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ABSTRACT

Essential biological processes require that proteins
bind to a set of specific DNA sites with tuned
relative affinities. We focus on the indirect readout
mechanism and discuss its theoretical description
in relation to the present understanding of DNA
elasticity on the rigid base pair level. Combining
existing parametrizations of elastic potentials for
DNA, we derive elastic free energies directly related
to competitive binding experiments, and propose a
computationally inexpensive local marker for elasti-
cally optimized subsequences in protein–DNA
co-crystals. We test our approach in an application
to the bacteriophage 434 repressor. In agreement
with known results we find that indirect readout
dominates at the central, non-contacted bases of the
binding site. Elastic optimization involves all defor-
mation modes and is mainly due to the adapted
equilibrium structure of the operator, while sequence-
dependent elasticity plays a minor role. These quali-
tative observations are robust with respect to current
parametrization uncertainties. Predictions for relative
affinities mediated by indirect readout depend sensi-
tively on the chosen parametrization. Their quantita-
tive comparison with experimental data allows for a
critical evaluation of DNA elastic potentials and of
the correspondence between crystal and solution
structures. The software written for the presented
analysis is included as Supplementary Data.

INTRODUCTION

Besides encoding for the identity of proteins in a living cell,
the DNA base pair sequence carries information which is read
out by proteins that bind to specific sites on DNA with
remarkable selectivity. Sequence-specific binding is essential
in gene regulation, DNA replication and compaction, and
there has been much effort to understand its mechanism.

In contrast to the genetic code, it has proven impossible
to describe specific protein–DNA interactions entirely by a
simple ‘recognition code’, based on direct chemical contacts
of amino acid side chains to bases (1). Even when taking the
3D arrangement of protein–DNA contacts into account (2,3),
the observed specificity cannot always be explained.

In general, complexation free energies also depend on the
deformation required to distort both the protein and the DNA
binding site into their 3D structure in the complex. In this
way, sequence-dependent structure and deformability of
DNA contribute to sequence-specific binding, an effect called
indirect readout.

The bacteriophage 434 repressor, Figure 1, is a well-
studied example. It was shown that mutations in the non-
contacted region affect binding affinities 50-fold (4), and a
correlation of affinity to the twisting rigidity and intrinsic
twist of these mutations was found (5–7).

The importance of direct and indirect readout and protein–
DNA binding affinities have been addressed computationally
by sequence-structure threading. The elasticmodels considered
range from a combination of fixed coarse-grained protein struc-
ture with DNA rigid rod (8,9), rigid base pair (10,11) and rigid
base (12) models, to all-atom force fields with sequence-
independent partial protein structure relaxation (13,14) and
more recently, with sequence-dependent protein side chain
relaxation (15,16), leading to high computational requirements.

In this article we focus on indirect readout and discuss its
theoretical description in relation to the present understanding
of DNA elasticity on the rigid base pair level. Available com-
putational tools allow the convenient analysis of the base pair
geometry in protein–DNA co-crystal structures (17,18). Here
we add the calculation of elastic (free) energies which quant-
ify elastic optimization and have a well-defined relation to
competitive binding experiments. To estimate accuracy, we
calculate all quantities for a set of five different (hybrid)
DNA elastic potentials, which we obtained from parametriza-
tions based on MD simulation (19) and structural data (20).
This allows us to evaluate the robustness of our qualitative
and quantitative conclusions with respect to inevitable
parametrization uncertainties. The results are relevant also
for coarse-grained models that include direct readout.
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Using the 434 repressor as a test case we address the
following general questions: (i) Given a protein–DNA co-
crystal structure, can we detect regions of dominant indirect
readout based on a local marker for elastic optimization of
DNA? (ii) Is specificity dominated by particular degrees of
freedom (twist, bend, . . .)? (iii) Is specificity predominately
due to the structure or to the deformability of the optimal
sub-sequences? (iv) Does current knowledge of the elastic
properties of DNA suffice to predict the relative binding
affinities of sequences which are mutated in regions of indi-
rect readout? (v) Can we a posteriori evaluate different para-
meterizations of the DNA elastic potential, by comparing
predicted and measured relative binding affinities? Given
that there exist three different high-resolution X-ray struc-
tures of the 434 repressor complex, we can ask further,
(vi) How strongly do the results of the analysis vary for
different structural templates? (vii) Among the three solved
co-crystal structures, is there one which seems to provide a
better model of the solution complex?

The article is structured as follows: in the Materials and
Methods section, we first derive the relevant elastic free ener-
gies starting from existing parametrizations of the rigid base
pair DNA elastic potential, and considering the approxima-
tions involved in sequence-structure threading. Form these
we then construct markers for indirect readout. In the Results
and Discussion section, we apply our approach to a detailed
re-investigation of elastic specificity in the 434 repressor
complex. We discuss the robustness of our qualitative and
quantitative observations to parametrization uncertainty and
compare them to experimental data.

MATERIALS AND METHODS

Rigid base pair model of DNA

We describe DNA elasticity at the level of rigid base pairs,
see e.g. (21). The deformations in this model are given by
a set of 3 + 3 variables specifying the relative position and
orientation of two adjacent base pairs. We use the 6 bp step

variables x ¼ (Sh, Sl, Ri, Ti, Ro, Tw), where Sh, Sl, Ri are
the three translations Shift, Slide and Rise, and Ti, Ro, Tw
are the three angles Tilt, Roll and Twist needed to specify
the relative orientation, as defined in (17). To characterize a
base pair step (bps) completely, we also need to give the
sequence step s formed by the bases (b1, b2) along one cho-
sen strand from 50 to 30, e.g. s ¼ (b1, b2) ¼ (A, C) ¼ AC. Due
to symmetry, there exist only 10 different sequence steps. A
bps is written as (x, s).

The general quadratic energy function for a bps with
sequence s is

EsðxÞ ¼
1

2

�
x�x0ðsÞ

�T
SðsÞ

�
x � x0ðsÞ

�
‚ 1

where x�x0 are the six strain variables. x0 gives the equilib-
rium or static step conformation, and S is the symmetric,
positive definite, 6 · 6 stiffness matrix. Both depend on the
sequence s of the step. Note that as x has mixed dimensions
of length and angle, S has mixed dimensions of linear, angu-
lar and linear-angular-coupling stiffness.

The deformation fluctuations of base pairs in our model are
taken to be independent, which is a simplification. Since adja-
cent rbp steps are coupled through the DNA sugar –phosphate
backbones, their fluctuations are correlated to some extent.
To overcome this limitation, two refinements of the
model are possible. One is the inclusion of nearest-neighbor
step cross-correlation terms in the rbp elastic energy, leading
to tetranucleotide stiffness matrices. Their corrections to a
dinucleotide model were recently investigated (22) using
MD simulation. We checked that in most cases these are
much smaller than the difference between the dinucleotide
potentials we used for the same step. We conclude that at
the level of parametrization precision available, fluctuation
correlations are a secondary effect. Another possible refine-
ment is to consider a rigid base model. There are indications
form MD simulation that this improves the quality of a purely
local description (J. H. Maddocks, personal communication).
However, a corresponding parameter set is not yet available.

