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ABSTRACT

We present MultiGO, a web-enabled tool for the
identification of biologically relevant gene sets from
hierarchically clustered gene expression trees
(http://ekhidna.biocenter.helsinki.fi/poxo/multigo).
High-throughput gene expression measuring tech-
niques, such as microarrays, are nowadays often
used to monitor the expression of thousands of
genes. Since these experiments can produce over-
whelming amounts of data, computational methods
that assist the data analysis and interpretation are
essential. MultiGO is a tool that automatically
extracts the biological information for multiple clus-
ters and determines their biological relevance, and
hence facilitates the interpretation of the data. Since
the entire expression tree is analysed, MultiGO is
guaranteed to report all clusters that share a
common enriched biological function, as defined
by Gene Ontology annotations. The tool also identi-
fies a plausible cluster set, which represents the
key biological functions affected by the experiment.
The performance is demonstrated by analysing
drought-, cold- and abscisic acid-related expression
data sets from Arabidopsis thaliana. The analysis
not only identified known biological functions, but
also brought into focus the less established con-
nections to defense-related gene clusters. Thus, in
comparison to analyses of manually selected gene
lists, the systematic analysis of every cluster can
reveal unexpected biological phenomena and pro-
duce much more comprehensive biological insights
to the experiment of interest.

INTRODUCTION

The first computational steps of gene expression analysis
encompass the pre-processing of the data and the use of

statistical tests to detect genes with altered expression
(1–3). Different clustering approaches can then be used to
group together genes with similar expression profiles, in
order to present the data in a more comprehensible and inter-
pretable form (2,3). A common clustering approach is hier-
archical clustering (HC). In HC, genes are classified into a
series of nested clusters by iteratively joining, or disjoining,
two elements (3,4). Alternatively, genes can be grouped into
a predetermined number of clusters using partitional cluster-
ing approaches, as in e.g. k-means clustering (3,5). Regard-
less of the chosen clustering approach, however, numerous
alternative clusters, and even result series, may be generated.

The next step after performing the clustering is to extract
the biological information and to interpret the biological
relevance of the generated clusters. This is often done for
the clusters by calculating the statistical significance of the
functions that the genes in different clusters are involved in
(6–15). The biological information for the genes can be
extracted, e.g. using text mining tools for biological and med-
ical literature (9–11) or controlled vocabularies, such as Gene
Ontology (GO) (16). The difference between these informa-
tion sources is that in the first the same function may be
described using numerous alternative wordings, whereas in
the latter this is eliminated. After gene functions have been
extracted, their significance is typically evaluated using
standard statistical methods, such as the binomial distribution
(BD) or hypergeometric distribution (HD) or chi-square test.
In this evaluation, the frequency of the term within a set
of query genes, i.e. the genes within the cluster, is compared
against the frequency of the same term in a background
gene set, e.g. in the entire transcriptome of the organism.
The resulting P-value illustrates the chance to randomly
find a GO-term that is at least as significant as the
tested one.

Various computational tools do exist for the determination
of the biological relevance of a single gene set, or cluster,
with respect to the statistical significance of the GO-terms
of its genes (12–15). Although these tools have improved
the interpretation of expression data by enabling the creation
of rapid overviews of affected functions, they suffer from a
deficiency of being mainly designed to analyse only a single

*To whom correspondence should be addressed. Tel:+358 9 19159115; Fax:+358 9 19159079; Email: liisa.holm@helsinki.fi

� 2006 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published online 26 September 2006 Nucleic Acids Research, 2006, Vol. 34, No. 18 e124
doi:10.1093/nar/gkl694

http://ekhidna.biocenter.helsinki.fi/poxo/multigo
http://creativecommons.org/licenses/


gene set at a time. Thus, existing tools unnecessarily complic-
ate the systematic analysis of the clustering results of large
expression data sets and make their interpretation a laborious
task, where numerous alternative clusters must be analysed
one by one. This in turn complicates the understanding
of the different affected biological functions of the experi-
ment and of their various connections. For example, looking
at only one gene set ignores the possibility that multiple cel-
lular processes can be stimulated and affected by the experi-
ment. Also, since all clusters are not necessarily analysed,
there is a possibility of overlooking a specific cluster and a
GO-term, e.g. the affected key function. There are some
tools that estimate the optimal set of clusters using gene func-
tion annotations (7,8). Although these tools enumerate all
clusters in the analysis, they still suffer from the deficiency
of not reporting all significant GO-terms.

