
TRPC3 and TRPC6 are essential for angiotensin
II-induced cardiac hypertrophy

Naoya Onohara1, Motohiro Nishida1,
Ryuji Inoue2, Hiroyuki Kobayashi1, Hideki
Sumimoto3, Yoji Sato4, Yasuo Mori5,
Taku Nagao4 and Hitoshi Kurose1,*
1Department of Pharmacology and Toxicology, Graduate School of
Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka,
2Department of Physiology, School of Medicine, Fukuoka University,
Jonan-ku, Fukuoka, Japan, 3Medical Institute of Bioregulation, Kyushu
University, Higashi-ku, Fukuoka, Japan, 4National Institute of Health
Sciences, Setagaya, Tokyo, Japan and 5Laboratory of Molecular Biology,
Department of Synthetic Chemistry and Biological Chemistry, Graduate
School of Engineering, Kyoto University, Kyoto, Japan

Angiotensin (Ang) II participates in the pathogenesis of

heart failure through induction of cardiac hypertrophy.

Ang II-induced hypertrophic growth of cardiomyocytes is

mediated by nuclear factor of activated T cells (NFAT), a

Ca2þ -responsive transcriptional factor. It is believed that

phospholipase C (PLC)-mediated production of inositol-

1,4,5-trisphosphate (IP3) is responsible for Ca2þ increase

that is necessary for NFAT activation. However, we demon-

strate that PLC-mediated production of diacylglycerol

(DAG) but not IP3 is essential for Ang II-induced NFAT

activation in rat cardiac myocytes. NFAT activation and

hypertrophic responses by Ang II stimulation required the

enhanced frequency of Ca2þ oscillation triggered by mem-

brane depolarization through activation of DAG-sensitive

TRPC channels, which leads to activation of L-type Ca2þ

channel. Patch clamp recordings from single myocytes

revealed that Ang II activated DAG-sensitive TRPC-like

currents. Among DAG-activating TRPC channels (TRPC3,

TRPC6, and TRPC7), the activities of TRPC3 and TRPC6

channels correlated with Ang II-induced NFAT activation

and hypertrophic responses. These data suggest that DAG-

induced Ca2þ signaling pathway through TRPC3 and

TRPC6 is essential for Ang II-induced NFAT activation

and cardiac hypertrophy.
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Introduction

Regulators of cardiac function such as vasoactive neurotrans-

mitters and hormones activate phospholipase C (PLC) and

thereby generate inositol-1,4,5-trisphosphate (IP3) and diacyl-

glycerol (DAG). These agonists elevate the concentration of

cytoplasmic free Ca2þ ([Ca2þ ]i) in cardiomyocytes, which

induces positive inotropic effects on the heart and activates

several transcriptional pathways that lead to cardiac hypertro-

phy (Wilkins and Molkentin, 2004; Woodcock and Matkovich,

2005). NFAT is one of the transcriptional factors regulated by

[Ca2þ ]i (Crabtree and Olson, 2002). The relevance of the NFAT

signaling pathway to cardiac hypertrophy is underscored by

the observation that cardiac-targeted transgenic animals ex-

pressing constitutively activated forms of either calcineurin

or NFAT produced ventricular hypertrophy (Molkentin et al,

1998; Taigen et al, 2000). The Ca2þ -sensitive serine/threonine

phosphatase (calcineurin) primarily regulates NFATactivity by

rapid dephosphorylation of NFAT proteins and their transloca-

tion to the nucleus. A drop in nuclear Ca2þ deactivates

calcineurin and allows one of several NFAT kinases to rephos-

phorylate NFAT, causing it to leave the nucleus and thereby

inactivating transcription (Timmerman et al, 1996; Dolmetsch

et al, 1997). Therefore, a sustained elevation of [Ca2þ ]i is

required for NFAT-dependent transcription.

The importance of agonists that activate PLC for cardiac

hypertrophy is well established (Molkentin and Dorn, 2001).