Base pair step potentials

To parametrize a quadratic elastic energy one has to specify
the stiffness matrix S and the equilibrium value x0 for every
sequence step s. There exist two conceptually different
parametrization methods (19,20).

Lankaš et al. (19) obtained a thermal ensemble of fluctuat-
ing base pair steps at a temperature T ¼ 300 K from MD
simulation of oligonucleotides. The fluctuating bps are
Boltzmann distributed and by fitting a 6D Gaussian, one
obtains the equilibrium values (23) and stiffness matrices
(19), fx0‚MDSMDg in a standard way. If CMD(s) is the correla-
tion matrix of step fluctuations, then SMDðsÞ ¼ kBTC

�1
MDðsÞ

is the corresponding stiffness matrix, due to equiparti-
tion of energy at temperature T. The partition sum Zðs‚TÞ ¼
det½SðsÞ=ðkBTÞ��1/2

gives a natural measure for the overall
strength of fluctuations of a harmonic bps at temperature T,
counting all six degrees of freedom.

Olson et al. (20) used crystal ensembles of deformed bps.
Their B-DNA ensemble consists of B-form DNA oligonu-
cleotides, while their P-DNA ensemble is obtained from
protein–DNA co-crystals. Again, a Gaussian can be fitted to
the data, giving directly the equilibrium values and the

Figure 1. Representation of 434 repressor–OR3 complex structure (4). The
outer 5 + 5 and the inner 4 bp are shaded differently. Together they form the
14 bp binding site. The OR sequences are indicated.
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ensemble covariance matrices ĈC. Stiffness matrices can be
extracted under the assumption that equipartition of energy
at some effective temperature occurs also in crystal ensembles.

To determine the effective temperature, we require that the
fluctuation strength of the MD ensemble and that of a crystal
ensemble X ¼ B, P be equal, i.e. ZXðs‚TÞ ¼ ZMDðs‚TÞ. We
consequently define the crystal stiffness matrices by
SXðsÞ ¼ kBTXĈCXðsÞ�1

. Here, the average of effective tem-
peratures needed to reach equal fluctuation strength for
each sequence is the ensemble’s effective temperature,

TX ¼ 300 K

�
det ĈCXðsÞ
det CMDðsÞ

�1
6

* +
s

: 2

We obtain TB ¼ 107 K and TP ¼ 233 K. Our B and P ensem-
bles then have equilibrium values and stiffness matrices
fx0‚B‚SBg and fx0‚P‚SPg, respectively. In summary, the
observed fluctuations in the crystal appear as strong as if
they were thermally excited at their respective effective
temperature, judging by the MD simulation.

In (19), the effective temperature for the P-DNA ensemble
(20) was computed by comparing the persistence lengths for
DNA oligomers as extrapolated from a normal mode analysis
of oligomers without temperature scale (24), to experimental
values for B-DNA in solution. This yielded a value of
TP ¼ 295 K. While our microscopic approach matches fluc-
tuations of all six rigid bp degrees of freedom to an MD simu-
lation, this mesoscopic method (19) effectively matches the
bending fluctuations only, to experimental data. For com-
parison, we have repeated our determination of effective
temperatures using only the bending (i.e. Roll and Tilt)
stiffness submatrices. This gives effective temperatures of
TB0 ¼ 166 K and TP0 ¼ 232 K, the latter value surprisingly
unchanged from TP. We denote the resulting crystal
ensembles by B0 and P0.

If we were to introduce multiple effective temperatures,
matching all sequences and degrees of freedom separately to
the MD stiffness matrices, we would finally end up with the
B and P equilibrium values combined with the MD stiffness
matrices fx0‚B‚SMDg and fx0‚P‚SMDg. Since the equilibrium
values obtained from MD using the parm94 force field (25)
generally have a Twist that is lower than commonly accepted
on the basis of structural data (26), we also included these
two hybrid parametrizations, denoted MB and MP.

For the plots in the Results section, all quantities were
calculated separately for the parametrizations MD, B, P,
MB and MP. The mean and error bar of these lists are
shown, giving an overview of the agreement between the
available parametrizations. The B0 and P0 parametrizations
are used only where indicated, for comparison.

When the effective temperature is set, we replace the
observed distribution of deformations, p̂pXðx j sÞ, by the cor-
responding Boltzmann distribution pXðx j sÞ at T ¼ 300 K,
given by (27) below. This distribution has covariance
CX(s), which is a rescaled version of ĈCXðsÞ. The rescaled
joint distribution pXðx‚sÞ ¼ pXðx j sÞpðsÞ is the starting
point of the discussion in the section on free energies below.

Detecting indirect readout

When some protein binds a specific sequence, it is because this
sequence has optimal binding free energy. It is interesting to

ask which part of the binding free energy is most important
for specificity. Certainly, if DNA elasticity were the dominant
part, the operator would be optimal with respect to DNA
elasticity. Our working hypothesis is the converse: we assume
that indirect readout dominates at positions where the operator
sequence is optimal with respect to DNA elasticity. Otherwise,
elastic optimization would be coincidental. To systematically
exclude false positive detections, additional information on
direct readout is required, which is beyond the scope of this
work. We can still greatly reduce the probability of false posi-
tives by a high threshold for optimization and by considering
simultaneous optimization of subsequences.

The question whether an operator is elastically optimal can
be given two different precise meanings. Consider a known
structure of some stretch of DNA in a co-crystal. We may ask

(i) Is the structure optimal for the observed sequence? i.e.
how relaxed is this sequence in the given structure?

(ii) Is the sequence optimal for the observed structure? In
other words, are other sequences distorted more strongly?

These questions can be answered by considering two dif-
ferent thermodynamic potentials or free energies. In the
following two, more technical subsections, we introduce a
deformation free energy Fs(x) and a sequence potential
Gx(s), both defined for single as well as for multiple bps.
F is relevant when comparing different structures, and
answers question (i) above. G is the relevant free energy
when comparing different sequences in the same structure,
and answers question (ii). We then relate these free energies
to competitive binding experiments and indirect readout.

Free energies derived from a bps ensemble

Suppose we are given some (MD or crystal) ensemble
fðxi‚siÞg1<i<N of elastically fluctuating, single bps. The step
deformations and sequences are jointly distributed according
to some normalized probability density function (pdf)
p(x, s), which contains all available statistical information.