To address the above problems, we developed a web-
enabled tool, MultiGO. Our tool analyses every gene cluster,
assigns a representative function for each, and reports all
functionally enriched clusters with respect to the GO classi-
fication. The biggest advantage of the tool is gained when
MultiGO is used to analyse expression trees created using
HC. These analyses may discover unexpected connections
between different clusters, e.g. two clusters that are located
in distinct branches of the tree but share similar functions.
MultiGO can also highlight the key biological functions
that are affected by the experiment by determining the most
optimal set of clusters from the trees using Fisher’s combined
P-value test (17).

We demonstrate the functionality of MultiGO by analysing
a set of abscisic acid (ABA) experiments combined with
selected abiotic stress experiments, namely drought and
cold, on Arabidopsis thaliana. ABA is a plant hormone,
which is produced as a consequence of several abiotic stres-
ses (18). It has also been shown that ABA is one of the key
regulators of abiotic stress responses and the correct expres-
sion of, e.g. a subset of genes involved in drought and cold
responses is dependent on ABA (19,20). Although in recent
years the transcriptional regulatory circuit involved in ABA
signalling has become more evident, the complete signalling
network and its relation to abiotic stress signals is still not
entirely understood (21,22). Therefore, the aim of the analysis
was to investigate connections between abiotic stress and
ABA affected functions. The analysis recovered known
connections between ABA and the stresses and established
a less well-characterized relationship to defense-related
gene clusters.

MATERIALS AND METHODS

In MultiGO, the preferred input is a hierarchically clustered
gene expression tree. The most common HC approach used
to process expression data is agglomerative clustering (4).
In agglomerative HC, a distance matrix of all pairs of
genes is first calculated. After this, the matrix is iteratively
updated by combining the two closest elements, i.e. a gene
or cluster, together and by recalculating the distances of the
remaining elements (3,4). The result of the HC is then repres-
ented as an expression tree, which illustrates the combination
events made at each successive stage of analysis and where

the similarity of the combined elements is illustrated by the
length of the branch connecting the elements, i.e. shorter
branch lengths indicate higher similarity than longer ones.
Since genes are buried in the nested structure of the tree, a
gene can simultaneously belong to several clusters at differ-
ent levels of hierarchy (3,4). In the context of gene expression
analysis, HC can be used to group the genes and to visualize
the expression data. From the resulting tree, groups of genes
with correlated expression profiles are typically identified
visually. For example, the tree is cut at a desired hierarchy
level beyond which the user has defined that the genes are
no longer co-expressed.

GO-terms

GO describes the biological process, molecular function or
cellular component of a gene using a systematic classification
that guarantees each function being described only once (16).
GO-terms are associated with the submitted genes and clus-
ters using the ontologies and annotations offered by the GO
consortium (http://www.geneontology.org/). GO ontologies
are structured as a directed acyclic graph (DAG) where
terms, i.e. the biological description of the gene product,
can have one or more parent and child terms (16). In the
DAG, the parent term is a less specialized description than
its child term (16). This means that a term is always less spe-
cifically described by its parents, which in turn are less spe-
cifically described by their parents, etc. all the way to very
first parent term of DAG. When mapping the GO-terms this
also means that if a gene is associated with a certain term,
then it is indirectly associated with all parent terms of the
term, and with their ancestral terms.

