA
polymerase and different transcription factors bound to the
E.coli chromosome (27). DNA targets were immunoprecipi-
tated using antibodies directed against the different proteins.
To analyse this DNA, we used microarrays of ~22 000 60mer
oligonucleotides that correspond to evenly spaced sections of
the E.coli genome. These arrays allowed us to measure bind-
ing in both coding and non-coding sections of the E.coli chro-
mosome. We reasoned that these arrays would be suitable for
studying the distribution of nucleoid-associated proteins.

Our first aim was to generate ChIP-chip data for FIS,
H-NS, IHF and RNA polymerase under the same conditions
and thus create a ‘snapshot’ of their binding profiles. Thus,
E.coli strain MG1655 was grown aerobically in M9 minimal
media to an ODgsq of 0.4. Cells were treated with formalde-
hyde, lysed and their DNA was sonicated, yielding DNA
fragments of ~500-1000 bp. Antibodies directed against
either FIS, H-NS, THF or the B subunit of RNA polymerase
were then used to precipitate DNA fragments associated
with each protein. After purification, immunoprecipitated
DNA fragments were labelled with Cy5. A control sample,
labelled with Cy3, was generated from an aliquot of the
total cross-linked nucleoprotein, reserved before immunopre-
cipitation. The Cy5-labelled samples were then each mixed
with the control Cy3-labelled sample and hybridized to the
microarray. After washing and scanning, the Cy5/Cy3 signal
intensity ratio was calculated for each probe. All experiments
were done in duplicate and replicates had a correlation
co-efficient of >0.9.

The complete dataset for each experiment is listed in Sup-
plementary Table 1, which shows the Cy5/Cy3 ratio for each
probe on the microarray as a function of its position on the
genome. Figure 1 shows an overview of the profiles for
FIS, H-NS and IHF. It is clear that each of these proteins
binds to many different targets across the E.coli chromosome,
generating a wide range of signal intensities. Thus, first, we
searched for the targets for each protein that are listed in
the current Ecocyc database.

For the FIS experiment, the measured Cy5/Cy3 ratio
ranges from 0.02 to 81.5. Discrete peaks, which we attribute
to specific FIS-binding loci, were evident at 51 of the 63
targets listed in Ecocyc (pdxA, IpdA, queA, glnQ, pheV,
rnpB, nirB, mtlA, gyrB, bglG, fumB and pheU were not iden-
tified). The signal intensities of the peaks observed at these
51 targets ranged from 0.43 (aldB) to 35.8 (hns). Figure 2A
illustrates data for FIS binding at aldB and hns.

For H-NS, the Cy5/Cy3 ratio varied from 0.01 to 76.10.
We identified signals for H-NS binding at 30 of the 36 targets
listed by Ecocyc (we failed to identify lacZ, bolA, smtA, hlyE,
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Figure 1. Genome-wide DNA-binding profiles of FIS, H-NS and IHF. The
figure shows results from ChIP-chip experiments that measure profiles of FIS
(A), H-NS (B) and IHF (C) binding across the E.coli genome. Binding signals
(y-axis) are plotted against the location on the 4.64 Mb E.coli chromosome
(x-axis). The positions of the origin and termini of replication are shown.

fIhD and nirB) and the peak intensities ranged from
0.39 (adiA) to 16.4 (fliC) (Figure 2B). Binding of H-NS at
the well-characterized leuO and proV loci is shown in
Supplementary Figure 1.
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Figure 2. Association of FIS, H-NS and IHF with known target sites. The figure shows results from ChIP-chip experiments that measure profiles of FIS, H-NS
and IHF binding across segments of the E.coli genome that are illustrated schematically below the profile. Binding signals (y-axis) are plotted against the
genomic location (x-axis) for two known targets for each factor. Data for FIS binding at adIB and hns are shown in (A), H-NS binding at adiA and fliC are shown

in (B) and IHF binding at sucA and carA are shown in (C).

For the experiment with IHF, the signal ranges from
0.10 to 42.13. We observed peaks, signifying IHF binding,
at 51 of the 55 targets listed by the Ecocyc database (we
failed to identify gcd, hemA, glcD and mtr). The peak inten-
sities at these targets ranged from 1.8 (sucA) to 27.4 (carAB)
(Figure 2C).

