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We report that previous polymer chain scission experiments in
strong flows, long analyzed according to accepted laminar flow
scission theories, were in fact affected by turbulence. We reconcile
existing anomalies between theory and experiment with the
hypothesis that the local stress at the Kolmogorov scale generates
the molecular tension leading to polymer covalent bond breakage.
The hypothesis yields a universal scaling for polymer scission in
turbulent flows. This surprising reassessment of over 40 years of
experimental data simplifies the theoretical picture of polymer
dynamics leading to scission and allows control of scission in
commercial polymers and genomic DNA.

bond breakage � drag reduction � polymer dynamics �
Kolmogorov cascade � DNA rupture

Long-chain polymers undergo scission in strong flows because
of the coupling of continuum-scale mechanical and atomic-

scale chemical processes (1, 2). The interactions that connect
these disparate scales are poorly understood. Yet, practically,
polymer chain scission is a principal determinant of the perfor-
mance of operations in many fields, including turbulent drag
reduction for pipelines and ships (3), microfluidic handling of
polymeric fluids (4), and gene therapy using plasmid DNA (5).
Alternatively, chain scission underlies technologies such as the
shotgun sequencing of DNA (6) and the generation of mono-
disperse polymer standards (7). The design and control of
polymer scission in each of these flows is driven by the scaling
relationship between the strength of the flow, as quantified by
the fluid strain rate, and the scission product distribution, as
quantified by the molar mass of ruptured polymer chains. Since
Frenkel (8) published the first treatise on polymer chain scission
more than 60 years ago, this fundamental issue has remained
unresolved.

Scission theories for laminar flow hypothesize that the drag
force, Fd, experienced by the chain induces a tension that breaks
the molecule if it is greater than the critical strength of a polymer
covalent bond. In a purely extensional f low, for example, the
maximum tension is at the midpoint (9). If the extended chain
is modeled as a slender rod, then the tension induced by the drag
is Fd � �VR � ��̇R2 (10). Here � is the solvent viscosity, V is
the relative velocity of the solvent flowing past the rod at its
half-length R and �̇ is the macroscopic fluid strain rate (�V�R).
Two laminar theories identify different regimes depending on
the ratio of polymer relaxation time to flow residence time, the
Deborah number (De). For the De �� 1 regime, such as in
stagnation point flow of a cross-slot, chains are fully stretched
such that R � O(L), where L is the contour length of the chain
(10). For the De �� 1 regime, such as in transient extensional
f lows generated in contraction-expansion geometries, chains
adopt only a partially stretched conformation and R � O(Rg),
where Rg is the radius of gyration (11). These viscous flow
models yield distinct scaling relationships: �̇c � L�2 for De �� 1
and �̇c � L�1 for De �� 1, where �̇c is the critical strain rate for
scission. The difference in scaling exponents is significant be-
cause L is very large for drag-reducing polymers (�20 �m) and
genomic DNA (�40–1,600 �m). In fact, such large-L macro-

molecules are so prone to scission that they tend to rupture even
in the flow generated by a manually operated syringe.

These two prevailing scission theories have been confronted
with experimental data and judged successful (10, 12). Yet, a
number of anomalies remain. First, in laminar flows, both
theories predict that �̇c � ��1 for a given polymer chain.
However, contraction flow experiments in which viscosity was
manipulated have found that �̇c � ��0.25 (12). Second, scission
experiments in converging flows show an unexplained depen-
dence of the inlet diameter on scission strain rate (12). Third,
recent evidence suggesting that the Reynolds number (Re) of the
flow affects the laminar scaling exponents is inconsistent with
the models (13). Fourth, bond strength estimates extracted from
the laminar flow scission models are about two orders of
magnitude lower (12) than recent density functional theory
calculations (2). These anomalies in prior scission data (10, 12,
14–18) are apparent in Fig. 1. Fig. 1 reports the effective laminar
stress for breakage, defined as ��̇c, as a function of steady-state
molar mass (see Methods), here reported as the contour length
L (see Data Analysis).

