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ABSTRACT

Cyclooxygenase-2 (COX-2) mRNA is induced in
the majority of human colorectal carcinomas.
Transcriptional regulation plays a key role in COX-
2 expression in human colon carcinoma cells, but
post-transcriptional regulation of its mRNA is also
critical for tumorigenesis. Expression of COX-2
mRNA is regulated by various cytokines, growth
factors and other signals. p-Catenin, a key tran-
scription factor in the Wnt signal pathway, activates
transcription of COX-2. Here we found that
COX-2 mRNA was also substantially stabilized by
activating p-catenin in NIH3T3 and 293T cells. We
identified the pB-catenin-responsive element in
the proximal region of the COX-2 3'-untranslated
region (3'-UTR) and showed that B-catenin inter-
acted with AU-rich elements (ARE) of 3'-UTR
in vitro and in vivo. Interestingly, B-catenin induced
the cytoplasmic localization of the RNA stabilizing
factor, HuUR, which may bind to B-catenin in an
RNA-mediated complex and facilitate p-catenin-
dependent stabilization of COX-2 mRNA. Taken
together, we provided evidences for B-catenin
as an RNA-binding factor and a regulator of
stabilization of COX-2 mRNA.

INTRODUCTION

Precise regulation of gene expression is important for normal
cell functions; hence various steps of transcription and
post-transcription may be coupled to coordinately express
target genes (1,2). For example, activation of transcription
and stabilization of mRNA may have similar impacts on
upregulating specific target genes (3). These effects can be
mediated by DNA—protein interactions on regulatory regions,
and RNA-protein interactions on the UTRs of mRNAs.
There are examples of dual-specificity nucleic acid binding

proteins that are important to transcriptional as well as
post-transcriptional regulations (4,5).

B-Catenin is a multifunctional protein that interacts with
many proteins, including the sequence-specific DNA binding
transcription factor TCF and other proteins implicated in
transcription and chromatin remodeling (6). Such promis-
cuous interactions suggest that B-catenin may be involved
in diverse cellular functions (7). For example, it was origi-
nally identified as a cell adhesion protein but later reco-
gnized as a key transcriptional regulator of Wnt signaling.
However, it is not clear at this point whether B-catenin is
also involved in other cellular functions. One way of finding
such novel functions is to identify new interaction partners
for B-catenin.

The signal transduction pathway leading to PB-catenin
activation is as follows (8,9). The scaffolding proteins
adenomatous polyposis coli (APC) and Axin/Axin2 interact
with B-catenin, and glycogen synthase kinase-3 (GSK-3f3)
subsequently phosphorylates [-catenin, which mediates
ubiquitin-dependent proteolysis of [B-catenin (10,11). As
[B-catenin levels rise, it accumulates in the nucleus, where it
activates the transcription of various oncogenic target genes
such as cyclin D1, c-myc and MMP-7 (12-15). Significantly,
mutations of B-catenin in cancer cells are associated with
defects in proteosomal degradation, and the accumulated
B-catenin is localized in the nucleus, especially in colon
cancer cells (16,17). Therefore, since the nuclear functions
of PB-catenin may be critical, finding novel interactions
could provide a clue to how it contributes to tumorigenesis.

Cyclooxygenase-2 (COX-2) is involved in regulating
cellular proliferation, differentiation and tumorigenesis (18).
It participates in the colorectal caricinogenesis pathway, in
which mutation of APC tends to be the initial event (19).
Transcription of COX-2 is induced by the Wnt and Ras
signaling pathways (20). However, mRNA stabilization is
thought to be the major mechanism up-regulating COX-2
expression in colon cancer cells (21). AU-rich elements
(ARE) in the proximal region of the 3’-untranslated region
(3’-UTR) of COX-2 are responsible for rapid decay of the
mRNA and are recognized by a multimeric protein complex
containing HuR and other RNA binding proteins (22,23).
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ARE binding proteins recruit exosome to degrade mRNA
(24). Altered expression of the mRNA stabilizing factor
HuR is believed to be critical for promoting COX-2 expres-
sion in colon cancer cells (25,26).