Statistical tests to evaluate individual clusters

In MultiGO, the enrichment of the GO-terms within each
cluster is tested and the most significant GO-term is assigned
to the cluster that satisfies the parameters. If the analysed
cluster is removed or if the cluster does not contain any
GO-terms above the P-value threshold, no GO-term is
assigned to the cluster (see Supplementary Data for more
detailed description of the parameters). The assigned
GO-term is then assumed to be the representative function
of the genes within the cluster.

The enrichment of the GO-terms within each cluster is
tested using the HD or BD (Equations 1 and 2). In Equations
1 and 2, n is the number of genes in the cluster, k is the num-
ber of genes in the cluster with a given GO-term, N is the
number of genes in the background distribution and D is
the number of genes in the background distribution with the
same GO-term. In Equation 2, p is the probability of finding
a gene from the background distribution with the same
GO-term (D/N).
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Both statistical tests are widely used in similar tasks (12–15).
HD calculates the probability (P-value) of randomly finding
the same or higher number of genes having the same GO-
term from the background gene list, e.g. the transcriptome
of the organism. BD offers the same information and is
slightly faster to calculate. However, since in BD the probab-
ility of finding a gene from the background distribution (p in
Equation 2) is approximated and kept constant throughout the
calculus, it is less exact than HD.

When many statistical tests are performed simultaneously,
the chances of declaring results erroneously as statistically
significant increase. This happens, because the given signific-
ance level may be appropriate for each individual test, but the
probability of observing at least one significant P-value by
chance increases when the number of tests increases. There-
fore, the significance level of the individual comparisons
should be modified to account for the number of comparisons
performed. One approach for multiple hypothesis correction
is to control the family-wise error rate (FWER) that is the
probability that any reported GO-term is a false positive. In
MultiGO, the FWER can be controlled using Bonferroni or
Holm’s step-down methods. An alternative approach is to cal-
culate the false discovery rate (FDR) that is the expected pro-
portion of false positive GO-terms in the results. In MultiGO,
the FDR can be calculated using Benjamini-Hochberg’s FDR
method (23). While the FWER can erroneously discard more
statistically significant GO-terms, this risk is minimized in
FDR at the cost of reporting a few more false positives, i.e.
GO-terms that are not significant.

The above correction methods assume that the performed
comparisons are independent, which is not the case with
the GO-terms. Due to the structure of DAG, GO-terms and
their P-values are dependent and correlated (15). For exam-
ple, if a term is significant then it is likely that its parents
are also significant. Despite this caveat, correction methods
can correct, at least, the worst errors and increase the reliab-
ility of the results when compared to uncorrected results.

Statistical tests to analyse the optimal cluster set

The most optimal cluster set, i.e. the best cutting level of the
expression tree, and the corresponding biological key func-
tions are searched in MultiGO by calculating the overall stat-
istical significance of the GO-terms of the clusters located
at a given level of similarity (Figure 1). This calculus is
repeated at every level of similarity in the tree, starting
from the single gene level and ending at the level of one clus-
ter containing all the genes of the experiment. The overall
statistical significance is calculated using Fisher’s combined
probability test (Equation 3, Figure 1) (17). In Equation 3,
Pi is the corrected P-value of the most significant GO-term
of the ith cluster and k is the number of clusters created at
the position or passing it, i.e. clusters created farther from
the root and bypassing the position. The overall P-value for
the given clusters is then calculated from the test score
using chi-square distribution with 2k degrees of freedom.

c2F ¼ � 2
Xk
i¼1

ln ½Pi�: 3

When calculating the significance, Pi is set to one for clusters
that do not contain significant GO-terms and for clusters that

have been filtered, i.e. clusters that contain an improper num-
ber of genes according to the corresponding parameters (see
Supplementary Data for more detailed description of the
parameters). In Fisher’s combined probability test, P-values
to be combined (Pi) are assumed to be independent (17). In
MultiGO, independence is aspired using non-overlapping
clusters and using the P-values of the best GO-terms. The
use of non-overlapping clusters guarantee that the GO-
terms combined in Equation 3 are not influenced by shared
genes, whereas only choosing the GO-term with the most sig-
nificant P-value avoids the correlations of GO-terms due to
the structure of the DAG.