At a temperature T (300 K in our case) we can associate to
the joint pdf a free energy K,

bKðx‚sÞ ¼ � ln½vpðx‚sÞ�‚ 3

where b ¼ 1/ðkBTÞ. The constant v is a volume scale in x
space needed to fix dimensions, and drops out in all free
energy differences. Differences in K correspond to relative
probabilities in the ensemble, of bps that differ in sequence
and structure.

Taking partial averages, we get the marginal pdf’s: pðsÞ ¼R
pðx‚sÞ dx gives the frequency of a sequence step in the

ensemble while pðxÞ ¼
P

s pðx‚sÞ is the pdf to find the
deformation x in any sequence step.

The deformations of a chosen sequence step s follow the
conditional pdf pðx j sÞ to find x, given s. Since in DNA
the angular distributions are quite sharply peaked, it is safe
to neglect the curvature and finite boundaries of x-space.
A fit of pðx j sÞ with a 6D Gaussian, which is the
maximum entropy distribution with the mean and covariance
of the data,

pðx j sÞ ¼ pðx‚sÞ
pðsÞ ¼ ð2pÞ�3ZðsÞ�1e�bEsðxÞ‚ 4
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defines the parameters x0 and S of the quadratic elastic energy
Es(x), Equation 1. The partition sum ZðsÞ ¼ det½SðsÞ/
ðkBTÞ��1/2

gives the overall fluctuation strength (20). This
Gaussian fit is by no means necessary to define the elastic
free energies below. We use it here since the parameter sets
we consider are given to this approximation. With more
detailed (multi-modal) energy functions, conformation
space integrals would get more involved but the formalism
would not change. We associate a deformation free energy,

bFsðxÞ ¼� ln½vpðx j sÞ� ¼ bKðx‚sÞ þ ln½pðsÞ�: 5

A free energy difference FsðxÞ � Fsðx
0
Þ ¼ EsðxÞ � Esðx

0
Þ

expresses the relative probability to find the deformation x
rather than x0 in the data, given that we are looking at a
fixed sequence s. F corresponds to a canonical potential (or
Helmholtz free energy) at fixed sequence, depending on the
state variable x. Using Equation 4 one can see that up to a
constant, we have the relation F ¼ E � TDS. Here

DSðsÞ ¼þ kB

Z
pðx j sÞ ln ½vpðx j sÞ�dx

¼� kB ln ½v�1ZðsÞ� þ const 6

is the entropy change upon binding of the fluctuating har-
monic bps. Softer steps loose more entropy when forming a
complex. The difference in TDS between sequence steps is
up to 2 kBT. Here we do not assume that the fluctuations
are fixed completely, but only that for all sequence steps s
they are fixed to the same degree upon binding. One way
to see this is to consider an additional, sequence-independent
harmonic potential representing the protein elastic energy,
with stiffness matrix Sprot, say. In the stiff protein limit
Sprot�SðsÞ, the leading term is F ¼ E � TDS, independent
of Sprot.

Similarly, we may ask for the probability to find the
sequence step s among all steps at fixed deformation x. It
is given by the (discrete) conditional pdf

pðs j xÞ ¼ pðx‚sÞ
pðxÞ ‚ 7

and we associate a sequence potential

bGxðsÞ ¼ � ln pðs j xÞ ¼ bKðx‚sÞ þ ln½vpðxÞ�: 8

A potential difference GxðsÞ � Gxðs
0 Þ expresses the relative

probability to find the sequence s rather than s0, given we are
looking at a fixed deformation x. A value Gx(s) ¼ 0 at
deformation x, the sequence s occurs with certainty in the
ensemble. Gx(s) corresponds to the Gibbs free energy in
the grand canonical ensemble, at fixed deformation x.

Often, it is interesting to compare sequences in an unbiased
ensemble where each sequence step is equally probable, so
p(s) ¼ const. In this situation, the formulas look simpler.
We obtain

bGxðsÞ ¼ bFsðxÞ þ ln
X
s0

e�bFs0 ðxÞ: 9

In fact, since now GxðsÞ � Gxðs
0 Þ ¼ FsðxÞ � Fs0 ðxÞ the

relative probabilities of sequences are in this case expressed
by their F differences. Still, E differences (10) cannot be
used instead, since they lack the term TDS (see Equation 6).

Multiple steps

We extend the free energies introduced above for single steps
to a sequence of consecutive steps. These may be efficiently
calculated without making the approximation (12) of additive
single step free energies.

By assumption, the deformations in our model fluctuate
independently. However, we have to make sure that consecu-
tive steps form a meaningful sequence, e.g. AC can be
followed by CG but not by GC. This clearly correlates the
sequence steps. To get the correct free energies for a stretch
of multiple bps, we go back to the probabilities.

Extending previous notation, we now denote a base pair
step sequence (bpss) by (x, s). It consists of l bps ðxj‚sjÞ
with the additional requirement that the sequence steps
match, sj ¼ ðbj‚bjþ1Þ, where s ¼ ðb1‚ . . . ‚blþ1Þ is a sequence
of l + 1 bases.

Computing the pdf’s, we have pðx j sÞ ¼
Q

j pðxj j sjÞ
since the deformations are independent. Consequently,
bFsðxÞ ¼ b

P
j Fsj

ðxjÞ: The sequence pdf p(s) has to be
renormalized so that its sum over matching sequences is
unity. Define

Wl ¼
X
s0

0 Yl
i¼1

pðs0
iÞ‚ 10

where the primed sum runs only over matching sequences
with l steps. Then clearly pðsÞ ¼ W�1

l

Q
j pðsjÞ and

pðx‚sÞ ¼ W�1
l

Q
j pðxj‚sjÞ are properly normalized. In the

case where all sequences are equally likely, one can check
that pðsÞ ¼ 4�ðlþ1Þ. The joint free energy K is not additive
because of the renormalization,

bKðx‚sÞ ¼� ln ½vlpðx‚sÞ� ¼ b
Xl
j¼1

Kðxj‚sjÞ þ lnWl: 11

For the sequence potential we obtain

bGxðsÞ ¼ � ln ½pðs j xÞ� ¼ bKðx‚sÞ þ ln ½vl
X
s0

0
pðx‚s0Þ�:

12

Noting that

Wlv
l
X
s0

0
pðx‚s0Þ ¼

Yl
j¼1

vpðxjÞ
X

b01‚...‚b
0
lþ1

pððb0j‚b0jþ1Þ j xjÞ‚ 13

we can introduce the 4 · 4 transfer matrix TðxjÞ with entries�
TðxjÞ

�
b0‚b00

¼ pððb0‚b00Þ j xjÞ ¼ e
�bGxj ððb

0‚b00ÞÞ
14

and rewrite the primed sum as a matrix multiplication. With
lT ¼ ð1‚1‚1‚1Þ, the sequence potential of a bpss finally
acquires the compact form

bGxðsÞ ¼ b
Xl
j¼1

GxjðsjÞ þ ln ½lTTðx1Þ � � � TðxlÞl�‚ 15

which is again not additive. Even though there are 4l + 1 pos-
sible sequence mutations, G can be computed in a time / l.
Note that for l ¼ 1, the formula reduces to the single step
result since pðs j xÞ is normalized.
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Whenever the steps are equidistributed, p(s) ¼ const,
the formulas become simpler. In particular, one can see
from Equations 14 and 15 that, as in the single step case,
GxðsÞ � Gxðs

0 Þ ¼ FsðxÞ � Fs0 ðxÞ, while E differences
would give a different result.