Here we report an unexpected mechanism by which
B-catenin controls COX-2 gene expression at both the
transcriptional and post-transcriptional level. COX-2 is a
B-catenin target gene that is transcriptionally activated by
Whnt signaling (20). We show here that activated B-catenin
stabilizes COX-2 mRNA and binds to ARE in its 3'-UTR.
Stabilization of COX-2 mRNA is likely to be mediated by
the interaction between P-catenin and HuR. Since increasing
mRNA stability has the same effect as upregulating transcrip-
tion, we suggest that B-catenin-induced mRNA stabilization
could also potentiate the oncogenic effect of B-catenin in
cancer cells.

MATERIALS AND METHODS
Plasmids and reagents

The retroviral vector expressing human S37A [B-catenin was
kindly provided by Dr Jang-Soo Chun (Gwangju Institute of
Science and Technology). Bacterial expression vectors for
recombinant B-catenin and HuR proteins were obtained
from Dr Tsutomu Nakamura (University of Tokyo) and
Dr Yoshikuni Nagamine (Friedrich Miescher Institute),
respectively. The bacterial expression vector for Arm 1-12
was constructed by inserting the armadillo repeat sequence
into the BamHI-Xhol sites of the vector pGEX-5X (Pharma-
cia). The reporter plasmids for the transcrizptional pulse
assays, designated pBBB*Y™ and pBBB“9*? YR were a
gift of Dr Jiahuai Han (Scripps Research Institute). Luciferase
reporters containing COX-2 UTR were kindly donated by
Dr Stephen M. Prescott (University of Utah) and have been
described previously (21). The luciferase reporter for F1 AS
was generated by subcloning the F1 fragment into pGL3
vector using the Xbal site. Anti-HuR monoclonal (3A2) anti-
body was purchased from Santa Cruz, and the anti-B-catenin
monoclonal antibody from Transduction Laboratories.
Lithium chloride (LiCl) and MG132 were obtained from
Sigma.

Cell culture and transient transfection

Mouse NIH3T3 cells, human embryonic kidney 293T, colo-
rectal adenocarcinoma HT-29 cells (American Type Culture
Collection) were cultured in DMEM with 10% FBS and
transfected using lipofectAMINE (Invitrogen). Luciferase
activity was determined using the dual-luciferase assay
system (Promega) according to the manufacturer’s directions,
and measured with a Turner Luminometer TD-20/20.

Preparation of RNA transcripts

To determine the B-catenin binding site, the full-length
COX-2 3'-UTR served as template and was amplified
by PCR using primers containing the T7 polymerase
promoter. The primers for the F1 UTR were forward, 5'-
AGTTAATACGACTCACTATAGGGAAGTCTAATGAT-
CATATT; reverse, 5-AGTCTAGATCACAAGTATGACT-
CCTT. The primers of F2 UTR were forward, 5'-AGGTAA-

TACGACTCACTATAGGGTATTAAGGTGGTGGAGCC;
reverse, 5'-GGTCTAGATTGGTTATTGCTTTATGT. The
primers of F3 UTR were forward, 5'-AGATAATACGAC-
TCACTATAGGGATGACCTCATAAAATACC; reverse,
5'-GATCTAGAGTCTCTTAGCAAAATGGC. The oligo-
nucleotides corresponding to F1-1, F1-2, FI-2 (MT) and
F1-3 indicated in Figure 3A were synthesized by Bioneer
(Korea). For in vitro synthesis of RNA transcripts, template
DNA was incubated in a standard transcription reaction con-
taining [a—32P]—UTP. All the labeled RNA transcripts were
gel purified and quantified by liquid scintillation counting.

Analysis of mRNA decay

NIH3T3 cells transfected with the pPBBB vectors were serum
starved for 24 h, followed by stimulation with 20% fetal
bovine serum. Total cytoplasmic RNA was extracted at inter-
vals for the time-course experiments (27). An aliquot of 1—
2 ng of the DNAse I-treated RNA was reverse transcribed
with Superscript II Reverse transcriptase (Stratagene). Rabbit
B-globin mRNA levels were measured by RT-PCR or real-
time PCR. The primers for pBBB“Y™® were forward, 5'-TA-
GAATTCCTCCTGGGCAACGTGCTG-3'; reverse, 5'-CGT-
CTAGATCAGTGGTATTTGTGAGC-3'. The luciferase
mRNA of pGL3 (Promega) was used in transient transfection
experiments as an internal control and standard. Real-time
PCR was performed with a LightCycler system (Roche).
Reactions were amplified using an LC FastStart reaction
mix SYBR Green I kit (Roche), and quantified with the
LightCycler analysis software (Roche). Relative levels of
B-globin mRNA are expressed as the ratio of Cp to the
internal luciferase control. The primers for the degradation
of endogenous COX-2 mRNA were forward, 5'-TTCAAAT-
GAGATTGTGGAAAAAT-3'; reverse, 5'-AGATCATCTCT-
GCCTGAGTATCTT-3'. The in vitro decay assay was
performed as described (28).