Acquisition and analysis of experimental data

A.thaliana was grown in 1:1 peat:vermiculite (Finnpeat B2;
Kekkilä Oyj, Tuusula, Finland) with a 12-h light period at
22�C. Three week-old Col-0 wild type and plants overex-
pressing a gene early responsive to dehydration (ERD15,
24) under control of the cauliflower mosaic virus 35S pro-
moter were used for experiments. Samples were collected
to liquid nitrogen 90 min after spraying with 100 mM ABA
or water as a control. Total RNA was isolated with Qiagen
Plant RNA extraction kit. cRNA synthesis, hybridization to
Affymetrix ATH1 arrays and chip-scans were performed at
the NASC’s Affymetrix Service (25). The data set of the
experiment has been published under NASCARRAYS-321.
The experimental data was combined with data of three pub-
lic experiments retrieved from NASC (http://affymetrix.
arabidopsis.info) and TAIR (http://www.arabidopsis.org)
(25,26). The public data included expression data sets of
drought stress time course in shoots (ME00338), drought
and cold stresses in mutant and wild-type leaves
(NASCARRAYS-70) and ABA time course in seedlings
(ME00333) (Supplementary Table 1). All expression sets
contained arrays for both the controls and the treatments,
which provided the removal of the biological variability com-
ing from the experimental tissues used.

All expression sets were pre-processed as one entity using
Robust Multichip Average (RMA) and Mas5Calls (27–29).
RMA computes the log2 scale expression values using
background-corrected probe-specific correction of the perfect
match probes, quantile normalization and median polish sum-
marizing (28). Low expression genes were detected from the
unprocessed data using Mas5Calls (29), and genes flagged as
absent on every array were removed. After pre-processing,
genes that had in the public experiments a significantly
altered expression between the sample and the corresponding
control (Supplementary Table 1) were pooled together by tak-
ing their union. The significance of the genes was detected
using regularized t-test with 0.001 as the P-value threshold
for statistical significance (30). These processes resulted in
11 875 genes whose expression values were averaged
between the replicate arrays of the experiments. (Using
0.05 or 0.01 as the P-value threshold would have yielded
respectively 17 982 and 15 344 genes.) The mean expression
values of the controls were then subtracted from the corres-
ponding mean values of the samples to eliminate any bias
deriving from the different monitored tissues. Genes were
clustered using HC with different linkage methods (complete,
single and average) and with different distance metrics
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(Euclidean and Pearson correlation coefficient) (4). RMA,
mas5calls and the regularized t-test (Cyber-T) were per-
formed in Bioconductor (31) extension to R computing envir-
onment (http://www.r-project.org/). Clustering was done
using TIGR MultiExperiment Viewer (version 3.1) (32).

METHODOLOGICAL RESULTS

Different parameter combinations of MultiGO were tested
to see their effect on the overall P-values, i.e. the obtained
P-value of the Fisher’s combined probability test, and on

the optimal cluster set selection (see Supplementary Data
for more detailed description of the parameters). Similar to
the original study first time applying HC to microarray data
(4), different parameter combinations were compared using
an expression tree created using average linkage and Pearson
correlation coefficient. The analyses included the use of
different maximum cluster sizes, statistical tests, correction
methods, filtering of the low occurrence clusters and
P-value cut-offs. The overall P-values of these analyses are
shown in Supplementary Figures 2–6. Most parameters
have no notable effect on the results. For example, analyses
using different multiple hypothesis correction methods or

Figure 1. Fisher’s combined probability test is used to calculate the overall P-values for the clusters and to estimate the cutting point of the expression tree. Light
gray line illustrates the height that is calculated in the example. Light gray boxes show the selected clusters where the P-values used in the calculus are underlined
(the P-value of the best GO-term of the selected cluster).
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analyses using different P-value cut-offs produce similar res-
ults with little variation. The only exceptions are analyses
without multiple hypothesis correction and analyses using
different maximum cluster sizes. The maximum cluster size
parameter, which can be used to speed up calculations, filters
clusters containing an improper number of genes. The use of
small values seems to lead to unwanted filtering of significant
clusters whereas the use of the maximum value did not affect
the results.