Many lines of evidence have shown that stimulation of PLC-

linked G protein-coupled receptors, such as a1-adrenergic

receptor (Maruyama et al, 2002), Ang II receptor (Nishida

et al, 2005) and endothelin receptor (Arai et al, 2003), induce

hypertrophic growth of rat cardiac myocytes. More clinically

relevant, hypertrophied hearts induced by volume overload

are commonly characterized by high levels of IP3-generating

agonists such as Ang II (Dostal et al, 1992; Sadoshima

et al, 1993). Numerous studies have demonstrated the need

for sustained or periodic increases in [Ca2þ ]i to cause the

nuclear localization of NFAT (Dolmetsch et al, 1997; Tomida

et al, 2003). In nonexcitable cells, IP3 is generally accepted

to function as a mediator of sustained Ca2þ responses

(Timmerman et al, 1996; Dolmetsch et al, 1997). The sus-

tained Ca2þ signaling requires the store-operated Ca2þ chan-

nel (SOC), which opens in response to depletion of

intracellular stores through IP3 receptor (IP3R). Therefore,

it is currently believed that Ca2þ entry through SOC regulates

NFAT translocation. In the heart, however, the expression

level of IP3R is much lower than that of ryanodine receptor

(Moschella and Marks, 1993). Voltage-dependent L-type Ca2þ

channel and ryanodine receptor function as the major source

of Ca2þ for normal Ca2þ -induced Ca2þ release of excitation–

contraction (E–C) coupling, but many reports do not support

the idea that the increase in [Ca2þ ]i through E–C coupling

between L-type Ca2þ channel and ryanodine receptor is

coupled to NFAT activation (Wilkins and Molkentin, 2004).

A possible source of Ca2þ for activation of calcineurin is

Ca2þ influx through transient receptor potential (TRP) pro-

teins that are involved in store-operated Ca2þ entry

(Clapham, 2003). Upregulation of canonical transient receptor

potential (TRPC) proteins is recently reported to contribute to
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the development of cardiac hypertrophy (Seth et al, 2004).

Other groups reported that TRPM7 regulates Mg2þ homeo-

stasis, and TRPM6 and TRPM7 are differentially regulated by

Ang II in vascular smooth muscle cells (He et al, 2005; Touyz

et al, 2006). However, it is still unknown whether TRP

channels contribute to receptor-stimulated activation of calci-

neurin-NFAT pathway in the heart. In this study, we investi-

gated the mechanism of how Ang II stimulation induces the

sustained Ca2þ signaling leading to NFAT activation and

hypertrophic growth of rat neonatal cardiomyocytes.

Results

Essential role of DAG in Ang II-induced NFAT activation

and cardiac hypertrophy

We first examined whether IP3 or DAG is involved in Ang II-

induced NFATactivation in rat neonatal cardiomyocytes. As it

has been reported that pressure overload- and Ang II-induced

cardiac hypertrophy are attenuated in NFAT4 (NFATc3)-null

mice (Wilkins et al, 2002), the translocation of NFAT4 was

determined in this study. Stimulation of cardiac myocytes

with Ang II for 30 min increased the maximal nuclear

predominant fluorescence of GFP-fused amino-terminal re-

gion of NFAT4 protein (GFP-NFAT4) (Figure 1A–C). The Ang

II-induced NFAT translocation was completely suppressed

by the expression of DAG kinase b (DGKb), an enzyme that

decreases the cellular DAG level by converting DAG to

phosphatidic acid. Treatment with RHC80267, a DAG lipase

inhibitor, significantly increased the Ang II-induced nuclear

translocation of GFP-NFAT4. However, treatment with xesto-

spongin C, an IP3R blocker, did not affect the Ang II-induced

translocation of GFP-NFAT4 to the nucleus. To directly inhibit

IP3-mediated signaling, we expressed the ligand-binding

region of type 1 IP3R (IP3-sponge) (Uchiyama et al, 2002).
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Figure 1 Essential role of DAG in Ang II-induced cardiomyocyte hypertrophy. (A) Nuclear translocation of GFP-NFAT4 by Ang II stimulation.
A portion of cells was treated with RHC80267 (30mM) or xestospongin C (XestC, 20mM) for 30 min before the addition of Ang II (100 nM), and a
portion of cells was infected with DGKb for 48 h before Ang II stimulation. (B, C) Quantification of nuclear predominant fluorescence of GFP-
NFAT4 after Ang II stimulation. (D, E) Effects of DGKb, RHC80267, and XestC on the increase in NFAT-dependent luciferase activity by Ang II
stimulation for 6 h. The fold activation was calculated by the values of untreated cells set as 1. (F–H) Effects of DGKb and GFP-IP3-sponge on
Ang II-induced actin reorganization (F), protein synthesis (G), and BNP expression (H). Scale bar¼ 20mm. *Po0.05, **Po0.01 versus control
or LacZ-expressing cells.
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The Ang II-induced transient increase in [Ca2þ ]i (or Ca2þ