EMSASs and supershift analyses

Cytoplasmic extracts (10 pg) and radiolabeled RNA trans-
cripts were incubated at room temperature for 15 min in a
binding buffer containing 15 mM HEPES (pH 7.5), 10 mM
KCI, 5 mM MgCl,, 0.2 mM DTT and 5% glycerol. Subse-
quently, unbound RNA was digested for 15 min with 10 U
of RNase T1 (Ambion) at 37°C. RNA-protein complexes
were resolved on 6% native polyacrylamide gels. For super-
shift assays, 1 pg of antibody was incubated with each bind-
ing reaction for 30 min on ice before the complexes were
resolved by electrophoresis. To test whether B-catenin binds
directly to the UTR, the labeled RNA was incubated with
GST-fusion proteins and assayed by electrophoretic mobility
shift assay (EMSA) as described (29).

Immunoprecipitation assays

To confirm the RNA-B-catenin complex, NIH3T3 or
HCT116 cells were transiently transfected with the various
luciferase reporter plasmids, and incubated with 1%
formaldehyde (30). Sonicated lysates were immunopreci-
pitated with either normal IgG, or anti-B-catenin antibody.
Pellet materials were subsequently incubated at 70°C for
1 h to reverse the crosslinks, and the RNA was purified
with TRIzol (Invitrogen) and subjected to RT-PCR. The



primers for luciferase were forward, 5'~ACGGATTACCAG-
GGATTTCA,; reverse. 5~-AGGCTCCTCAGAAACAGCTC.
Cytoplasmic and nuclear fractions were prepared as described
previously (31) To test for the endogenous HuR—fB-catenin
complex in whole cell, cytoplasmic, or nuclear extracts,
immunoprecipitation assays were performed after adding
heparin (1 mg/ml) or RNases (RNase A, 5 pg/ml; RNase
T1, 100 U/ml), or without further treatment. Bound proteins
were examined by western blotting.

RESULTS
B-catenin is required for stabilization of COX-2 mRNA

There is much evidence that COX-2 mRNA is regulated
by Wnt signaling and B-catenin overexpression (32-34).
However, there is as yet no direct evidence that COX-2
mRNA expression is regulated by [B-catenin at the post-
transcriptional level. To see whether activated B-catenin
affects COX-2 mRNA stability, we used a transcriptional
pulsing system that allowed the determination of mRNA
decay kinetics without the complication of addin% transcrip-
tional inhibitors (27,35). The pBBB°*? VTR plasmid,
encoding P-globin mRNA bearing the COX-2 mRNA
3'-UTR, was cotransfected into NIH3T3 cells with a plasmid
expressing S37A B-catenin, a stabilized form of B-catenin, or
with the empty vector as a control. The 3-globin mRNA was
transiently transcribed after serum induction of growth-
arrested NIH3T3, and its level was measured by real-time
PCR. A plasmid encoding luciferase mRNA was included
to serve as internal standard. As shown in Figure 1A,
B-catenin expression increased the stability of the B-globin
mRNA, which was relatively unstable in the control vector-
transfected cells. In contrast, B-catenin had little effect on
the stability of the B—%lobin mRNA lacking the COX-2
mRNA 3’-UTR (pBBB*"™)

We next tested whether the accumulation of endogenous
B-catenin leads to stabilize pPBBB“°* YR transcripts. Expo-
sure to LiCl, a GSK-3f inhibitor, or MG132, a proteasome
inhibitor, increased cellular B-catenin (Figure 1B), and
pBBBC9*2 transcripts were indeed  stabilized
(Figure 1C). To investigate whether B-catenin regulates the
stability of endogenous COX-2 mRNA, 293T cells were
transfected with a plasmid expressing S37A B-catenin or trea-
ted with LiCl. Transcription was stopped by actinomycin D,
and the stability of COX-2 mRNA was analyzed by RT-PCR
(Figure 1D). We found that both the expression of B-catenin
and LiCl treatment drastically increased the half-life of
endogenous COX-2 mRNA.