Analyses of expression trees created using different
HC parameters

The effect of different linkage methods and distance metrics
on the overall P-values, and on the expression tree cutting
point selection, was investigated by clustering the expression
data using different combinations of average, complete and
single linkage, and of Euclidean and Pearson correlation
coefficient distances. Parameters used to analyse these trees
were selected based on the information of the parameter ana-
lyses and by using those statistical methods that are con-
sidered the most reliable. HD was used instead of BD, and
FDR-correction was used with a rather conservative
P-value cut-off (0.001), all genes were analysed and no filter-
ing was performed. The performance of the different HC
combinations is shown in Figure 2. For this
expression data, each linkage method achieves its best result
when Pearson coefficient correlation is used as the distance,
agreeing well with the distance metric assumption made in
the original HC study (4). From the different linkage methods,
average linkage creates results with the most significant overall
P-value. However, the difference between the complete and
average linkage methods is almost indistinguishable, their
most significant overall P-values were 4�68 and 3�70, indicat-
ing that these linkage methods perform equally well. This sup-
ports the previous study where it was shown that average and
complete linkage methods outperform single linkage (6).

Experimental data analysis

We analysed microarray data of mutants sensitive to cold
stress and transgenic plants over-expressing a gene involved

in ABA signalling. Additionally, microarray data from
drought, cold and ABA experiments were included in the
data set. The experimental analysis was done using the
expression tree that was created using average linkage with
Pearson coefficient correlation, the one containing the most
significant overall P-value, and using parameters that were
selected based on the information of the parameter estimation
analyses (HD, FDR, 0.001 as the P-value cut-off, all genes as
the maximum cluster size and no filtering). Results can be
viewed at the group’s web page (http://ekhidna.biocenter.
helsinki.fi/poxo/multigo/arab_example).

A set of interesting candidate clusters was obtained from
the expression tree by cutting it at the location of the most
significant overall P-value. The overall P-values in relation
to their position in the tree are shown in Figure 3. The
most significant overall P-value, obtained using Fisher’s
combined probability test, selects a set of clusters that
would become merged together into biologically meaningless
clusters, if one moves nearer to the root, whereas clusters
with similar function would become split into several small
clusters, if one moves farther from the root. The most signi-
ficant overall P-value (3�70) is located at the height of 0.73
(Figure 3), where there are 42 clusters in total in the tree of
which 14 have a significant GO-term associated with them
(Table 1). Expression profiles of these 14 significant clusters
are shown as heatmaps in Supplementary Figures 8–21. The
14 significant clusters contained genes that are involved in
different biological functions that are likely to be the
key functions affected by the experiment. For example, the
experiments included ABA and environmental abiotic treat-
ments that are listed in Table 1 as response to ABA
(Node_11808) and as response to heat (Node_11805). Besides
the affected abiotic stresses also clusters related to defence
responses are listed, such as defense response (Node_11830)
and response to wounding (Node_11791). Figure 3 indicates
that there is a second potential cutting point in the expression
tree located at the height of 0.61. At this position, the overall
P-value is almost as significant (1e�65) as at themost significant
position of the tree. Also the clusters that are located at this
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position are involved in functions that are mainly the same
ones (9 out of the 14 functions reported at the 0.73 are
reported here as well), including functions related to the
probed experiments, such as response to ABA and response
to heat. These findings indicate that a set of biologically
meaningful clusters could indeed be caught by using overall
P-values.