release) was completely suppressed by the treatment with

xestospongin C and by the expression of IP3-sponge but not

DGKb (Supplementary Figure S1), suggesting the efficient

inhibition of IP3-mediated Ca2þ signaling. The Ang II-

induced increase in NFAT-dependent luciferase reporter acti-

vity was suppressed by DGKb, but not by xestospongin C

and IP3-sponge (Figure 1D and E). Treatment with RHC80267

promoted the Ang II-induced NFAT activation (Figure 1E).

These results suggest the involvement of DAG in Ang II-

induced NFAT activation. We also examined the involvement

of DAG in Ang II-induced hypertrophic responses. Expression

of DGKb, but not IP3-sponge, completely suppressed Ang II-

induced hypertrophic responses, such as actin reorganization

(Figure 1F), protein synthesis (Figure 1G), and expression of

brain natriuretic peptide (BNP) (Figure 1H). These results

suggest that DAG, but not IP3, is essential for Ang II-induced

NFAT activation and hypertrophic responses of neonatal

cardiomyocytes.

Involvement of Ang II type 1 receptor, Gaq, and PLC

in Ang II-induced NFAT activation

In contrast to the absence of extracellular Ca2þ

(Supplementary Figure S1A), myocytes showed spontaneous

increases in [Ca2þ ]i in the presence of extracellular Ca2þ .

Treatment with Ang II induced the transient increase in

[Ca2þ ]i followed by sustained oscillatory increase in

[Ca2þ ]i (Figure 2A; the former can more clearly be seen

in Supplementary Figure S1A). The Ca2þ oscillation repre-

sents a spontaneous activity of myocytes, and Ang II stimula-

tion increased its frequency (Supplementary Figure S1C). The

Ang II-induced Ca2þ response and NFAT activation were

greatly suppressed by U73122, a PLC inhibitor, but not by

U73343, an inactive analog of U73122 (Figure 2A–C). Thus,

PLC primarily regulates Ang II-induced Ca2þ signal genera-

tion. The Ang II-induced translocation of GFP-NFAT4 was

suppressed by CV11974, an Ang II type 1 receptor (AT1R)

blocker, but not by PD123319, an AT2R blocker (Figure 2D).

These results indicate that AT1R-mediated PLC activation is
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Figure 2 Involvement of AT1R, Gaq, and PLC in Ang II-induced NFATactivation. (A–C) Effects of U73122 and U73343 on Ang II-induced Ca2þ

responses (A), translocation of GFP-NFAT4 (B), and NFAT activation (C). (A) Effects of U73122 and U73343 on the increases in the frequency
of Ca2þ oscillation during 5 min Ang II stimulation. The digital images were obtained every 1 s. (D) Effects of CV11974 and PD123319 on
Ang II-induced NFAT translocation. Cells were treated with U73122 (5 mM), U73343 (5mM), CV11974 (CV, 5 mM), or PD123319 (PD, 5 mM) for
30 min before the addition of Ang II (100 nM). (E) Effects of PTX, GRK2-RGS, p115-RGS, and GRK2-ct on Ang II-induced NFAT translocation.
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involved in Ang II-induced NFAT4 activation. We next

examined which G proteins are involved in Ang II-induced

NFAT activation. It has been generally believed that Gaq

plays an important role in agonist-induced cardiac hyper-

trophy (Molkentin and Dorn, 2001). To examine the involve-

ment of Gaq, we expressed regulator of G protein signaling

(RGS) domain that is B200 amino acids, specifically binds

GTP-bound form of Ga and accelerates GTPase activity. When

RGS domain is expressed in cells, it competes with activated

form of Ga for endogenous effectors and accelerates turn-off

reaction of Ga. Therefore, RGS domain can work as a specific

inhibitor of Ga. As expected, the expression of a Gaq-specific

RGS domain of G protein-coupled receptor kinase 2 (GRK2-

RGS) completely suppressed the Ang II-induced translocation

of GFP-NFAT4 (Figure 2E). However, the expression of a

Ga12/13-specific RGS domain of p115RhoGEF (p115-RGS) did

not affect the Ang II-induced translocation of GFP-NFAT4.