The proximal region of the 3'-UTR is critical for
B-catenin-induced COX-2 mRNA stabilization

To map the regions of the COX-2 3’-UTR responsible for
stabilization we utilized luciferase reporters containing the
full-length COX-2 3’-UTR or various deletions (Figure 2A).
LiCl treatment has no significant effect on luciferase activity
in cells transfected with either the luciferase control (AUTR)
or luciferase lacking the F1 region of the COX-2 3'-UTR
(AF1). In contrast, it increased the luciferase activities
derived from the full-length COX-2 3’-UTR (Full) or the
F1 region (F1), suggesting that the F1 region is responsible
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for the PB-catenin-mediated stabilization of COX-2 mRNA
(Figure 2B).

There are multiple copies of the AU-rich sequence element
(ARE) in the 1455 nt 3’-UTR of COX-2 mRNA. To identify
the cis-acting sequences modulated by B-catenin, we exam-
ined a cell-free mRNA decay system that has proven useful
in mammalian cells (24,28). We synthesized RNA substrates
comprising three distinct regions of the COX-2 3’-UTR (Fl1,
F2 and F3 in Figure 2C). Subsequently, the **P-labeled RNA
substrates were incubated with cytoplasmic extracts from
either vector-transfected or [-catenin-transfected NIH3T3
cell, and their degradation was measured using denaturing
polyacrylamide gels. As shown in Figure 2D, the F2 and
F3 mRNA substrates, which do not contain the ARE region,
were as stable as the GAPDH mRNA, and were not affected
by B-catenin. On the other hand, the F1 mRNA which had a
relatively short half-life was stabilized by cytoplasmic
extracts containing overexpressed f-catenin. Stabilization of
the COX-2 3'-UTR by p-catenin was confirmed using
MG132- or LiCl-treated cytoplasmic extracts (Figure 2E
and F). These results show that the proximal region of the
3/-UTR is critical for B-catenin-induced COX-2 mRNA
stabilization.

The class I AREs in proximal COX-2 UTR are the
[B-catenin-responsive element

Since the F1 region of the COX-2 UTR contains multiple
copies of ARE, we dissected the F1 sequence. AREs are clas-
sified into three groups according to features of their
sequence and their RNA decay characteristics (36,37). The
Fl1 region of the COX-2 3’-UTR contains both class I ARE
with one to three scattered copies of the AUUUA motif and
class II ARE with multiple overlapping copies of that motif.
To further define the B-catenin-responsive sequences in the
F1 region, we further divided the 145 nt of F1 into 40 nt
fragments (Figure 3A) and evaluated their degradation
rates. We found that both the F1-1 (class II) and F1-2
(class I) fragments were unstable, whereas the F1-3 (non-
ARE) fragment was as stable as the control GAPDH
mRNA (Figure 3B). We next tested which RNA substrates
responded to P-catenin-induced stabilization. As shown in
Figure 3C, strong expression of B-catenin stabilized F1-2-
rather than F1-1. Furthermore, mutation of the UUU residues
of AUUUA to CGC in F1-2 (F1-2 MT) completely abolished
the ARE-induced instability. These in vitro decay data indi-
cate that B-catenin is responsible for stabilization of the
class I ARE region of the F1 UTR.