Competitive binding

The free energies just derived in the context of freely fluctu-
ating bps, have a direct relation to an idealized competitive
binding experiment. Consider a protein that can bind any
operator sequence s in some corresponding structure x, but
has no intrinsic sequence preference. That is direct readout
that drives complex formation has the same strength for all
operators, and is absent for non-operator sequences. This
protein may be put in contact with a bpss ensemble, such
as a genome containing operators with relative frequencies
p(s) (different from the frequencies in the reference ensemble
above). Then the relative occupancies of the protein with dif-
ferent sequences are determined only by elastic free energy
differences.

Binding the sequence s in a structure x costs a deformation
free energy Fs(x). Multiplying the probability p(s) to find s
at all in the ensemble gives the relative occupancy of (s, x)
compared to (s0, x0) as expf� b½Kðx‚sÞ � Kðx

0
‚s0 Þ�g ¼

pðs‚xÞ=pðs0
‚x

0
Þ. In two different situations this general result

simplifies.
A complex structure that minimizes Fs(x) is optimal in the

sense of question 1. above, i.e. it is the most relaxed structure
for s. Whenever all steps in the bps ensemble are
equally frequent, those sequences will bind whose bound
structures are most relaxed. We get pðs‚xÞ=pðs0‚x0Þ ¼
expf� b½FsðxÞ � Fs0 ðx0Þ�g, see (4). Protein–DNA binding
can be driven by enthalpy or by entropy or by a combination
thereof (28). While the total entropy of complex formation
has more contributions, F accounts at least for the entropic
cost of fixing the deformation fluctuations to a value x in
the complex, and softer steps acquire a higher entropic con-
tribution that counteracts complexation. This trend persists
also if the suppression of fluctuations upon binding is only
partial.

Consider a binding experiment as above, in which now the
protein is very stiff. Here, the sequence distribution p(s) may
be nonuniform, but all sequences bind in one fixed defor-
mation x. In this situation, we see from Equation 8 that
pðs‚xÞ=pðs0‚xÞ ¼ expf� b½GxðsÞ � Gxðs0Þ�g. The sequence
that minimizes G is optimal in the sense of question 2. above,
i.e. it is the sequence that fits best with the prescribed struc-
ture, taking into account its frequency in the ensemble.

If both special cases occur at the same time, we have a
fixed x and constant p(s). Then indeed F and G differ only
by a constant, so they give the same relative occupancies.
However, the elastic energy E will still give different results.

Measures of elastic optimization

For some stretch (x, s) of DNA in a given co-crystal structure,
we would like to tell whether it is specifically bound because
of DNA elasticity. Naively, one might assume that this is
the case if it carries a small elastic energy, but this not cor-
rect. We are really asking: compared to all mutated

sequences, is s elastically optimal? In general, this is the
case if Kðx‚ sÞ < Kðx0‚ s0Þ for all other (x0, s0).

Most of the time however, there is only one crystal struc-
ture x available as a model for the solution complex. We can
still plug all possible sequence mutations into that structure
and calculate their free energies. For sequence-structure
threading, we therefore make the additional simplifying
approximation that the experimentally inaccessible com-
plexes (x0, s0) of the protein with any other DNA sequence
s0 will force the DNA into essentially the same structure
x
0
’ x. One can check that

Kðx‚sÞ �Kðx0‚s0Þ ¼GxðsÞ �Gxðs0ÞþFs0 ðxÞ �Fs0 ðx0Þ: 16

Then our approximation is that jFs0 ðxÞ �Fs0 ðx0Þj
� jGxðsÞ �Gxðs

0 Þj, which could be called the stiff protein
limit, and we disregard the F difference between structures.
The same approximation is effectively made in (13), where
after an initial partial structure relaxation the structure was
kept fixed, and in the static model of (12). The validity of
the stiff protein limit depends on the protein in question.
However, when only one structure is known, it is a reasonable
first approximation to consider only the known part of the
free energy difference. As an aside we note that when the pro-
tein is stiffer than DNA, it will itself store less elastic energy,
making the protein elastic energy contribution to the total
binding energy less important.

Consider a competitive binding experiment where all pos-
sible mutated sequences occur with equal probability p(s0) ¼
const. To find an optimal sequence, we can then look for
minimal FsðxÞ. An example of an F histogram of all
sequence mutations is shown in Figure 4. One widely used
(11,22) way to quantify optimization of the native sequence
is the Z-score, given by the difference of the mean F to the
native F, normalized by the width of the F histogram. We
add another option: Looking only at the low F tail, we con-
sider the normalized difference of the native F to the minimal
F. For an example of both quantities see Figure 3. Any
Z-score disregards information on the global scale of free
energy differences in a histogram. The normalization with
the histogram width makes quantitative comparison with
experiments impossible.

A more direct way to quantify optimization is to consider
just the free energy GxðsÞ of the native sequence. Since this
is the logarithm of a normalized pdf, s has a higher-than-
random probability of occurring if GxðsÞ is lower than that
of an ensemble with pðs0 j xÞ ¼ const. By normalization,
a value GxðsÞ ¼ 0 means that s occurs with certainty at
that deformation, GxðsÞ < ln 2 means that s has half of the
total probability, and GxðsÞ ¼ ðlþ 1Þ ln 4 is the random
value for a bpss with l bps. It is clear that the value of
G(s) alone contains information about how low-lying
the corresponding Fs is in the F histogram. In fact, the
sequence potential GxðsÞ is similar to a Z-score, but com-
puted for the Boltzmann factors: In the case p(s0) ¼ const,
by rewriting Equation 9, we get GxðsÞ ¼ FsðxÞ � �FFðxÞ,
where

b�FFðxÞ ¼ � ln
X
s0

e�bFs0 ðxÞ: 17
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This can be interpreted as the difference of Fs to an ‘expo-
nential mean’ �FF over all mutations, where sequences with
high F value are exponentially suppressed, according to
their statistical weight.