Pertussis toxin (PTX) and carboxyl terminal region of GRK2

(GRK2-ct), a bg subunit of G protein (Gbg)-sequestering

polypeptide, did not inhibit the Ang II-induced translocation

of GFP-NFAT4 (Figure 2E). Thus, these results support the

evidence that agonist-induced Ca2þ -dependent NFAT activa-

tion is predominantly regulated by Gaq, but not by Ga12/13,

Gi or Gbg in cardiomyocytes.

Requirement of Ca2þ influx through L-type Ca2þ

channels and nonselective cation channels in

Ang II-induced NFAT activation

It has been reported that DAG induces Ca2þ influx through

activation of cation channels (Hofmann et al, 1999; Clapham,

2003). As the Ang II-induced periodic increase in [Ca2þ ]i

likely results from enhanced spontaneous activity of myo-

cytes (which are dependent on extracellular Ca2þ ; see

above), and these were suppressed by DGKb (Supple-

mentary Figure S1), we next examined whether Ca2þ influx

is involved in DAG-mediated responses. Treatment of cardiac

myocytes with Ang II or with a DAG derivative, 1-oleoyl-2-

acyl-sn-glycerol (OAG), increased the nuclear translocation

of GFP-NFAT4 and NFAT activity, both of which were

almost completely suppressed by the voltage-dependent

Ca2þ channel blocker nitrendipine and a receptor-activated

cation channel (RACC) inhibitor SK&F96365 (Figure 3A–C).

As OAG-induced NFAT activation was also completely

suppressed by cyclosporine A, a calcineurin inhibitor

(Figure 3C), DAG increases NFAT activity through calcineurin

activation. These results suggest that RACC and Ca2þ influx

through L-type Ca2þ channel mediate Ang II- or DAG-

induced NFAT activation.

Ang II activates DAG-sensitive cation channels

in cardiac myocytes

To directly demonstrate that Ang II activates DAG-sensitive

RACC, whole-cell patch-clamp experiments were performed.

In quasi-physiological ionic conditions, administration of Ang

II into the bath activated inward currents at �80 mV, which

were further enhanced by RHC80267 (Figure 4A and B).

These currents were completely abolished by N-methyl-D-

glucamine substitution for all external cations (data not

shown), and showed an outward-rectifying property with

the reversal potential of ca. 0 mV (1.071.0 mV, n¼ 6),

when Csþ was intracellularly dialyzed via patch pipette

and TTX (3 mM) and nitrendipine (1 mM) were added into
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Kþ-free external solution to block voltage-dependent Kþ ,

Naþ , and L-type Ca2þ channels, respectively (see inset in

Figure 4C). Administration of OAG (25 mM) also activated

inward currents showing indistinguishable properties from

those activated by Ang II, whereas application of myo-IP3

(10 mM) in the internal solution was unable to activate any

discernible currents by itself (data not shown). These results

collectively suggest that Ang II activates DAG-sensitive non-

selective cation currents in cardiomyocytes via an IP3-inde-

pendent pathway, which bears considerable resemblance to

heterologously expressed TRPC channels.

In the next step, we examined Ang II-induced changes in

membrane potential by using the current-clamp technique,

since the treatment with valinomycin, a Kþ ionophore,

which causes inactivation of voltage-dependent channels

via stabilization of membrane potential (Linares-Hernandez

et al, 1998), completely suppressed the Ang II-induced trans-

location of GFP-NFAT4 (Figure 3A and B), and in general, the

activation of RACC causes membrane depolarization (Large,

2002). As expected, membrane potential recording from

single myocytes with current-clamp mode clearly demon-

strated that Ang II increased the frequency of action poten-

tials, which eventually led to continuous burstic firing

superimposed on concomitant sustained depolarization

(22.275.6 mV, n¼ 5) (Figure 4D). It is noteworthy that the

time course of these effects is very similar to that observed for

the enhanced frequency of Ca2þ oscillations induced by Ang

II (see above).

Properties of DAG induced membrane depolarization

in rat cardiac myocytes

Current-clamp recordings were technically little feasible to

monitor the membrane potential for a long period of time,

because of rhythmical contractions of myocytes evoked by

Ang II. To circumvent this problem, we adopted a voltage-

sensitive fluorescent probe DiBAC4(3). After DiBAC4(3) enters

the cells, it binds to cellular proteins and membrane lipids.