B-Catenin binds to the F1 region of COX-2 3'-UTR

To stabilize COX-2 mRNA [-catenin could either directly
interact with the ARE of COX-2 or indirectly affect other
signaling proteins. To determine whether B-catenin binds
to the COX-2 3/-UTR, RNA-EMSAs were performed with
recombinant B-catenin and radiolabeled RNA probes. The
B-catenin protein was able to complex labeled FI RNA
(Figure 2A), but did not interact with labeled F2 or F3
RNA (data not shown). The specificity of the RNA binding
was also confirmed by competition with excess unlabeled
F1 or non-specific NC RNA (38). To characterize the binding
specificity of B-catenin to COX-2 3/-UTR, other recombinant
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Figure 1. Stabilization of COX-2 mRNA by B-catenin. (A) Real-time PCR analysis of the COX-2 UTR. Cells were co-transfected with the pBBB vector
containing B-globin fused to the 3’-UTR of COX-2 mRNA (pBBBC?X2 UTR) an{ either empty vector or the S37A B-catenin expression vector. Gene expression
was induced by 20% serum, and total cytoplasmic RNA was isolated at different times after serum addition. mRNA stability was determined by measuring
B-globin mRNA levels by real-time PCR. (B) Western blot analysis. Cells were treated with KCI, LiCl (20 mM each) and MG132 (20 uM), respectively, and the
expression of endogenous [-catenin and HuR was determined by western blotting. Alpha-tubulin served as a loading control. (C) The stabilities of pBBBAVTR
and pBBB®OX2 VTR ip cells as (B) were examined by real-time PCR. The data shown are means = SE (n = 3), and are representative of three independent
experiments. (D) RT-PCR analysis of the endogenous COX-2 mRNA. 293T cells were co-transfected with empty vector (Control), the S37A [B-catenin
expression vector or LiCl treatment. Actinomycin D (ActD, 10 pg/ml) was added to the culture medium at time 0, and total RNA was isolated at the indicated
times, and the amount of COX-2 mRNA was analyzed by RT-PCR. GAPDH served as a loading control.

proteins were incubated with labeled F1 RNA. The armadillo Intracellular interaction of B-catenin with F1 RNA

repeats (Arm 1-12) of B-catenin as well as the ARE-binding
HuR protein (26) formed RNA—protein complexes, but the
other proteins did not (Figure 4B). RNA-EMSAs also showed
that the binding affinity (Ky) of Arm 1-12 for F1 RNA was
~25 nM (Figure 4C). As shown in Figure 4D, the specificity
of the RNA binding was confirmed by competition with
excess unlabeled F1 or a B-catenin-specific RNA aptamer
(H. K. Lee et al., manuscript submitted). Moreover, we
found that P-catenin bound to the minimal [-catenin-
responsive element, F1-2, but not to mutant F1-2 (data not
shown). We conclude that B-catenin associates directly with
ARE located in the first 150 nt of the COX-2 3/-UTR.

Since we observed that B-catenin bound to COX-2 3’-UTR
with high affinity in vitro, we tested for the interaction
in vivo by RNA immunoprecipitation assays. LiCl-treated
NIH3T3 cells were transfected with various luciferase
reporters (Figure 2A and Antisense of F1, F1AS) and fixed
with formaldehyde. Subsequently lysates were immunopre-
cipitated with either B-catenin or normal IgG, and bound
RNA was purified and analyzed by RT-PCR. Only the
luciferase mRNA with full-size and F1 UTR were found in
the anti-B-catenin immunoprecipitates (Figure 5A). We
obtained similar results in [-catenin-overexpressing
HCT116 colon cancer cells (data not shown), showing that
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Figure 2. Requirement of the proximal region of COX-2 3/-UTR for B-catenin-dependent stabilization. (A) The reporter construct containing 1455 nt of the
COX-2 3’-UTR (connecting line) together with the luciferase coding region (filled box). AU-rich elements are indicated as vertical lines. (B) Luciferase assay.
Cells were transfected with various luciferase reporters. Luciferase activities were measured after treatment with LiCl or KCI for 24 h. Three independent
experiments were performed. (C) Schematic representation of the locations of the F1, F2 and F3 regions. Vertical lines represent AREs. (D) In vitro RNA
degradation assays to identify the B-catenin-responsive element in the COX-2 3'-UTR. [0-**P]-labeled RNA substrates were incubated with cytoplasmic extracts
from either vector or -catenin-expressing NIH3T3 cells, and the reactions were stopped by adding stop buffer at the indicated times. Processed RNA was
resolved on a 7 M urea/5% acrylamide gel and visualized by autoradiography. (E) In vitro analysis of mRNA decay upon MG132 treatment. Labeled F1 mRNA
was incubated with cytoplasmic extracts from either DMSO (Control) or MG132-treated NIH3T3 cells, and decay was analyzed as in (D). (F) Stabilization of the
F1 UTR by LiCl treatment. Labeled F1 mRNA was incubated with cytoplasmic extracts from either KCI (Control) or LiCl-treated NIH3T3 cells, and degradation

was examined as in (D).

the F1 region in the proximal COX-2 3’-UTR is sufficient for
interaction with cellular B-catenin.