Results and Discussion
Flow Visualization. Given these anomalies, we questioned the
assumption of laminar flow underpinning previous comparison
between theory and experiment. Although not always discussed
in the original literature, our analysis (Table 1) shows that
scission experiments were conducted over a broad range of Re
(� �Ud��, where U is the mean velocity, d is the geometric
dimension, � is the fluid density, and � is the fluid viscosity)
where the flow may transition to turbulence. To address this
issue, we examined flow field stability in the two most commonly
studied geometries i.e., cross-slot (CS) and contraction–
expansion (CE). Fig. 2 reports f low visualization of hydrody-
namic instabilities in both the CS and CE geometries. We find
that the onset Re for hydrodynamic instability in CS and CE
geometries is 25 and 370, respectively. These values of the onset
Re for inertial instabilities (Re*) agree well with literature
reports for similar flow geometries (19–21) and are consistent
with accompanying pressure drop measurements (data not
shown). A comparison of Re* with the Re generated in chain
scission experiments (see Table 1) suggests that all measure-
ments reported to date have been affected by turbulence.

Scaling Theory for Polymer Chain Scission in Turbulence. Given this
reevaluation, we formulate a simple scaling theory for chain
scission that accounts for fluid turbulence and the effect of
turbulent velocity fluctuations in particular. The interaction of a
polymer chain with such fluctuations is a complex theoretical
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problem; however, good phenomenological descriptions of strain
rate fluctuations in Newtonian homogeneous turbulence (the
Kolmogorov cascade) and wall-bounded flows are available (22).
Recently, the statistics of polymer stretching in isotropic ho-
mogenous turbulence have been studied theoretically for R ��
L (23, 24), and the behavior of polymers in wall-bounded
turbulence has been studied by direct numerical simulation

(25–27). For our purposes, the interaction of extended polymer
chains (R � L) with turbulent velocity fluctuations is of interest
because it is the extended chains that generate the highest
tension, and thereby dominate the steady-state scission distri-
butions reported in the literature and Fig. 1. Moreover, literature
scission experiments have been exclusively conducted in wall-
bounded flows. In such flows, near-wall velocity f luctuations are
scaled on the inner variable u� � ��w��, where u� is the friction
velocity and �w is the wall shear stress. On the other hand, in the
flows’ outer region, the Kolmogorov cascade is operative (28).
Because the bulk of the volumetric f lux in wall-bounded flows is
through its outer region, we first consider interaction of extended
polymer chains with turbulent fluctuations from the scaling
perspective of the Kolmogorov cascade as previously applied to
polymers (28, 29). We later consider scission in the inner region
of wall-bounded flows.

We proceed as in the laminar flow scission theories by
estimating the drag force experienced by the chain. However,
now the drag force of interest is set by the turbulent cascade i.e.,
Fd � ��̇rR2 and �̇r is the strain rate of velocity fluctuations
associated with the length scale r of the Kolmogorov cascade.
The scaling of the strain rate spectrum with r is shown in Fig. 3.
At the largest length scale [r � O(d)] corresponding to the mean
flow, the strain rate is the smallest and is given by �̇d � U�d �
�Re��d2. In the so-called inertial range (d � r � �), the strain
rate �̇r � Ur�r � (�Re��d2)(r�d)�2/3 increases as r decreases
toward �. Here � is the Kolmogorov length scale where energy
is dissipated by viscosity, ur is the velocity scale corresponding to
the length scale r, and Re is based on the mean flow. At r � O(�),
the velocity gradient is homogeneous: �̇� � ���2 � �Re3/2��d2,
where � is the kinematic viscosity. In the above relationship we
have made the common assumptions that the velocity fluctua-
tion scale u� � U, that the largest eddy length scale l � d, and
that the Kolmogorov scale, � � dRe�3/4 (22).