Then, DiBAC4(3) enhances fluorescence. Because of its slow

dissociating nature, DiBAC4(3) can only detect slow cumula-

tive changes in resting potential rather than rapid changes in

membrane potential generated by action potential. Ang II

stimulation gradually increased the fluorescence intensity

of DiBAC4(3) (Figure 5A and B), indicating the shift of

membrane potential to positive (BACzkó et al, 2004). The
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averaged changes in membrane potential induced by Ang II

were estimated to be B15 mV. Treatment with RHC80267

enhanced the Ang II-induced increases in the fluorescence

intensity of DiBAC4(3) (Figure 5C). These results indicate that

DAG generated by Ang II stimulation shifts the membrane

potential of cardiac myocytes more positively. DAG also

activates other signaling molecules including protein kinase

C (PKC). PKC is known to potentiate the extent of L-type

Ca2þ channel activation, and both OAG and phorbor 12-

myristrate 13-acetate (PMA) have been reported to increase

the channel open probability in rat cardiomyocytes

(Guinamard et al, 2004). However, treatment with PMA did

not increase the fluorescence intensity of DiBAC4(3) (Figure

5A and B) and OAG-induced translocation and activation of

NFAT were not affected by bisindolylmaleimide, a selective

PKC inhibitor (Supplementary Figure S2). It is possible that
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Figure 5 Changes in membrane potential through RACC activation by DAG. (A) Representative time courses of changes in Ang II-, OAG-, or
PMA-induced F/F0 of DiBAC4(3) fluorescence from time course experiments. Cells were stimulated with Ang II (1mM), OAG (25mM), PMA
(1mM), or KCl (10 mM). F0 means the initial value of fluorescence. (B) Maximal changes in resting membrane potential calculated from the
changes in DiBAC4(3) fluorescence intensity during 15 min drug treatment. For the in vivo calibration of the membrane potentials, the KCl-
induced maximal changes in fluorescence were fitted to the theoretical potentials obtained from Nernst equation, and then the changes in
membrane potential by Ang II stimulation was calculated based on the fitting fomula. (C) Effects of RHC80267 on the concentration-dependent
changes in resting membrane potentials induced by Ang II stimulation. (D) Involvement of RACC in Ang II-induced increases in the resting
membrane potential. Cells were treated with SK&F96365 (SKF, 10mM), nitredipine (Nit, 1mM), or xestospongin C (XestC, 20mM) for 30 min
before the addition of Ang II. **Po0.01 versus Ang II stimulation of control cells. (E) Effects of SK&F96365 (SKF), nitrendipine (Nit), and
xestospongin C (XestC) on Ang II-induced Ca2þ responses. The digital images were obtained every 1 s during 0–3 min under basal conditions
and during 25–28 min after Ang II stimulation. (F) Number of Ca2þ spikes was normalized to per minute. **Po0.01 versus Ang II stimulation
of control cells.
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the metabolites of DAG work as mediators for NFAT translo-

cation. However, treatment with arachidonic acid (AA) or

phospholipase A2 (PLA2) inhibitors did not affect Ang II-

induced NFAT translocation (Supplementary Figure S2).

These results suggest that PKCs and DAG metabolites do

not participate in Ang II-induced depolarization and NFAT

translocation. The Ang II-induced increases in the fluores-

cence intensity of DiBAC4(3) were completely suppressed by

SK&F96365, but not by nitrendipine and xestospongin C

(Figure 5D).

We next examined whether periodic increase in [Ca2þ ]i

is regulated by RACC. The myocytes showed spontaneous

Ca2þ oscillations in the presence of extracellular Ca2þ (top

panel in Figure 5E). The frequency of Ca2þ oscillations was

increased by Ang II stimulation and this was suppressed by

SK&F96365 and nitrendipine, but not by xestspongin C

(middle and bottom panels in Figure 5E and F). These results

support the idea that DAG generated by Ang II-induced PLC

activation causes membrane depolarization through RACC

activation and thereby secondarily activates L-type Ca2þ

channel, leading to increased frequency of Ca2þ oscillations.