Another viewpoint to the data can be obtained by sorting
the GO-terms according to the number of times they occur
as the best GO-term of a cluster in the whole expression
tree. This number corresponds roughly to the number of
genes involved in the function and embodies the level of
co-expression of genes, i.e. functions involving a large num-
ber of tightly co-expressed genes will occur on top. Table 2
lists the top 20 most common best GO-terms. This listing
illustrates that several of the most common GO-terms are
related to abiotic stresses. For example, Table 2 contains
functions such as response to ABA, response to heat, response
to temperature stimulus, response to cold and response to
water deprivation. Intriguingly, also in here response to
wounding is reported.

Random data analyses

Randomisation analyses were performed to assess the reliab-
ility of the experimental analysis, of the overall P-values and
of the GO-terms of the single clusters. The most significant
overall P-values of these analyses are shown in Figure 3
(Supplementary Table 2 and Figure 7). The random analyses
were performed using the random-mode of MultiGO. The
random-mode of the tool retains the original number of clus-
ters and their cluster sizes, but assigns the submitted genes
randomly into these. The analysis was repeated 1000 times
using previous parameters of the experimental data analysis
(HD, FDR, 0.001 as the P-value cut-off, all genes as the
maximum cluster size and no filtering).

As illustrated in Figure 3, hardly any cluster sets had a
more significant overall P-value in the randomised analyses
in comparison with the cluster sets of the experimental ana-
lysis. The only exceptions are cluster sets near the root and
near the leaves. In these parts of the trees, randomly gener-
ated data yielded cluster sets that have as significant overall
P-values as the corresponding cluster sets have in the experi-
mental analysis (Supplementary Table 2). Near the leaves,

Table 2. Top 20 most common GO-terms of being the most significant GO-term of the clusters

GO-term Annotation min P-value max P-value Clusters

GO:0006412 Protein biosynthesis 5E�84 6E�04 42
GO:0015979 Photosynthesis 4E�12 4E�04 33
GO:0042254 Ribosome biogenesis and assembly 4E�31 3E�04 29
GO:0009725 Response to hormone stimulus 4E�11 2E�04 12
GO:0009737 Response to abscisic acid stimulus 3E�10 7E�04 11
GO:0016070 RNA metabolism 2E�06 8E�04 8
GO:0009408 Response to heat 4E�12 4E�06 8
GO:0044249 Cellular biosynthesis 5E�11 2E�04 8
GO:0009266 Response to temperature stimulus 8E�10 1E�08 7
GO:0006396 RNA processing 1E�05 7E�04 6
GO:0009409 Response to cold 3E�12 3E�08 6
GO:0030163 Protein catabolism 3E�07 6E�04 6
GO:0009657 Plastid organization and biogenesis 3E�08 1E�07 5
GO:0009611 Response to wounding 6E�07 3E�04 5
GO:0009414 Response to water deprivation 2E�05 4E�04 4
GO:0009684 Indoleacetic acid biosynthesis 2E�06 8E�05 4
GO:0009658 Chloroplast organization and biogenesis 1E�06 5E�04 4
GO:0006520 Amino acid metabolism 1E�06 6E�05 3
GO:0006468 Protein amino acid phosphorylation 2E�06 7E�05 3
GO:0043412 Biopolymer modification 9E�05 9E�04 3

Table 1. Significant clusters at the most significant overall P-value position of the expression tree