We now consider the interaction of a fully extended test chain
with each spatial scale of the inertial range and estimate the drag
force on the chain, i.e., Fd � ��̇rR2. Because the polymer
extension is fixed (R � L) and strain rate increases as r decreases,
the drag force on the chain increases with decrease in spatial

Fig. 1. Polymer chain scission scaling based on the assumption that the flow
is laminar. Scission theories in laminar flows suggest that data plotted on these
coordinates should yield universal behavior. Effective laminar stress repre-
sents the viscous stress on the chain, assuming that the flow is laminar. PS�CS
and PS�CE represent the classical scaling data for polystyrene (PS) in cross-slot
(CS) and contraction–expansion (CE) flows that were deemed to be in good
agreement with the laminar flow scission theories. The lines denote the best
fits for these data. Also shown are the anomalous experimental data that
probed the effect of solvent viscosity (PS�viscosity, green circles) and geometry
(PS�geometry, black circles) on chain scission. The anomalous geometric effect
is also evident in scission data of DNA molecules in CE geometries of varied
inlet dimensions (labeled d � 63–380 �m). Here �̇c � U�d. The details of the
studies are given in Table 1.

Table 1. Summary of scission experiments

Data set Scission study Geometry d, mm Re Ref.

1 PS�decalin CS 0.30 2.5 	 101 to 1.6 	 103 10, L
2 PS�toluene CS 0.30 1.32 	 103 to 1.32 	 104 10, L
3 PS�decalin CE 0.50 4.53 	 103 to 6.4 	 104 12, L
4 PS�viscosity effect CE 0.50 2.1 	 102 to 2.1 	 105 12, L
5 PS�temperature effect CE 0.50 1.1 	 104 to 1.3 	 105 12, L
6 PS�geometry effect CE 0.35–1.0 2.3 	 102 to 2.4 	 105 12, L
7 PS�various solvents RT 72.5, 9 1.36 	 106 to 2.58 	 106 34, T
8 PEO�water CS 0.50 1.55 	 102 to 3.2 	 103 13, T
9 PEO�50% glycerol CS 0.50 8.0 	 101 to 5 	 102 13, T

10 PEO�water CE 0.50 2.93 	 103 to 3.07 	 103 13, T
11 PEO�water CE 10.9 4.0 	 104 to 2.81 	 105 33, T
12 PEO�water RT 60, 10 7.06 	 104 to 2.19 	 105 *, T
13 PAM�water CE 10.9 4.37 	 104 to 1.93 	 105 33, T
14 PAM�water RT 60, 10 8.47 	 104 to 2.3 	 105 *, T
15 DNA�buffer OJ 0.60 2.11 	 103 16, L
16 DNA�buffer CE 0.063 2.30 	 103 to 7.98 	 103 14, L
17 DNA�buffer CE 0.250 2.9 	 102 to 5.85 	 102 17, L
18 DNA�buffer CE 0.200 1.75 	 103 18, L
19 DNA�buffer CE 0.383 3.7 	 102 to �6.2 	 103 15, L
20 DNA�buffer RT 72.5 1.2 	 106 30, T

PS, polystyrene; PEO, poly(ethylene oxide); PAM, polyacrylamide; CS, cross-slot; CE, contraction–expansion; RT,
rotational turbulent; OJ, opposed jets. L and T in the Ref. column denote studies that were reported to have been
conducted in laminar and turbulent flows, respectively; * denotes current study.
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scale. This behavior is illustrated in Fig. 3A, where both the strain
rate and the drag force scale identically with r. Further, Fig. 3A
shows that the maximum drag force occurs at the Kolmogorov
scale. Now consider how the polymer stretches at the viscous
scale such that its extension is O(L) as shown in Fig. 3B. As R
increases from Rg to L, the drag force increases as R2, just as in
the classical theories, because the strain rate is fixed (�̇ � �̇�) and
the flow is homogeneous at the viscous scale. Both A and B of
Fig. 3 suggest that the drag force experienced by a chain is
maximum when � � O(L), where the polymer chain is fully
extended and the strain rate is the greatest. We test this condition

[L�� � O(1)] in Fig. 3C by calculating L�� (see Data Analysis)
for all of the Table 1 scission experiments. The distribution is
log-normal with mean at L�� 
 3. Encouraged by this result, we
estimate the maximum drag force on the chain at the Kolmog-
orov scale.