Requirement of TRPC3 and TRPC6 in Ang II-induced

membrane depolarization

TRPC proteins are thought to be molecular candidates for

RACC (Clapham, 2003). We found the expression of at least

five TRP canonical (TRPC) mRNAs (TRPC1, TRPC3, TRPC4,

TRPC5, TRPC6, and TRPC7) in rat neonatal cardiomyocytes

by RT–PCR analysis (data not shown). Recent reports have

demonstrated that three TRPC channels (TRPC3, TRPC6, and

TRPC7) are activated directly by DAG (Hofmann et al, 1999;

Clapham, 2003). Thus, we next examined which DAG-sensi-

tive TRPC protein is involved in Ang II-induced NFAT activa-

tion. We overexpressed TRPC3, TRPC6, or TRPC7, and

examined the Ang II-induced changes in membrane potential

with DiBAC4(3) (Figure 6A and B). Among three TRPC

proteins, Ang II-induced increases in the fluorescence inten-

sity of DiBAC4(3) were significantly enhanced by the expres-

sion of TRPC3 and TRPC6 but not by TRPC7 (Figure 6B),

although the latter enhanced OAG-induced [Ca2þ ]i increases

to the same extent as the former two did (Supplementary

Figure S3). These results indicate that TRPC3 and TRPC6, but

not TRPC7, likely regulate the Ang II-induced membrane

depolarization. This conclusion was further corroborated by

siRNA-mediated knockdown of TRPC3 (siRNA 1397, 1992,

and 2043) and TRPC6 (siRNA 1609 and 1786) in the cardio-

myocytes; this procedure decreased the expression level of

endogenous TRPC3 and TRPC6 proteins without affecting

other TRPC proteins (Figure 6C–F), and simultaneously

caused significant suppression of Ang II-induced increases

in the fluorescence intensity of DiBAC4(3) (Figure 6G). Taken

together, the above results strongly suggest that DAG-

mediated activation of TRPC3 and TRPC6 channels contri-

butes to the enhanced Ca2þ oscillation by Ang II via their

membrane depolarizing actions.

In addition, siRNA silencing of TRPC3 and TRPC6 also

significantly suppressed Ca2þ entry-mediated [Ca2þ ]i eleva-

tion induced by the addition of Ca2þ into the bath after Ang II

stimulation (Supplementary Figure S3). Thus, some role of

direct Ca2þ entry via TRPC3/TRPC6-associated pathway

cannot completely be excluded in the Ang II-enhanced

Ca2þ oscillation.

Requirement of TRPC3 and TRPC6 in Ang II-induced

NFAT translocation and hypertrophic responses

We next examined whether TRPC3 and TRPC6 are involved

in Ang II-induced hypertrophic responses. Treatment with

siRNAs of TRPC3 and TRPC6 significantly suppressed Ang II-

induced NFAT translocation (Figure 7A and B). Furthermore,

both TRPC3 and TRPC6 siRNAs suppressed Ang II-induced

actin reorganization and protein synthesis (Figure 7C and D).

We further examined the involvement of TRPC6 in Ang II-

induced cardiomyocyte hypertrophy by using two dominant

negative TRPC6 mutants (Hofmann et al, 2002; Hisatsune

et al, 2004). Expression of TRPC6-D(N) and TRPC6-3A

significantly suppressed Ang II-induced NFAT activation,

actin reorganization, and protein synthesis (Supplementary

Figure S4). These results suggest that TRPC3 and TRPC6 play

a critical role in Ang II-induced hypertrophic responses in rat

neonatal cardiomyocytes.

Discussion

This study reveals the role of DAG in Ang II-induced NFAT

activation and hypertrophic responses. DAG produced by Ang

II-induced PLC activation directly activates TRPC3 and

TRPC6, and the resulting cation (Naþ , Ca2þ ) influx changes

membrane potential to positive, leading to activation of

voltage-dependent L-type Ca2þ channel possibly through

the generation of action potential. The increase in Ca2þ

influx through L-type Ca2þ channel can activate calci-

neurin/NFAT pathway and hypertrophic responses in rat

neonatal cardiomyocytes (Figure 8).

The physiological role of TRPC was first identified in the

vascular smooth muscle cells (Inoue et al, 2001). In the

vascular system, activation of TRPC6 contributes to mem-

brane depolarization and regulates myogenic tone of resis-

tance arteries (Large, 2002; Welsh et al, 2002). In the present

study, we demonstrated that TRPC3 and TRPC6 activated

by DAG contributes to the shift of membrane potential

and subsequent Ca2þ signal generation through voltage-

dependent Ca2þ channel in cardiac myocytes. The role of

DAG-induced TRPC3 and TRPC6 activation in membrane

depolarization has been reported in vascular smooth

muscle cells (Reading et al, 2005; Soboloff et al, 2005). The

novel finding of the present study is to characterize the

pathophysiological significance of TRPC3 and TRPC6 in

Ang II-induced hypertrophic responses of the heart.