Our aim was to generate an unbiased list of targets for each
factor and to measure their distribution between coding and
non-coding DNA. Using a stringent cut-off (selected to give
a false discovery rate, FDR, of ~1%) we identified 224, 100

and 135 targets for FIS, H-NS and IHF, respectively. These
targets are listed in Supplementary Tables 2—4. Although
non-coding sequences account for <10% of the E.coli gen-
ome, ~50% of the targets for each protein are in non-coding
DNA. This distribution was not substantially changed when a
more relaxed cut-off was set (corresponding to the value of
the lowest scoring known target for each nucleoid protein).
FIS, H-NS and IHF are known to bind to A:T rich targets.
Thus, with the data from each experiment, we calculated the
average of the measured signal intensities for probes grouped
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according to their % A:T content. Figure 3 shows a plot of
the average binding signal for each protein as a function of
probe A:T content. The graph shows that, as expected,
there is an overall positive correlation between the A:T con-
tent of probes and the binding of FIS, H-NS and IHF. As a
control, data from an experiment in which we had measured
the chromosome-wide distribution of RNA polymerase was
included. These data show that, in contrast to FIS, H-NS
and IHF, there is no overall positive correlation between
the A:T content of probes and the binding of RNA poly-
merase (Figure 3). Note that we had run the RNA polymerase
experiment in order to compare the binding of RNA
polymerase to the binding of FIS, H-NS and IHF (see
below). This experiment gave the expected result, reported
by Grainger et al. (27), with the largest signals for RNA poly-
merase binding located at genes encoding stable RNA and
proteins essential for rapid growth (full data in Supplemen-
tary Table 1).

Analysis of FIS, H-NS, THF and RNA polymerase
binding in non-coding DNA

Although <10% of the E.coli genome is non-coding, our
results show that ~50% of the targets for FIS, H-NS and
IHF are in these regions. To analyse further this binding,
we aligned the ChIP-chip datasets for FIS, H-NS, IHF and
RNA polymerase, removed data from probes that correspond
to coding DNA, and scaled the datasets to have the same
average Cy5/Cy3 ratio. We then applied the same stringent
cut-off (FRD ~1%) to each dataset and counted the number
of probes that passed the cut-off for different combinations of
the various factors studied. We observed a clear correlation
between the binding of FIS and H-NS. Thus, ~60% of the
non-coding DNA loci associated with FIS were also bound
with H-NS and vice versa (e.g. see Figure 4A). Additionally,
~50% of the non-coding targets for FIS and/or H-NS were
also associated with RNA polymerase (Figure 4B). Overlap
between the binding of IHF and FIS/H-NS was less frequent;
only ~30% of the targets for FIS or H-NS were also targets

for THF (Figure 4C). A small number of targets passed the
cut-off for FIS, H-NS and IHF (Figure 4D) and, in ~50%
of these cases, RNA polymerase was also found to be associ-
ated (Figure 4E). Note that, at the regulatory regions of ygfE
(Figure 4B) and yahA (Figure 4E), RNA polymerase is bound
but appears not to move into the coding part of the gene.

Analysis of FIS, H-NS and IHF binding in coding DNA

Datasets were aligned and analysed as in the previous section,
except that results from probes corresponding to non-coding
sections of the genome were discarded. Our expectation was
that most binding targets would fall in transcriptionally silent
parts of the genome and this was the case for IHF (e.g. see
Figure 5A). However, we noted that a significant proportion
of probes that pass the cut-off for FIS or H-NS binding
(39 and 31%, respectively) correspond to locations at which
RNA polymerase is bound. Thus, in contrast to IHF, FIS and
H-NS may bind in both transcriptionally active (Figure 5B)
and transcriptionally silent (Figure 5C) open reading frames.
Note that the analysis also identified large sections of DNA
that do not appear to be associated with high levels of FIS,
H-NS, IHF or RNA polymerase (Figure 5D). We suggest
that these regions may be associated with other factors.

To study directly the effect of transcription on the binding
of FIS, H-NS and IHF, we measured their association with
the /ac operon genes, before and after induction with IPTG.
To do this, antibodies directed against FIS, H-NS, IHF or
the RNA polymerase 3 subunit were used to immunoprecipi-
tate nucleoprotein samples isolated from cells that had been
treated with formaldehyde, either before or after induction.
Real-time PCR was used to quantify the relative amounts
of different targets in the immunoprecipitates.

Figure 6A illustrates the time course of changes in RNA
polymerase binding to targets in the lacZ, lacY and lacA
genes after addition of IPTG. This shows that RNA poly-
merase is recruited to the /ac operon within 60 s of inducer
addition, and that RNA polymerase requires <2 min to
transcribe the operon. This is consistent with rates of lac
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induction and transcription determined by measuring mRNA
chain elongation (28). We then used the same approach to
measure changes in the binding of IHF, H-NS and FIS, at
the same three targets, 4 min after the addition of IPTG
[note that the 5056 bp /ac operon contains 209, 75 and 28 pre-
dicted DNA targets for IHF, H-NS and FIS, respectively
(25)]. Results in Figure 6B show that, whilst transcription
of the /ac genes results in loss of IHF, the levels of associated
FIS and H-NS increase.