Because midpoint scission is observed in turbulence (1, 10, 12,
30), we treat the chain as fully stretched with the drag of a rigid
rod (31) in the homogeneous flow of the viscous scale. The drag
force is then (32),

Fmax � A3/2
	��̇�L2

4ln�L�a�
,

where a is the diameter of the chain and A is an O(1) constant
that incorporates the proportionality of u�, l, and � to the
combinations of the macroscopic quantities U, d, and the kine-
matic viscosity �. The only way in which flow geometry enters the
theory is through its effect on A. Substituting the earlier expres-
sion for �̇� yields

Fmax � A3/2
	�2Re3/2L2

4�d2 ln�L�a�
. [1]

Comparison of Scission Data with Scaling Theory. Eq. 1 contains
parameters that are all experimentally available, except the O(1)
constant A, and thus can be tested against the Table 1 data. To
further increase the data set, we conducted additional scission
experiments in turbulent flows (see Methods) with two different
polymers, poly(ethylene oxide) (PEO) and polyacrylamide
(PAM), and in three different flow geometries, CS, CE, and RT
(rotational turbulent f low geometries that include Taylor–
Couette and rotating disk apparatus flows). Eq. 1 suggests that
plotting the quantity 	�2L2�4�d2ln(L�a) vs. the Re of the flow
will reduce the anomalous scission data of Fig. 1 and other
scission data (13, 30, 33, 34) generated in turbulent flows (listed
in Table 1) to a master curve for a given polymer. The range of
the Fig. 4 data, spanning six decades in the ordinate and four
decades in Re (�102 to 106) for some of the polymers, is sufficient
to stringently test the theoretically derived scaling. Fig. 4 shows
that Eq. 1 successfully correlates these data. The scaling expo-
nent for each of the four polymers, irrespective of the flow
geometry, agrees remarkably well with the theoretical prediction
of �1.5 (see Fig. 4 Insets). Analogously, we also found that when

Fig. 2. Evidence for turbulence in CS and CE geometry. Shown are images of the flow at various Re in the two geometries. Re � 12 (A), 50 (B), 70 (C), 150 (D),
or 370 (E). Flow is laminar in A and D and unstable in B, C, and E. The arrows (in white) indicate the direction of fluid flow. The CS is 500 �m in width and 7 mm
in depth. The CE geometry has identical dimensions as CS with a tapered entrance�exit semi-angle of 7.5°.

Fig. 3. Maximum drag force on a polymer chain in the Kolmogorov cascade.
The red, blue, and purple lines denote the variables: drag force, strain rate,
and polymer length, respectively. (A) Interaction of inertial scales with poly-
mer chain showing that the drag force peaks at r � �. The Inset shows an
illustration of the Kolmogorov cascade. (B) Interaction of polymer chain with
viscous scale. Here the drag force is maximum when R � L. The Inset shows a
chain undergoing stretching from coiled to full extension. (C) Distribution of
L�� for the various scission experiments listed in Table 1.
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	�2Re3/2�4�d2ln(L�a) is plotted against the polymer contour
length (L), all of the four polymers showed a scaling exponent
close to �2 (see Data Analysis).

Thus, Eq. 1 is supported by the Fig. 4 data collected from 20
scission studies pertaining to four polymers in three different
flow types, over a wide range of flow dimension d (63–72,500
�m), Re (25–2.6 	 106) and fluids of varied viscosity and solvent
quality. The simplicity and sufficiency of the result supports its
broad application in diverse areas. We conclude by addressing
additional implications of the theory.

Implications of the Universal Scission Scaling. The successful cor-
relation of Fig. 4 data to Eq. 1 implies that literature reports of
polymer scission are explained by polymer tension generated by
velocity fluctuations at the Kolmogorov scale of turbulent flow.
Such good agreement between theory and experiment leads to
the following surprising implications: (i) polymer scission in
wall-bounded turbulent flows is dominated by behavior in the
outer (turbulent core) region rather than the inner (buffer)
region; (ii) polymer scission in turbulent flows is affected by flow
geometry only to within an O(1) constant; (iii) the Kolmogorov
cascade theory is applicable to the literature scission data, even
though many such experiments were conducted in very small
geometries (�102 �m); (iv) covalent bond strengths can be
extracted directly from the fluid mechanics experiments of Table
1; and (v) scission of polymers in laminar flows is extraordinarily
difficult to achieve. We provide additional tests and discussion
of these implications below.