We also carried out supershift assays with cytoplasmic
extracts prepared from vector- or [j-catenin-expressing
NIH3TS3 cells. Figure 5B shows that RNA—protein complexes
were readily detected with both of these cytoplasmic extracts.
Control IgG had no effect on the migration of RNA—protein
complex whereas a prominent slowly migrating band
was detected with anti-HuR antibody, and the intensity of
this supershifted band was stronger when a [-catenin-
overexpressing cytoplasmic extract was used. Moreover,

a supershifted band was also observed when we used
anti-B-catenin antibody, demonstrating that B-catenin was
present in this RNA—protein complex. Since overexpression
of B-catenin promoted the interaction of HuR with F1 RNA
but did not alter the level of HuR (Figure 1B), we tested
whether HuR localization was affected by overexpressing
B-catenin and found that it caused HuR to move from the
nucleus to the cytoplasm (Figure 5C). These data indicate
that overexpressed P-catenin associates with the COX-2 3'-
UTR and induces HuR to translocate to the cytoplasm
where it acts to stabilize COX-2 mRNA.
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Figure 3. Mapping of the B-catenin-dependent stabilizing element in the F1 UTR. (A) Schematic representation of the different F1 UTR probes. ARE sequences
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by autoradiography. (C) RNA substrates were incubated with cytoplasmic extracts from either vector (control) or B-catenin-expressing NIH3T3 cells. mRNA

degradation was examined as in (B).

RNA-dependent interaction of B-catenin and HuR

Since both recombinant 3-catenin and HuR proteins bound to
the F1 region of the COX-2 3’-UTR (Figure 4A), we reasoned
that B-catenin and HuR might interact in vivo and this inter-
action could be related to their binding to COX-2 3’-UTR. To
test this hypothesis, we first examined the cellular locations
of B-catenin and HuR in HT-29 colon cancer cells. Both [3-
catenin and HuR were mostly located in the nucleus
(Figure 6A). Next, the interaction of B-catenin and HuR
was examined by co-immunoprecipitation (co-IP) experi-
ments with different subcellular fractions from HT-29 cells.
As shown in Figure 6B, co-IP with anti-B-catenin as well
as anti-HuR precipitated large amounts of HuR and B-catenin
proteins from the cytoplasmic extract, while these interac-
tions were not readily detectable in nuclear extracts.

We next tested whether the interaction between HuR and
B-catenin was mediated by RNA. It has been reported that
HuR binds to AUFI in an RNA-dependent complex (31).
When we performed IP experiment in the presence of hep-
arin or RNases (Figure 6C) we observed specific disruption
of the protein—protein interaction between HuR and J-
catenin by the RNases but not by heparin. These results
lead us to believe that the interaction between [B-catenin

and HuR occurs in a cytoplasmic RNA—protein complex
that includes COX-2 mRNA.

DISCUSSION

Here we report novel function of B-catenin in the regulation
of mRNA stability by direct interaction to mRNA. We have
shown above that the transcriptional activator B-catenin binds
to the COX-2 UTR and inhibits COX-2 mRNA degradation.
Even though B-catenin is known to bind to many different
proteins, this is, as far as we know, the first report of its direct
binding to nucleic acids. The RNA—B-catenin interaction has
many implications for nucleic acid metabolism. Since RNA
binding proteins are important in various aspects of post-
transcriptional regulation (39), B-catenin may regulate gene
expression in various ways, including affecting mRNA stabil-
ity as shown here.

The functional significance of B-catenin in carcinogenesis
is not necessarily restricted to transcriptional activation of
target gene expression. Stabilization of unstable mRNA by
B-catenin could also have significant impact on the expres-
sion of target mRNAs in cancer cells. It was shown here
that one of the crucial mRNAs, COX-2, was stabilized by
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Figure 4. Specific association of B-catenin with the F1 region of COX-2 mRNA. (A) Specificity of B-catenin binding to RNA. [o-**P]-labeled F1 RNA (80 pM)
was co-incubated with recombinant B-catenin supplemented with unlabeled F1 RNA (F1) or non-specific NC RNA (10-, 50-, 200-fold each). Complexes are
indicated as the arrow. (B) RNA-EMSAs. [0->2P]-labeled F1 RNA was incubated with C-terminal domain of B-catenin (CTD), HuR, Arm 1-12, T-cell factor
(TCF), or GST (200 nM each). (C) The RNA-EMSAs were performed with recombinant Arm 1-12 protein (2.5, 5, 10, 25, 50, 75, 100 and 200 nM), and the
complexes are labeled 1-3. The HuR-F1 complex as control is indicated by an open arrowhead. (D) Specificity of Arm 1-12 binding to RNA. Labeled F1 RNA
was co-incubated with Arm 1-12 supplemented with unlabeled F1 RNA (F1), aptamer (Apt; 10-, 50-, 200-fold each) or F2 RNA (200-fold). Following
incubation, RNA—protein complexes were resolved on 5% native gels and visualized by autoradiography. Input indicates RNA only.