Since G is a true free energy, it is directly related to
relative affinities in a competitive binding experiment, unlike
a Z-score. By normalizing G to the length of the considered
window, an unbiased comparison of specificity for different
subsequence window lengths is possible. The expected
dependence of a Z-score on window length is less clear (22).

Elastic consensus sequences

Assuming a stiff protein with structure x, and regarding only
DNA elasticity, any mutated subsequence s0 of length l binds
with a probability pðs0 j xÞ ¼ e�bGxðs0Þ. Instead of looking
at an entire subsequence one can ask for the probability to
find just one base b at a certain position i in all length l
subsequences. This probability pi(b) is given by the
expectation

piðbÞ ¼
X
s0

0

d
b
0
i b
e�bGxðs

0 Þ‚ 18

where d is the Kronecker delta. Using Equation 15, we obtain

piðbÞ ¼
lTTðx1Þ � � � Tðxi�1ÞPbTðxiÞ � � � TðxlÞl

lTTðx1Þ � � � TðxlÞl
: 19

Here the matrix ðPbÞb0b00 ¼ d
b
0
b
d
b b

00 is a projector onto the
base b. This expression takes into account sequence correla-
tions up to the window length l. Calculating pi(b) for all bases
b ¼ A‚T‚C‚G along a given structure, using centered win-
dows of constant length, gives a complete base-per-base pic-
ture of elastic preference in the structure. To check for elastic
preference for the native sequence, one can just set b equal to
the native base at each position.

Similarly, we can ask for the joint probability pi‚ iþkðsÞ to
find k bases ðbi‚ . . . ‚biþkÞ ¼ s at positions ði‚ . . . ‚ iþ kÞ in
all length l subsequences. To calculate it, we have to insert
projectors at all base positions in question,

pi‚ iþkðsÞ

¼lTTðx1Þ���Tðxi�1ÞPbiTðxiÞPbiþ1
Tðxiþ1Þ���Pblþk

TðxiþkÞ���TðxlÞl
lTTðxlÞ���TðxlÞl

:

20

The difference of this expression to the probability pðs j xÞ of
the k + 1 bp sequence s is that pi‚ iþkðsÞ takes sequence cor-
relations up to the boundary of the length l subsequences into
account, while pðs j ðxi‚ ...‚xkÞÞ cuts them off at length k.
Whenever k ¼ l, there are projectors to the left and right of
all transfer matrices and both expressions agree. Note that
in general pi‚ iþkðsÞ is a function of the window length l up
to arbitrary l. In practice, one can simply choose for l the
complete binding site length, since the computational cost
is / l only. We remark that no approximation of base-wise
or step-wise additivity (12) is necessary here.

It has been pointed out (29) that different distributions
pi(b) contain varying amounts of information. For example,
a position i at which all bases are equally probable has no
information and should be considered as carrying no elastic
specificity. Extending this to the case of k + 1 bases, we

need to calculate the entropy of the distribution pi‚ iþkðsÞ,

Si‚ iþk ¼�
X
s0

0
pi‚ iþkðs0Þ ln ½pi‚ iþkðs0Þ� < ðk þ 1Þ ln 4: 21

A measure for the information content of the distribu-
tion that ranges from 0 to 1 is given by Ii‚ iþk ¼
1 � Si‚ iþk=½ðk þ 1Þ ln 4�. An extension of a sequence logo

(29) for length k + 1 subsequences can then be constructed

by plotting the relative frequency of each subsequence, scaled
with the information content, along the complex. For k > 0,
the subsequences overlap, so the usual letter scaling notation
cannot be used. However, the most interesting information
can be shown by plotting Ii‚ iþkpi‚ iþkðsÞ for native subse-
quences only, see Figure 6 below. Such a plot shows directly
how well the native sequence coincides with an elastic con-
sensus sequence, and gives a local marker for which signifi-
cantly nonzero values point to elastic specificity. Again, since
the subsequence length of interest is usually just a few base
pairs, computation is cheap.

RESULTS AND DISCUSSION

Indirect readout in 434 repressor

The 434 repressor is a viral transcription factor that forms
part of a genetic switch between the lytic and lysogenic states
in the bacteriophage 434 virus. There exist two operator
regions OR, OL with three binding sites of 14 bp in each
region (4). The protein dimer binds in a helix–turn–helix
motif, making the structure (27,30,31) approximately 2-fold
rotationally symmetric. The outermost 5 + 5 bases on each
binding site are directly contacted by the protein, and the
sequence of the outermost 4 + 4 bases is conserved with a sin-
gle base exception in all six binding sites. The consensus
sequence of the contacted outer 5 + 5 bases shows the
2-fold symmetry expected from the structural symmetry. In
contrast, the inner four bases are not contacted directly.
Their sequence is neither conserved nor rotationally symmet-
ric. Interestingly, binding affinities of the native binding sites
vary 40-fold, and those of synthetic binding sites vary as
much as 200-fold, depending only on the sequence of the
inner four bases (4,30). This is true even though in the exist-
ing structures none of the individual bps is kinked strongly,
and the overall bend is between 25 and 40 degrees. In gel
shift experiments (32), the overall bend was found to be
small and sequence-independent, supporting the idea that
the protein is stiffer than DNA.

Together these facts indicate that indirect readout in the
central part is important in tuning the relative affinities
of 434 repressor for different operators. For the contacted
outer 5 + 5 base pairs we expect no elastic specificity,
since protein–DNA contacts are likely to dominate interac-
tion energies there. DNA distortion is moderate and the pro-
tein is reasonably stiff, so quadratic bps potentials should
reflect this behavior.

Elastic energies

For an overview over DNA elastic energy in the 434 repres-
sor, we plot elastic energies EsðxÞ versus base pair number in
Figure 2. Here, s denotes the sequence of a bps or a bpss, and
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x denotes the corresponding step deformations. The bps
deformations were extracted from the structure data using
the program 3DNA (17). The energy per step in a moving
window of length three steps around each bps was computed,
using the five hybrid potentials introduced in Materials and
Methods. The mean and SD of these five values give a data
point and error bar in the plot, respectively.

Partial energies for bend, twist, shear and stretch are also
shown. These are calculated by replacing the full correlation
matrix C ¼ S�1 by its (Ti,Ro), (Tw), (Sh,Sl) and (Ri) subma-
trices, respectively. This corresponds to integrating out the
other variables. In each case, the correlation 1 · 1 or 2 · 2
submatrix is inverted to give the partial energy stiffness matrix.
Since all coupling stiffnesses are averaged out, the partial ener-
gies obtained in this way do not sum up to the full energy.