Relevance to Wall-Bounded Turbulent Flows. All of the scission
experiments reported in Table 1 have been conducted in wall-
bounded flows. Because it is well known that turbulent velocity

fluctuations are greatest near the wall (i.e., buffer region) of such
flows, does an analysis based on turbulent wall scales describe the
Fig. 4 data better than our analysis based on Kolmogorov scales?
We address this question in the following way: We take the wall
shear rate �̇w � u�

2�� as the characteristic scale for near-wall
velocity gradient fluctuations. We assume that near-wall turbu-
lent velocity gradients determine the polymer tensile force in the
same way that the strain rate at the Kolmogorov scale does for
the cascade hypothesis, i.e., Fd � �u�

2L2. To link u� with Re, we
use friction factor–Reynolds number relationships available
from the literature for the wall-bounded flows in question. The
resultant polymer tensile force scaling is Fd � Re
, where 
 varies
from 1.75 to 1.87 depending on the geometry (see Data Analysis).
Recall that for Eq. 1, 
 � 1.5. The data in Fig. 4 are of sufficient
range and quality to discriminate between the wall scale and
Kolmogorov scale hypotheses and to conclude that the latter
mechanism better explains the scission measurements. How then
can we reconcile this result with the fact that turbulent fluctu-
ations in the inner region of wall-bounded turbulence are greater
than in the outer flow where the Kolmogorov cascade is active?
We suggest that scission in the outer region dominates the results
because the volumetric f lux in the inner region of wall-bounded
turbulence is too small to be detected in the overall polymer
molar mass distribution that is reported in scission experiments.
For example, at Re � 104, only 10.2% of the volumetric f lux is
through the inner region of the turbulent boundary layer in pipe
flow. At Re � 105, the inner region volumetric f lux is only 1.0%
of the total. Thus, although the wall-f luctuation-induced scission
is a compelling hypothesis, we are led to the alternative conclu-
sion that the Kolmogorov cascade drives scission in turbulent
flows because it acts in regions of the flow that comprise the bulk
of the volumetric f lux. Direct numerical simulations of polymer

Fig. 4. Universal polymer chain scission scaling in turbulent flows for the four polymers PS (A), PEO (B), PAM (C), and DNA (D) in three different flow geometries.
The lines are the best fits for each of the polymers. The dashed line corresponds to chain scission scaling in laminar flows. The Insets each show a table listing
the scaling exponents for various regimes of Re.
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solutions in wall-bounded flows would be helpful to further
address this question, particularly with regards to the possibility
of polymer modifications to turbulent velocity fluctuations.

Influence of Flow Geometry. According to the Kolmogorov cascade
theory, the small scales of turbulence are universal and inde-
pendent of the mean flow (22). This property of the cascade has
the unexpected implication that polymer scission scaling in
turbulent flows is insensitive to the flow geometry used to
generate turbulence. We find evidence for this intriguing obser-
vation in Fig. 4, because data from the three different flows are
well correlated by the theory. To explore this point further, we
calculate scaling exponents for each geometry irrespective of the
polymer being ruptured (see Data Analysis). We obtain 
 �
�1.26 
 0.09, �1.43 
 0.04, and �1.59 
 0.13 for CS, CE, and
RT geometries, respectively, which are close to the predicted
exponent of 
 � 1.5. Thus, the effect of geometry on scission
scaling is small. As further evidence, we note that the Eq. 1
proportionality constant A varies by no more than a factor of
2.09 
 1.15 among the three flow geometries considered here.
This variability of A is consistent with the expectation that its
value should be of O(1).