S37A B-catenin in NIH3T3 and 293T cells. In fact, it has
been suggested previously that B-catenin might directly or
indirectly regulate mRNA stability. For example, recent
reports showed that Pitx2, B-TrCP, c-myc and other unstable
mRNAs are stabilized by the Wnt/B-catenin signaling path-
way and VEGF-D mRNA was destabilized by [B-catenin
(3,40,41). Significantly, we have now added COX-2 to the
list of mRNAs stabilized by B-catenin.

Our results suggest multiple effects of B-catenin on COX-2
gene expression. Since transcription and post-transcriptional
processes are coordinated (1,2), B-catenin may also be parti-
cipate in other steps of gene expression. For example, it is
possible that it modulates RNA splicing, and RNA export
or translation in addition to mRNA stability. In fact, it was
previously shown that B-catenin interacts with the FUS/TLS
splicing regulator protein and act as a splicing regulator for
estrogen receptor-B (42). Furthermore, since [-catenin
regulates many transcripts, such post-transcriptional regula-
tion could affect other mRNAs and provide new insights

into the coordinated regulation of multiple target genes by
a protein.

We showed that B-catenin binds to the AU-rich RNA
sequences of the COX-2 UTR, and also interacts with
the RNA binding protein HuR via RNA-mediated interac-
tions. HuR regulates the turnover of many mRNAs. Since
it binds to many oncogenic transcripts, altered expression
of HuR may be an important factor in colon carcinogene-
sis (43). For example, HuR binds to many mRNAs and
regulates cyclin A and cyclin Bl mRNA stabilization
during proliferation (44). However the detailed mechanism
of B-catenin- and HuR-mediated stabilization of COX-
2 mRNA remains to be clarified. We showed here that
B-catenin  may coordinate transcriptional and post-
transcriptional regulation as part of a ribonucleoprotein
complex. It points to the possible existence of a specific
regulatory pathway that conveys a signal affecting both
transcriptional and post-transcriptional changes of target
genes.
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Figure 5. In vivo interaction of COX-2 mRNA with B-catenin. (A) RNA immunoprecipitation assay. NIH3T3 cells co-transfected with various reporters (AUTR,
Full, F1, AF1 as in Figure 2A and Antisense of F1, F1 AS). After formaldehyde fixation, immunoprecipitations were performed with normal IgG or anti-B-catenin
antibody. Bound RNA was extracted from the immune complexes and analyzed by RT-PCR. (B) Supershift assay. Labeled F1 RNA was incubated with
cytoplasmic extracts of NIH3T3 cells containing either empty vector (control) or B-catenin expression in the presence of normal IgG, anti-HuR, or anti-B-catenin
antibodies and analyzed by 5% native gels. The supershifted bands of B-catenin (arrow) as well as of HuR (open arrowhead) are indicated. (C) Cytoplasmic (CE)
and nuclear (NE) extracts were prepared from either normal (Mock) or -catenin-overexpressing (3-cat) NIH3T3 cells and analyzed by western blotting.
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Figure 6. RNA-mediated interaction between B-catenin and HuR. (A) Whole cell (WCE), cytoplasmic (CE) and nuclear extracts (NE) were prepared from HT-29
colon cancer cells and the distributions of B-catenin and HuR were examined by western blotting. (B) Immunoprecipitation assays were carried out using
cytoplasmic and nuclear extracts of HT-29 cells, and either normal IgG, or anti-HuR and anti-B-catenin antibodies, followed by western blotting with the
indicated antibodies. (C) IP reactions on extracts of NIH3T3 cells were performed without further treatment (control), or in the presence of heparin or RNases. IP
complexes were identified by western blotting.
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