The full and partial energies for the three crystal structures
show variation along the structure that is well above the
parametrization uncertainty. However, all curves look remark-
ably different and show no common features at the central non-
contacted bases. Elastic energy is not strongly dominated by
any one of the partial energies. Rather, the identity of the most
important partial energy varies between the structures and even
within each structure. In OR1 and OR3, bend and stretch appear
most important, respectively. In OR2 there is a remarkable bal-
ance between all four partial energies. We checked that the
main contributions to the twist energy at bases 6 to 10 result
from overtwisting, in accord with experimental results that indi-
cate overtwisting of the central region (5). However, twist does
not appearmore important than other partial energies. Theoverall
bending angles for OR1, 2, 3 are around 25, 40 and 30 degrees,
respectively. Although OR1 has the lowest overall bend, OR3
clearly is the most relaxed structure.

Free energies and specificity

We now return to the full elastic energies. For an overview
of elastic optimization in the three 434 repressor complex
structures, the upper two rows in Figure 3 show the elastic
energy E and the deformation free energy F of the native
sequence, normalized per bps. They are computed in a
centered moving window of length 3 bps, which gives

sufficient spatial resolution to distinguish the central from
the outer base pairs while smoothing the curves. Although,
the deformation free energy F includes conformational
entropy of the bps, this contribution is smoothed by the mov-
ing window, resulting in an almost constant difference of E
and F. Both energies show no features that are special to
the inner four bases (bases 6 to 9). While in the OR1 case
the inner four bases have high F, they lie low in OR3, i.e.
there is no common trend in all structures.

Overall, the E or F profiles give no clear signal that would
correspond to the experimentally observed specificity in the
central 4 bp. This is not surprising since only the value of
F compared to the whole F distribution of all mutated
sequences is relevant for sequence optimization, see Materi-
als and Methods. What is the distribution of mutation free
energies? In Figure 4 we show a typical example, the F his-
tograms of sets of mutated sequences in three consecutive
5 bps windows along the OR2 structure.

One sees that the free energies follow a skewed, Gamma-
like distribution which varies in both mean and width. Only
in the central window, the native sequence lies significantly
below average and close to the minimum of the distribution.
Note that although the native value of F is lowest in the left
window position, the native sequence is not optimal there.

Quantifying these observations, we return to Figure 3. The
third row shows the F difference of the native sequence to the
mean (Zmean) and to the minimum (Zmin), computed from
F histograms of all mutated sequences in the same moving
windows as in the rest of the panel, and normalized by the
width of the histograms. In line with Figure 4, the OR2 plot
shows a maximum in the cental region. The corresponding
maxima in the other Z-score plots showthat also in OR1,
3 the native sequence is especially low-lying at the central
base positions. Generally, the constant difference Zmean � Zmin

indicates that while the width of the histograms may change,
the shape of the distribution stays the same. Note that through
its normalization by the width of the histogram, any Z-score
discards information about the width of the F histogram,
which as illustrated by Figure 4, may vary with the window
position. The native sequence comes close to the minimal F
only in a small region which coincides well with the four cen-
tral base pairs.

The fourth row of Figure 3 shows the sequence potential G,
given per bp, together with the random G level. It is com-
puted in a 3 bps window and assuming a uniform sequence
probability p(s). In contrast, to the deformation energies,
G shows a significant dip below the random value close to the
center, in all structures. Since G is normalized per bp, a value
G ¼ 0.5 corresponds to 8% probability of the native 4 bp sub-
sequence, which is 20 times the random value of 4�4 ’ 0:4%
The G dip shows that subsequences around the central, but
not the outer, base pairs of the binding site occur with a
probability above chance, when accounting only for DNA
elasticity. In this sense the native sequence of the central
base pairs is optimized, in each of the three available struc-
tures. The minimum in G agrees well with the maximum of
Zmin, which can be explained with the exponentially high
weight of the sequences with low F. Following the reasoning
in the Materials and Methods section, these measures give a
clear indication for indirect readout mediated by DNA elas-
ticity in the central region of the 434 repressor. The fact

Figure 2. Elastic energy E along OR1, 2, 3. A 3 bps window was used. The
elastic energy and parametrization uncertainty per bps are shown in units of
kBT. The top curve shows the full elastic energy, while partial energies are
shown subsequently shifted down by 2 kBT for clarity.
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that all available structures show the same feature lends sup-
port to the method of inferring the presence of indirect read-
out from one representative crystal structure in general.

In the above results, the moving window length is not cru-
cial for the central dip. While any window from 1 to 5 bps
will show the same trend, there is a tradeoff between spatial
resolution and noise.

Native versus elastic consensus sequences
in 434 repressor

We have shown that the central 4 bp native subsequences are
elastically optimized in the 434 repressor structures. But how
strongly is the identity of each individual base of the native
sequence preferred? When using very short subsequences
to calculate G, the results get noisy. We show one typical
example of the tradeoff between spatial resolution and
noise in Figure 5.

We stress that while using a moving window for E is
exactly the same as a simple moving average of the single

bps energies, this is not the case for G; as can be seen from
Equation 15, the difference is an additional term that account
for sequence continuity.

A way around the large local free energy variations is to
check how similar the native base is to an elastic consensus
sequence, at each position, see Materials and Methods. This
is quantified by first obtaining the probability pi(bi) to find
the native base bi at position i, in the full distribution of
sequence free energies for the complete binding site. This
probability can then be scaled by the information Ii contained
in the probabilities pi of all four bases at position i. The
information Ii is the height at position i of a sequence logo
(29) constructed from DNA elasticity, while the scaled proba-
bility IipiðbiÞ gives the height of the native base in such a
logo. In the same way, the similarity of small native subse-
quences with a elastic consensus subsequences may be
defined Methods.

In Figure 6 the similarity to elastic consensus is shown for
native subsequences of 1, 2 and 4 bases. The information is
scaled to range from 0 (equidistribution) to 1 (total concentra-
tion to a single subsequence). The scaled native probability
indicates elastic specificity of the native sequence on the
level of single bases, dimers, and tetramers, from top to bot-
tom. Interestingly, in the OR1, 2 complex structures, elastic
specificity is concentrated on two central bases, and while
the information still has a maximum in the center for the
4 bp logo, the native 4 bp subsequences have a very small
part of the total probability. In contrast, in the OR3 structure,
specificity is not as strong as expected from the G plots,
Figure 3, for the one base and two base subsequences.
Instead, specificity for the native sequence is distributed
over several bases, as can be seen in the 4 bp row, where
the native sequence still has high probability. It appears
that the more relaxed structure of OR3 achieves selectivity
by a combination of several smaller base preferences.