Applicability of Kolmogorov Cascade to Scission Data. To validate
Eq. 1 in Fig. 4 we implicitly assumed the Kolmogorov cascade to
be operative in the flows corresponding to Table 1 scission
experiments. Do such classical turbulence ideas apply in the
small geometries and Reynolds numbers characteristic of f low-
induced chain scission? In general, for the cascade theory to be
applicable a separation between the small scales characteristic of
turbulent fluctuations and the large scales characteristic of the
largest eddies and flow geometry is required (22). This separa-
tion of scales is determined by the magnitude of Re. To quan-
titatively address the separation of scales, we computed the
quantity d�� for all of the experimental data of Fig. 4. We find
that d�� � 102 for 97% of the Fig. 4 data, d�� � 103 for 72%
of the data, and d�� � 104 for 39% of the data, suggesting that
the scales are indeed well separated. In addition, the PS and PEO
data were sufficient to extract scaling exponents corresponding
to Re � 103 and Re � 104. The extracted scaling exponents do
not exhibit strong Re functionality (see Insets of Fig. 4).

Bond Strength Estimates. Eq. 1 implies it is possible to estimate
bond strength values for each of the four polymers. We do so, by
equating Fmax of Eq. 1 as the backbone bond strength (assuming
A � 1) and compare results to those of other methods. Our
analysis yields 3.88 
 0.10 nN, 2.30 
 0.22 nN, 4.38 
 0.16 nN,
and 5.86 
 0.18 nN for PS, PEO, PAM, and DNA bond
strengths, respectively. The estimates for the synthetic polymers
are in good agreement with C–C and C–O bond strengths of 4.1
and 4.3 nN, respectively, derived from density functional theory
calculations (2). The DNA bond strength estimate agrees well
with that of bond potential calculations, which predict a strength
in excess of 5 nN (35) and resolves the discrepancy, highlighted
by Bustamante et al. (35), between DNA bond strengths ob-
tained from flow experiments and bond potential calculations.

Polymer Chain Scission in Laminar Flows. With the availability of a
scaling for chain scission in turbulence we now assess the conditions
under which polymer chains break in laminar flows. We plot in Fig.
4 the predicted scission curve for laminar flows, i.e.,

Fmax �
	��̇cL2

4ln�L�a�
�

	�2ReL2

4�d2 ln�L�a�
,

by using the bond strength values obtained from turbulent
scission scaling. Note that the polymer tensile force in laminar
flows has a different dependence on Re compared with turbulent

scission scaling. Let us consider the possibility of breaking a PEO
chain in water by using a flow geometry with d � 500 �m. In such
a scenario the laminar curve in Fig. 4B indicates that it is
impossible to break PEO chains in laminar CS and CE flows
because it requires chains with L � 150 �m (or molar mass
�20 	 106 g�mol), which are not practically available. If the
viscosity of the solvent were increased 100 times, then a chain of
length at least 1.2 �m (or molar mass of 1.6 	 105 g�mol) is
required to achieve scission in laminar CS and CE flows.
However, in this case the characterization of scission products of
chains with L � 1.2 �m in such viscous solvents becomes
technically challenging. Fig. 4 can be used to derive similar
conclusions for other polymers. Therefore it is extraordinarily
difficult to simultaneously break and characterize polymer mol-
ecules in laminar flows. Thus, our turbulent scission analysis will
suffice for the vast majority of flows encountered in practice.

Conclusions
Our findings show that the smallest scales of turbulence and the
largest scales of polymer dynamics dominate the relationship
between the strength of the flow and the longest polymer chain
that can remain unbroken in that flow. Because both processes
display universal behavior, the physics of polymer chain scission
is thus itself explained by the universal properties of Eq. 1. The
availability of this scaling is immediately useful to obtain scis-
sion-induced bounds on maximum drag reduction in turbulent
flows. Further, this universal scaling would be a benchmark to
assess flow-induced scission of polymer aggregates, which have
been shown to provide enhanced turbulent drag reduction
relative to single polymer chains (36). In conjunction with the
bond strength estimates, the theory can be applied to design flow
geometries and conditions that will break polymer chains into
predictable sizes.

Methods
Flow Field Characterization. Aqueous poly(ethylene glycol) (20,000
g�mol) solutions of various concentrations were used to generate
Newtonian fluids of various viscosities (6–328 mPa�s) to cover a
wide range of Re. Flow was visualized through a stereomicro-
scope by seeding a Newtonian fluid with mica flakes (�0.1
g�liter) and recording the images by using a CCD camera.