Changes in FIS and H-NS binding triggered by
genome-wide changes in transcription

To investigate further the association of FIS and H-NS with
transcribed regions of the E.coli chromosome, we measured
the effects of salicylic acid on their distribution. Recall that
the growth of E.coli is inhibited by salicylic acid, with con-
comitant down-regulation of highly transcribed genes and
activation of genes in the mar (multiple antibiotic resistance)
operon (27). Hence, ChIP-chip datasets for FIS and H-NS
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respectively.

binding in MG1655 cells that had been treated with salicylic
acid were obtained, and the complete results are included in
Supplementary Table 1. To measure salicylic acid-induced
changes in FIS and H-NS binding, these data were compared
to the datasets illustrated in Figure 1A and B.

Despite complications caused by changes in Dps levels
induced by salicylic acid, we observed a clear correlation
between changes in the binding of RNA polymerase, FIS
and H-NS at genes regulated in response to stress. Figure 7
shows salicylic acid induced changes in the binding of FIS
and H-NS at the mar and flg operons, which are loci where
transcription is up- and down-regulated by salicylic acid,

respectively (27). Changes in the distribution of FIS and
H-NS induced by salicylic acid correlate to changes in tran-
scription. Thus, FIS and H-NS binding increases across the
mar operon (Figure 7A), whilst binding across genes in the
flg operon decreases (Figure 7B).

Physical fractionation of the E.coli genome

Nagy et al. (3) reported that phenol-chloroform/aqueous two-
phase mixtures could be used to fractionate formaldehyde
cross-linked nucleoprotein complexes from S.cerevisiae.
Thus, regions of the S.cerevisiae genome that are densely
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covered with histones are partitioned into phenol-chloroform,
whilst distinct transcribed regions and promoters remain in
the aqueous phase. Since our data suggested that nucleoid-
associated proteins and RNA polymerase are organized dif-
ferently in E.coli, we applied phenol-chloroform partition
to total cross-linked nucleoprotein from growing MG1655
cells. To facilitate microarray analysis, DNA fragments col-
lected from the aqueous phase were labelled with Cy5, whilst
non-partitioned total DNA was Cy3-labelled as a control. The
Cy5-labelled sample was mixed with the control Cy3-labelled
sample and hybridized to the microarray. After washing and
scanning, the Cy5/Cy3 signal intensity ratio was calculated
for each probe. The complete dataset for this experiment
is included in Supplementary Table 1. Scrutiny of the results
shows that many DNA fragments associated with RNA

polymerase are removed from the aqueous phase
(Figure 8A). Thus, there is a correlation between RNA poly-
merase binding and partition into the phenol-chloroform
phase. A limited correlation is also seen with fragments
that bind FIS (Figure 8B). In contrast, fragments associated
with H-NS and IHF are evenly partitioned (Figure 8C and D).

DISCUSSION

This paper presents the first direct genome-wide analysis of
the in vivo DNA-binding profiles of three E.coli nucleoid-
associated proteins that are involved in chromosome folding
and transcription regulation. Consistent with these roles, we
observed binding at hundreds of targets across the E.coli
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Figure 7. Changes in FIS and H-NS binding induced by salicylic acid. The
figure shows results from ChIP-chip experiments that measure changes in the
binding profiles of FIS and H-NS across the genome of E.coli cells that were
treated with salicylic acid. The figure shows data for the mar operon (A) and
the flg operon (B), which are activated and repressed by salicylic acid,
respectively.

genome, both in coding and in non-coding DNA (Figure 1).
All of the nucleoid-associated proteins tested were found to
bind preferentially to A:T rich DNA, which is indicative of
an association with specific A:T rich binding sites and a gen-
eral association with promoter regions. DNA curvature,
which is linked the % A:T content of the DNA, is thought
to influence levels of H-NS binding. However, precise predic-
tions concerning DNA curvature cannot be made on the basis
of DNA sequence alone since, in vivo, curvature is likely to
be modulated by DNA-binding proteins.