Origins of specificity

Indirect readout is caused by the sequence dependence of
both DNA structure and DNA stiffness. Does the structure
or the stiffness dependence have a stronger effect? We can
selectively switch off either one, by averaging either the equi-
librium values or the covariance matrices of the bps potential
over all possible sequence steps. The profiles of the resulting
averaged sequence free energies in 434 repressor are shown
in Figure 7. The characteristic G dip at the central bases per-
sists when the stiffness matrices are averaged, and the
G curve roughly traces the original one. However, averaging
the equilibrium values and retaining sequence dependent
stiffness, does alter the shape of the curves, and the central
G dip is lost. This indicates that sequence dependent structure
is more important for indirect readout than sequence depen-
dent stiffness, at least in the present example.

Is it possible to explain sequence specificity by a reduced
set of variables? For example, can twisting alone explain
indirect readout in the 434 repressor, as suggested by the
fact (5) that operators with higher twist in the central region
have higher affinity for 434 repressor than those with lower
twist? We investigated this question using partial sequence
free energies derived from the partial elastic energies in the
same way as the full G is derived from the full E.

Figure 4. Histograms of the free energy per bps of mutated sequences, in kBT
units. All possible mutations inside a 5 bps window were generated, around
bps 3, 7 and 11 from left to right. The structure is OR2, and the MD parameter
set combined with P-DNA equilibrium values is used. The vertical line
indicates the F value of the native sequence.

Figure 3. Elastic optimization in 434 repressor structures OR1, 2, 3.
Deformation energy E and free energy F, first and second rows. Z-scores of
mean (green) and minimum (gray), third row. The fourth row shows the
sequence potential G together with the random G level. All energies are given
in kBT. E and F are per bps while G is per bp. The moving window length is 3
bps. Error bars indicate parametrization uncertainty, and lighter shading
marks the inner 4 bp.
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In Figure 8 we show both full and partial sequence free ener-
gies (compare Figure 2). The result is ambiguous. In OR2,
twist and shear together do account for the characteristic G
minimum in the center. In the other structures, sequence spe-
cificity appears to arise from an interplay between all
deformation modes.

Comparison of parametrizations

In order to emphasize the features in the energy profiles that
are robust with respect to parametrization, we have so far
shown mean values and standard deviations of our set of
five parametrizations. In the present section we compare
these results for different elastic potentials in more detail,
using the 434 structures as an example. In Figure 9 we
show plots of the elastic energy E and of the sequence free
energy G of all mentioned parametrizations, and in addition
the crystal ensembles rescaled using effective temperatures
for bending only, B0 and P0 (see Materials and Methods).

When comparing B0 and P0 to B and P, the elastic energy is
simply scaled by the effective temperature ratio and thus
depends quite sensitively on the choice of this parameter.
However, the sequence free energy depends much less on
variations in effective temperature. In particular, the pre-
dicted regions of elastic optimization are remarkably insensi-
tive to effective temperature uncertainty.

Comparing the OR2 elastic energy profiles for different
parametrizations, the overall shape generally agrees better
for the partial energies than for the total energy, suggesting
that the coupling terms vary more strongly. The main

contribution to the twist energy comes from overtwisting.
Consequently, the MD parametrization which has low equi-
librium twist values, gives the highest twist energy. In con-
trast, the overall shape of the total sequence free energy
profiles is less affected by the choice of parameters. In par-
ticular, the dip in the central region always appears. The
robustness of this qualitative feature is also directly evident
from the parametrization error bars that we used throughout
the article.

Binding affinities

Experimental evidence for indirect readout in 434 repressor
comes from the dependence of binding affinity on the
sequence of the central, non-contacted bases (4). Does
DNA elasticity alone already capture the observed affinities?
If DNA elasticity dominates over chemical effects, and if in
addition the protein forces all of the artificial sequences into a
common structure x, then one expects that

b½FsðxÞ � Fs0 ðxÞ� ¼ ln½c1/2ðsÞ=c1/2ðs0Þ�: 22

Here c1/2ðsÞ is the affinity, given by the (normalized) rep-
ressor concentration needed to occupy half of the operators
s. Note that the mere existence of three different
434–operator co-crystals implies that the above equation is
an approximation.

Figure 6. Similarity to elastic consensus for native subsequences in the OR

complexes. Information (gray) and scaled native probability (green) are
shown for 1, 2 and 4 bp subsequences, from top to bottom.

Figure 5. Elastic energy (E) and sequence free energy (G) in the OR1
structure, using the MP potential. The moving window lengths 1, 2 and 3 bps
are shown with short, long and no dashes, respectively. E and G are given per
bps and per bp, respectively.

Figure 7. Sequence potential G for OR1, 2, 3. The curves show the fully
sequence-dependent potential, the potential with averaged equilibrium values
x0, and the potential with averaged stiffness matrix S, from top to bottom and
shifted in 2 kBT steps. The zero line corresponds to random sequences.

Figure 8. Sequence potential G along OR1, 2, 3, analogous to Figure 2. The
partial free energies are shifted down by 2 kBT successively for clarity, and
each one is shown together with the level of random probability. A 3 bps
moving window was used.
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In Figure 10 we plot left hand side versus right hand side of
this equation. We used affinity data of ten 14 bp artificial
sequences, which differ only in the central base pairs (4). The
experimental affinities for theR1–R69 subdomainof the repres-
sor were used, since this eliminates cooperative binding effects
and corresponds to the domain that was crystallized (30). TheF
differences are computed as the total deformation free energy
for the same sequences in each of the 14 bp OR structures.
Out of the two possible orientations in which the repressor
can bind, we used the one with lower F value. This makes a dif-
ference only for those three artificial sequences that are not self-
complementary. All possible combinations of s and s0 are
shown, so the plots are inversion symmetric.

Clearly there is a positive correlation between the log affin-
ity and F differences in all panels. A priori, we have no way
to single out one of the crystal structures or one of the
parametrization as corresponding best to the experiment.
When we consequently plot error bars resulting from all pos-
sible combinations of structure and parametrization (AVG),
the result is compatible with the data but has no predictive
power. Possible reasons are (i) our basic assumptions (inde-
pendent bps, stiff proteins, elasticity dominating binding in
434) are not justified, (ii) the crystal structures do not corre-
spond to the relevant structures in solution closely enough
and (iii) the parametrizations of the potential are inexact.

A posteriori, we can check whether one combination of
parametrization and crystal structure stands out as the best
model for the measured solution affinities. Figure 11 gives
an overview of affinity-free energy plots for all such combi-
nations. They show widely varying RMS deviation, ranging
from 1.5 kBT to 26 kBT depending on the parametrization
and structure used. Note that the global energy scales agree
for all potentials except B0. Only for the rescaled ensembles
B0 and P0 is it higher, increasing the spread of computed
affinities.