GO-term Annotation P-value Cluster Genes

GO:0006412 Protein biosynthesis 1E�40 Node_11771 182
GO:0042254 Ribosome biogenesis and assembly 1E�10 Node_11802 1664
GO:0006952 Defense response 3E�10 Node_11830 446
GO:0015979 Photosynthesis 2E�09 Node_11822 1393
GO:0009657 Plastid organization and biogenesis 1E�07 Node_11832 707
GO:0009408 Response to heat 9E�07 Node_11805 243
GO:0009737 Response to abscisic acid stimulus 1E�06 Node_11808 598
GO:0044249 Cellular biosynthesis 1E�06 Node_11820 379
GO:0015979 Photosynthesis 1E�06 Node_11801 80
GO:0016070 RNA metabolism 2E�06 Node_11813 1167
GO:0009611 Response to wounding 6E�06 Node_11791 129
GO:0042221 Response to chemical stimulus 2E�04 Node_11810 804
GO:0030163 Protein catabolism 4E�04 Node_11800 180
GO:0043412 Biopolymer modification 9E�04 Node_11829 862

The position contained 14 significant and totally 42 clusters.

e124 Nucleic Acids Research, 2006, Vol. 34, No. 18 PAGE 6 OF 9



both random and experimental analyses yielded insignificant
overall P-values for the cluster sets, i.e. P-values are 1.00,
whereas near the root overall P-values are the same in both
cases. Another verification of the correctness is that the
most significant overall P-value (7�14) of the 1000 random
repeats is much less significant than the most significant over-
all P-value (3�70) of the experimental data.

The most significant GO-terms of a single cluster are also
much less significant in the random analyses than in the
experimental analysis and typically are located near the
root (Supplementary Table 3). For example, the P-value of
the most significant GO-term obtained in the random analyses
is 7�14 and it can be found in a cluster near the root (relative
position 0.99). On the other hand, the most significant P-
value obtained in the experimental analysis is 5�84 and the
cluster with this GO-term is located in the first fifth of the
tree (relative position 0.18).

BIOLOGICAL RESULTS

Two interesting, and fairly unexpected, biological phenom-
ena that are reported in Table 1 are defense response
(Node_11830) and response to wounding (Node_11791).
These functions indicate that biotic defence responses are
also affected in these abiotic stress experiments. It can be
noted that these biotic defence functions are segregated and
are distinctly expressed (Supplementary Figures 8 and 13).
Node_11830 enclosing defense response as the most signific-
ant GO-term is clearly separated from the response to wound-
ing cluster. This cluster comprises genes induced early by
drought (30 min to 1 h) and cold (3 h) as well as by over-
expression of ERD15. The gene set contains a series of tran-
scription factors related to defence responses such as
WRKY18, WRKY22, WRKY33, WRKY40, WRKY46,
WRKY53, WRKY54 and WRKY70, as well as disease resist-
ance proteins with toll-interleukin-resistance domains. Genes
in the cluster are repressed late by ABA (3 h) and cold (24 h),

and are repressed in sfr2, sfr3 and sfr6 mutant experiments in
cold conditions. In contrast, Node_11791 contains genes
induced by drought (30 min to 12 h) and cold (3 h), repressed
by sfr2, sfr3 and sfr6 mutants in cold and comprises jasmonic
acid and ethylene responsive genes, such as JR1, AOC4,
ATMYC2 and VSP1. It is interesting that the defense response
cluster contains a series of transcription factors but no enrich-
ment of GO-terms of the known hormone signals salicylic
acid, ethylene and jasmonate. This might point to a set of
early biotic stress-responsive genes, manifested even as a
response to abiotic stresses. Recent evidence has shown that
ABA has a role both in positive and negative regulation of
defence gene signalling (33), and the present analysis clearly
points to a tight co-regulation of different types of stress-
regulated genes independent of the stress stimulus.

The more expected biological phenomenon reported in
both tables is response to ABA. Finding this GO-term is
expected, since it is considered to be an important signal
compound in the abiotic stress responses that are probed in
the experiments here (21,22). The largest cluster in the data
having response to ABA stimulus as its most significant
GO-term (Node_11861) comprises a series of protein phos-
phatases 2C (e.g. AT4G26080 or AT1G07430) and transcrip-
tion factors like the ABA-responsive elements-binding factor
ABF3 (AT4G34000). These genes are induced early (0.5–1 h)
by ABA and drought in the chosen set of experiments.
Cold treatment also leads to up-regulation of a series of
genes in this cluster in wild type and sfr2, sfr3 and sfr6
mutants (Supplementary Figure 22). This cluster also con-
tains effector-like ABA-related genes such as the dehydrin
Rab18 (AT5G66400) as well as lipid transfer proteins,
which here are only induced late (3 h) by ABA. It is tempting
to speculate that uncharacterised protein phosphates C and
unknown proteins in these clusters have a specific role in
early or later transcriptional responses to abiotic stresses.