We cannot determine the subtype(s) of TRPC proteins

activated by Ang II from the I–V relationship of native

RACC, as inward current activated by Ang II was too small

(Figure 4). Previous report has shown that fulfenamate

inhibits TRPC3 but enhances TRPC6 channel activity (Inoue

et al, 2001). The Ang II-induced inward current was slightly

inhibited by flufenamate (data not shown). However, the

similar behavior of currents to the present study was reported

in TRPC3/C6-co-expressing HEK293 cells (Maruyama et al,

2006). TRPC3-like currents were observed by coexpression of

TRPC3 and TRPC6. As Ang II-induced responses were inhib-

ited both by siRNAs of TRPC3 and TRPC6 (Figures 6 and 7),

we speculate that TRPC3 and TRPC6 form heterotetramers to

regulate DAG-sensitive native cationic currents in cardiac

myocytes.

In our hands, the expression of TRPC7 did not enhance

Ang II-induced membrane depolarization (Figure 6B). This
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may be explained by differential spatial organization and

dynamics in the receptor-transduction systems (Delmas

et al, 2002). As OAG-induced increases in [Ca2þ ]i, but

Ang II-induced shift of membrane potential, was not

enhanced in TRPC7-expressing cells (Supplementary Figure

S3, Figure 6B), Ang II signaling microdomain may contain

TRPC6 and TRPC3, but not TRPC7. This idea is supported by

the reports that stimulation of AT1R activates TRPC6 (Large,

2002; Winn et al, 2005).

Previous report suggested that capacitative Ca2þ entry

contributes to the nuclear translocation of NFAT and hyper-

trophy in cardiomyocytes (Hunton et al, 2002). In contrast

with the present study, they showed that IP3-mediated store

depletion triggers the activation of SOC and activates hyper-

trophic responses. Although we cannot explain the discre-

pancy between their report and the present study, we clearly

demonstrated that xestospongin C or IP3-sponge did not

affect Ang II-induced changes in fluorescence intensity of

DiBAC4(3), NFAT activation, and hypertrophic responses

(Figures 1 and 5D). We also confirmed that the application

of high concentration of IP3 did not activate whole-cell

currents (data not shown). In addition, treatment with
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caged-IP3 did not affect the localization of GFP-NFAT4 upon

UV irradiation, although caged-IP3 induced a marked in-

creases in [Ca2þ ]i (Supplementary Figure 5). We observed

that the treatments with thapsigargin and ionomycin induce

NFAT activation through store-operated Ca2þ influx.

However, Ang II-stimulated increase in [Ca2þ ]i through IP3-

mediated Ca2þ release is 25–30% of those induced by

thapsigargin and ionomycin treatment. This IP3-mediated

increase may not be enough for the activation of SOC.

These results suggest that IP3-mediated Ca2þ signaling,

including SOC, is not responsible for Ang II-induced NFAT

activation.

Whole-cell current experiments revealed that the mem-

brane currents were activated more than 1 min after Ang II

stimulation (Figure 4A). However, the maximal shift of

membrane potential was achieved about 2 min after Ang II

stimulation (Figure 5A). The distinct delay may be explained

by DAG metabolism, as RHC80267 enhanced Ang II-induced

inward current (Figure 4B). The steady-state DAG lipase

activity may regulate the time to elevate DAG concentration

required for the activation of whole-cell currents and sub-

sequent changes in membrane potential.
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Growing evidence has indicated the involvement of L-type

Ca2þ channels in the induction of cardiac hypertrophy (Lubic

et al, 1994, 1995; Whitehurst et al, 1999; Liao et al, 2005).

The role of L-type Ca2þ channels in excitation-transcription

coupling is well established in the nervous system

(Dolmetsch et al, 2001, 2003). Calmodulin is reported to be

critical for conveying the Ca2þ signal to the nucleus

(Dolmetsch et al, 2001). As calmodulin also regulates calci-

neurin activity, calmodulin may convey the signal to the

nucleus in the cardiovascular system in a similar manner

to the nervous system.