The shown linear correlation coefficients vary between
�0.52 and 0.64. They measure quality of a linear regression
of the points with arbitrary slope. Although a negative cor-
relation does identify bad correspondence, the correlation
coefficients are clearly insufficient as indicators of fit quality.
For example, B0 has higher correlation than B but is far
off the correct energy scale. Interestingly, high correlation
coefficients often coincide with large absolute errors. Indeed,
our model is a line of slope one. The shown RMSD from this
model together with the linear correlation indicate clearly that
overall, the combination of the MP potential and the OR3
structure agree best with measured affinities, at RMS error
1.5 kBT and correlation 0.47.

When this choice is partially relaxed (Figure 10), one sees
that the variation among parametrizations in the best structure
(OR3), is greater than that among structures for the MP
parametrization (MP), as summarized in Figure 10. A c2-test
using the respective error bars reveals that the model bDF ¼
D log c1/2 is compatible with the (OR3) data, while it is
rejected for (MP) at a 5% confidence level. This is in accord
with the observation that MP together with OR1, 2 give no
positive correlation, while OR3 together with B, MB, P and
MP results in acceptable correlation with affinities.

These observations give some hope that the parametrization
error (c) is more important than the basic approximations (a)
made in the model, and that improvements in the determination
of a harmonic base pair potential will eventually lead to quan-
titative affinity predictions. If we accept the MP potential as a
valid representation of solution DNA elasticity based on its
small RMS deviation, we can then identify the OR3 structure
as the only co-crystal structure that is a good representative

Figure 9. Elastic energy E and sequence free energy G in the OR2 complex, for all parametrizations used. Full and partial energies are shown, with color coding
and offsets as in Figures 2 and 8.

Figure 10. Computed deformation free energy differences versus measured
log affinity differences. From left to right, we used DF values for all
structures and parametrizations (AVG), the OR3 structure and all parame-
trizations (OR3), all structures and the MP parametrization (MP) and OR3
together with MP (MP, OR3). Error bars indicate the spread in DF, and the
line indicates equality.
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of the affinities in solution. In Table 1 we list some correspond-
ing binding affinity predictions. For all possible mutations of
the inner four bases we calculated free energies relative to
the experimental reference sequence (4). For complementary
sequences, we used the lower F value, in the same way as in
Figure 11. One can see that the range of computed free energies
is bigger than that of the measured ones, which lie in the high
affinity half. Note that the highest affinity sequence AAAA
coincides with the central part of the native sequence of OR3,
which however differs in the outer parts, see Figure 1. To test
improved rbp potentials, it appears helpful to extend the experi-
ments to the sequences with extreme affinities.

SUMMARY AND CONCLUSION

We have developed a theoretical framework for modeling indi-
rect readout based on appropriate elastic free energies. The
resulting markers detect sites of dominant indirect readout by

locating elastically optimized subsequences in protein–DNA
co-crystals. They are linked to experimentally measurable rel-
ative binding affinities of operators mutated at these sites. In
particular, we propose the similarity Ii‚ iþkpi‚ iþkðsÞ of the
length k native subsequence to the corresponding elastic con-
sensus subsequence as a non-additive local marker for indirect
readout. Unlike a Z-score, this marker can be computed with
little numerical effort for arbitrary lengths of the total bind-
ing site, and has a direct probabilistic interpretation.

Obviously, the success of our approach depends on the appli-
cability of the model used to describe DNA elasticity as well as
on the quality of the parametrization. Here we have chosen a
description on the rigid-base pair level, as a sensible compro-
mise between computationally much more expensive all-
atom models and rigid rod representations. We have combined
state–of–the–art parametrizations from MD simulation and
from structural data analysis, using a new, microscopic method
of adapting the effective temperature scale. The resulting error
bars allow an estimation of the effect of parametrization uncer-
tainty. Qualitative observations appear quite robust with
respect to the parametrization uncertainty. Examples are the
location of indirect readout sites, the relative importance of
structure and elasticity for specificity, or the distinction of con-
tributions from different elastic degrees of freedom. Quantita-
tive predictions for relative binding affinities depend more
sensitively on the choice of parametrization. In the case of
the 434 repressor, results averaged over the available elastic
potentials and structural templates are compatible with mea-
sured binding affinities, but the margins of error are too wide
to allow quantitative predictions. Closer inspection shows
that our MP hybrid potential performs significantly better
than alternative parameterizations. These observations under-
score the importance of ongoing efforts to improveDNAelastic
potentials (26), and suggest the quantitative prediction of

Figure 11. Computed deformation free energy differences versus measured log affinity differences, for all combinations of crystal structure and employed
parametrization, see also Figure 10. Linear correlation coefficients (upper number) and the RMSD from the line bDF ¼ D log c1/2 (lower number) are inset.

Table 1. Computed free energy differences for mutations of the inner four

bases of the sequence ACAATNNNNATTGT

Rank bDF D log c NNNN Rank bDF D log c NNNN

1 �1.9 AAAA 39 0.9 2.7 ACGT
2 �1.5 AAAG 51 1.3 1.1 GTAC
3 �1.4 ATAA 55 1.5 2.8 AGCT
4 �1.2 0.3 TTAA 75 2.2 0.3 AATT
5 �1 ATAG 132 5.7 CATA
8 �0.5 �0.5 AAAT 133 6.2 TGCA
17 0.0 0.0 ATAT 134 6.8 CACA
21 0.1 1.1 CTAG 135 7.0 CATC
25 0.3 0.6 GTAT 136 8.6 CATG
37 0.9 1.4 AGAT

Sequences used in (4) are shown with the experimental log affinity difference
D log c. In addition to these, the five highest and lowest affinity random
sequences are shown.
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indirect readout-mediated relative affinities as an efficient way
to benchmark them.

For our test case, the 434 repressor complex, the detailed
analysis of the elastic energy (Figure 2) and specificity
(Figure 8) profiles reveals differences between the co-crystal
structures of the three operator sequences OR1‚2‚3. However,
in all three cases we find that agreement between the native
and the elastic consensus sequence is confined to the central,
not directly contacted part of the operator. On a qualitative
level, this supports our working hypothesis that strong elastic
optimization in protein–DNA co-crystals is an indicator for
dominant indirect readout in real protein–DNA solution com-
plexes. Our results suggest that twist (7) alone cannot account
for specificity of the 434 repressor. Rather, the effect seems to
due to a coupling of bend, twist, and shear. Furthermore, we
find in our relatively weakly distorted example that sequence
dependent structure plays a larger role for the tuning of binding
affinities than sequence dependent elasticity (Figure 7). Finally,
the comparison of predicted and measured relative binding
affinities identifies theOR3 structure as the best available struc-
tural template for the solution complexes of 434 repressor.

While the computational cost of the present analysis is neg-
ligible, we believe that DNA deformation (free) energies in
protein–DNA co-crystals substantially extend the insights
that can be gained from structural data. To encourage the
application to other systems, we have included the required
Mathematica (33) scripts as Supplementary Data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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