Scission Experiments in Turbulent Flow. Two methods exist to
determine scaling for polymer chain scission. In the first, the
critical strain rate for polymer scission is identified by varying the
flow rate and tracking the onset of change in molar mass of a
monodisperse polymer solution (10, 12). In the second, polydis-
perse polymer solutions are repeatedly passed through the flow
geometry at a fixed flow rate until the molar mass distribution
reaches a steady state (13). The steady-state molar mass distri-
bution represents the population of the chains that survived the
scission process at the given strain rate in the flow. The limiting
weight-average molar mass (Mws) corresponding to the steady-
state molar mass distribution is identified as the critical scission
molar mass corresponding to the strain rate in the experiment.
In our experiments we used the second method. The details of
the experiments are given elsewhere (13). To plot data consis-
tently between the two methods, we report in Figs. 1 and 4 the
contour length corresponding to Mws. For scission data obtained
by using the first method, Mws is half of the reported initial
(undegraded) molar mass.

The details of the CS and CE flow geometries are given
elsewhere (13, 33). The Taylor–Couette cell was custom-made
with the radius of the inner cylinder, d1 � 6 cm, the height
between the rotating cylinder and the bottom of the outer
cylinder, d2 � 0.5 cm, and the gap between the inner and outer
cylinder, d3 � 1 cm. The Re in this geometry is always based on
d1; however the integral length scale is based on either d2 or d3,
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depending on whether the geometry is Taylor–Couette or ro-
tating disk apparatus, respectively. The rotation of the inner
cylinder was varied from �800 to 3,000 rpm. Critical scission
molar masses of PEO and PAM solutions were obtained by
constant rotation of the inner cylinder for �3 h.

Data Analysis. (i) To estimate L for PS, PEO, and PAM we used
L � 0.82nlo (37), where n is the number of backbone bonds (�
noMws�Mo, where no is the number of backbone bonds per
monomer and Mo is the monomer molar mass) and lo is the C–C
bond length (1.54 Å). For DNA we used 0.33 �m�kb to estimate
L. We used 1 nm as the diameter of the chain for synthetic
polymers (38) and 2 nm for DNA (31).

(ii) The Kolmogorov scale � (in Fig. 3C) was estimated by
using the relationship � � dRe�3/4. The values of L and � for all
of the reported experiments in Table 1 range from 0.21 to 43.3
�m and from 0.05 to 33 �m, respectively. The submicrometer
viscous scale in some of the experiments results from the use of
large Re (�2,000) in geometries with small dimensions
(�100 �m).

(iii) The scaling exponents reported for the various polymers
in the Insets of Fig. 4 were obtained by fitting a power law to the
data irrespective of the flow geometry. To extract the scaling
exponents for the three flow geometries we normalized the data
by the polymer bond strength to account for polymer variation

and fit the resulting data to a power law. The mean of the
prefactors associated with the resultant power-law fits is re-
ported as the proportionality constant A. The errors from fitted
values reported throughout the paper are SEM.

(iv) When we plot 	�2Re3/2�4�d2 ln(L�a) vs. L, we find the
scaling exponents for PS, PEO, PAM, and DNA to be �2.25 

0.12, �1.93 
 0.13, �1.95 
 0.15, and �2.24 
 0.09, respectively.
The range of L and the number of scission data points (N) used
to generate the scaling exponents for the four polymers in Fig.
4 are the following: PS, L � 0.2–24.2 �m, N � 34; PEO, L �
4.0–43.3 �m, N � 42; PAM, L � 6.8–25.3 �m, N � 16; and
DNA, L � 0.5–28.1 �m, N � 15.

(v) The generalized friction factor law for Newtonian turbu-
lence is f � Re��, where f � u�

2�U2 and � is 0.13, 0.16, 0.22, and
0.25 for turbulent flow in Taylor–Couette (39), f lat plate (22),
rotating disk (40), and pipe (22) geometries, respectively. The
tension for a polymer chain in the inner region of the turbulent
flow is then Fd � �u�

2L2 � �2Re2��L2��d2.
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