Discrete peaks for FIS, H-NS or IHF binding were evident
at >80% of the previously established targets for each factor,
and the range of signal intensities at these targets varied by up
to 100-fold. We attribute this variation to differences in the
occupation of each target by its cognate factor, but differ-
ences in the efficiency of formaldehyde cross-linking and
immunoprecipitation may also contribute. The frequency
and proximity of DNA targets for each of the factors, in com-
bination with the continuum of signal intensities, made it dif-
ficult to differentiate between background noise and binding
signals in many parts of the genome. To assess the distribu-
tion of each factor, we applied both a stringent and a relaxed
cut-off to each of our datasets. Irrespective of the cut-off
criterion adopted, ~50% of the targets for FIS, H-NS and

IHF were found to be to be located in non-coding sections
of the genome. Since <10% of the E.coli genome is non-
coding, this represents a substantial bias towards intergenic
regions. Binding of nucleoid proteins to defined regions of
the chromosome may correspond to the location of barriers
to topological domains (8,9).

Many of the DNA targets that we identified as being asso-
ciated with H-NS also bind FIS and vice versa. Note that 8 of
the 36 targets for H-NS, currently listed by the Ecocyc data-
base, are also targets for FIS. Interestingly, RNA polymerase
is also associated with many of these promoters and may be
trapped, as predicted by Herring et al. (29). Recall that there
are several well-documented examples of promoters being
co-regulated antagonistically by FIS and H-NS, and RNA
polymerase trapping by H-NS has been demonstrated
in vitro (30). FIS and H-NS are most abundant during logar-
ithmic growth (16) and thus may co-regulate the activity of
many promoters in response to growth rate.

Approximately half of the binding targets for FIS, H-NS
and THF were found within genes, and binding at many of
these locations may be linked to chromosome organization
and DNA compaction. This was expected, but we were
surprised to find that some intragenic targets for FIS and
H-NS locate to sections of the genome associated with
RNA polymerase. This may be indicative of RNA poly-
merase trapping or may occur because FIS and H-NS are
removed from transcribed regions less efficiently than other
proteins. However, our observation that FIS and H-NS bind-
ing to some regions is enhanced by transcription suggests
that FIS and H-NS may associate with transcribed DNA.
This association could be driven by changes in DNA accessi-
bility and conformation, or by other proteins. Note that, in
their comprehensive study of protein—protein interactions in
E.coli, Butland et al. (31) found that FIS and H-NS co-purify
with RNA polymerase subunits and ribosomes. Intriguingly,
in rapidly growing E.coli cells, RNA polymerase, FIS and
H-NS can form foci, and it is possible that these are locations
in the cell where highly transcribed genes cluster (32,33). We
speculate that FIS and H-NS participate in maintaining the
co-localization of transcribed regions. Interestingly, the asso-
ciation of abundant DNA-binding proteins with transcribed
DNA is not without precedent. For example, the Drosophila
histone variant H3.3 has been shown to be recruited to tran-
scribed DNA (6,34,35).

Our results underscore the differences in the organization
of eukaryotic and prokaryotic nucleoprotein. In contrast to
histones, the nucleoid-associated proteins that we tested do
not appear to coat and compact large tracts of DNA, and
their binding is biased to non-coding parts of the genome.
Thus, RNA polymerase binding, rather than the binding
of FIS, H-NS and IHF, drove the fractionation of E.coli
nucleoprotein in phase separation experiments. Consistent
with these observations, Zimmerman (36) found recently
that removal of RNA from purified E.coli nucleoids had
more noticeable effects on nucleoid compaction than the
removal of proteins such as FIS, H-NS and IHF, suggesting
that the main role of these proteins is regulatory. Addition-
ally, Wade et al. (37) used LexA binding to probe the acces-
sibility of DNA sites for LexA in vivo throughout the
E.coli genome, concluding that bacterial nucleoprotein is
‘permissive’ to LexA binding and therefore fundamentally
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Figure 8. Fractionation of the E.coli genome. The figure illustrates the results of an experiment in which phenol-chloroform extraction was used to fractionate
formaldehyde cross-linked E.coli nucleoprotein. A microarray was used to compare DNA present in the aqueous phase, following phenol—chloroform extraction,
to a control ’input’ DNA sample. The panel shows the relationship between signal intensity at each probe and the binding of RNA polymerase (A), FIS (B), H-NS

(C) or IHF (D) at that locus measured by ChIP-chip.

different to the nucleoprotein of higher organisms. Further
studies of H-NS distribution in E.coli (T. Oshima, manuscript
in preparation), and similar studies of the S.typhimurium
nucleoid (38,39), should enhance our understanding of bacte-
rial chromosome organization and the role of nucleoid-
associated proteins.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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