Another GO-term involved in abiotic stress responses and
listed in both tables 1 and 2 is response to heat. This listing

Figure 4. Expression of genes involved in the reported abiotic stress responses. Figure shows those clusters that are the largest clusters having the given GO-term
as their best GO-term (response to temperature stimulus is the best GO-term of Node_11728, response to heat of Node_11805 and response to water deprivation
of Node_10337) (response to cold of Node_10952 is represented by a yellow square). Clusters sharing the same best GO-term as the largest cluster are coloured
in purple in the expression tree. The table shows GO-terms that are related to abiotic functions (ABA is response to abscisic acid stimulus, Abiotic is response to
abiotic stimulus, Temp is response to temperature stimulus, Heat is response to heat, Cold is response to cold and Water is response to water) and that are
detected as significant within the set of clusters. Notations of the monitored experimental data sets are explained in Supplementary Table 1.
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can then be expanded by collecting other related processes
from Table 2: response to temperature stimulus, response
to cold and response to water deprivation. Expression of
genes involved in these abiotic stresses can be viewed in
Figure 4. Figure 4 shows those clusters (Node_11728,
Node_11805 and Node_10337) that are the largest clusters
having the corresponding term (response to temperature
stimulus, response to heat and response to water deprivation)
as the best GO-term, and contain most of the other clusters
sharing the same best GO-term. Note that the largest cluster
having response to cold function as its most significant term
(Node_10952) is a child of Node_11728 and is represented as
a yellow square in the figure.

By further investigating these abiotic clusters it can be
found that Node_11728 comprises genes that are up-regulated
late by ABA (3 h), by cold in sfr2, sfr3 and sfr6 mutants and
by over-expression of ERD15. On the other hand, cold seems
to down-regulate these genes in wild-type plants. This cluster
contains ABA-responsive genes that are interestingly also
induced by low temperature and/or dehydration. Genes
belonging to the response to heat (Node_11805) cluster are
expressed in a different fashion. This gene set contains vari-
ous heat shock proteins that are induced late by drought (3–
12 h) and by over-expression of ERD15. In turn, these genes
are repressed by wild-type and by cold in sfr2, sfr3 and sfr6
mutants. It is interesting to note that whereas functions, such
as response to temperature stimulus and response to abiotic
stimulus, are observed as significant in both Node_11728,
Node_11805 and in their child clusters, the response to
cold and response to heat are specifically listed only in within
their own set of clusters (Figure 4). These findings point to a
specific co-expression of genes involved in either cold or heat
stress responses and suggest, because of the shared higher
order functions, that the co-expression could be orchestrated
in a more advanced level that is common for these abiotic
stresses.

CONCLUSION

We have developed a novel tool called MultiGO that can be
used to discover functionally enriched gene clusters from
hierarchically organized expression trees. We have also
demonstrated, with an example, how the tool can be used
to discover the biologically meaningful key gene sets from
the vast amount of data. In the example, MultiGO was able
to discover relevant biological functions that were expected
to be found, according to the experimental setting. We
conclude that the performed analyses are thus reliable and
can form an overview of the various simulated functions
and of their connections. Importantly, the tool was also able
to highlight novel gene sets that have not been previously
linked to abiotic stresses or ABA-activated functions. There-
fore the tool has the capability to discover functions that
could otherwise have been missed, leading to novel biolo-
gical insights concerning the experiments of interest.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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