While this study is in review process, Bush et al (2006)

reported that TRPC channels are involved in hypertrophy

through pathological calcineurin/NFAT signaling. They

showed that TRPC3 expression is upregulated in mice with

pathological hypertrophy. We demonstrated that TRPC3 and

TRPC6 mediate hypertrophic responses of neonatal myocytes

by Ang II stimulation. Thus, the upregulated TRPC channels

in vivo may enhance receptor-stimulated hypertrophy

through the mechanism that we have demonstrated in this

study.

In summary, we demonstrated for the first time that PLC-

generated DAG has a pathophysiological role in activation of

TRPC3 and TRPC6, and TRPC3/6 mediates NFAT-mediated

hypertrophic responses through L-type Ca2þ channel.

Materials and methods

Materials, plasmid construction, and cell cultures
AT1R blocker CV11974 was provided from Takeda Chemical
Industries Ltd (Osaka, Japan). PTX, SK&F96365, caged-IP3, and
cPLA2 inhibitor were purchased from Calbiochem. Valinomycin,
cyclosporine A, U73122, U73343, AA, PACOCF3, myo-IP3, TTX, and
PD123319 were from Sigma. Fura2/AM was from Dojindo.
Collagenase, Liberase (enzyme 3), and Fugene 6 were from Roche.
Alexa Fluor 594-phalloidin and DiBAC4(3) were from Molecular
Probe. Nitrendipine was from Wako. The cDNA coding DGKb
(KIAA0718) was obtained from Kazusa DNA Research Institute. The
cDNAs coding mouse TRPC3, TRPC6, and TRPC7, and anti-TRPC7
antibody were prepared as described (Inoue et al, 2001; Nishida
et al, 2003). Anti-TRPC6 and anti-TRPC3 antibodies were from
Alomone. Mouse TRPC6-3A and TRPC6-D(N) were constructed
according to the previous reports (Hofmann et al, 2002; Hisatsune
et al, 2004). The cDNA coding IP3-sponge was cloned from mouse
brain (Uchiyama et al, 2002), and GFP-IP3-sponge was constructed
in pEGFP-C1 vector (Clontech). Isolation of rat neonatal cardio-
myocytes was described (Nishida et al, 2000).

Production of adenoviruses, infection, and transfection
Recombinant adenoviruses of GFP-NFAT4, HA-tagged DGKb, GFP-
DGKb, wild-type TRPC6, TRPC6-3A, TRPC6-D(N), and GFP-fused
IP3-sponge (GFP-IP3-sponge) were produced by the method of He
et al (1998) with a slight modification. Other adenoviruses were
prepared as described previously (Nishida et al, 2000, 2005; Arai
et al, 2003). Cells were infected with adenovirus(es) at 100 MOI for
48 h. Small interference RNAs (250 nM) were transfected with
lipofectamine 2000 for 72 h.

Measurement of NFAT activity
Measurement of NFAT activity was performed as described
previously (Fujii et al, 2005). At 2 h after adenoviral infection in
serum-free medium, cardiomyocytes (1�106 cells) plated on 24-
well dishes were transiently cotransfected with 0.45 mg pNFAT-Luc
and 0.05mg pRL-SV40 control plasmid, using Fugene 6. For
measuring the translocation of GFP-NFAT4, cells (1�106) plated
on glass-bottom 35 mm dishes were infected for 48 h with
adenovirus coding GFP-NFAT4 at 100 MOI. After Ang II stimulation
(100 nM) for 30 min, the localization of GFP-NFAT4 was determined
with a Laser Scanning Confocal Imaging System (Carl Zeiss
LSM510) as described (Fujii et al, 2005).

Measurement of [Ca2þ ]i and membrane potential
The intracellular Ca2þ concentration ([Ca2þ ]i) of cardiomyocytes
was determined as described (Arai et al, 2003; Nishida et al, 2005).
Briefly, cells (1�106) were plated on gelatin-coated glass-bottom
35 mm dishes and were loaded with 2.5mM fura-2/AM at 371C for
30 min. For measurement of cell membrane potential, cells were
loaded with 1.5 mM DiBAC4(3) at 371C for 30 min. The fluorescence
intensity of DiBAC4(3) was measured at an excitation wavelength
of 488 nm with a video image analysis system (Aquacosmos,
Hamamatsu Photonics). The peak changes (DF/F0) of DiBAC4(3)
fluorescence intensity were defined as values obtained by subtract-
ing the basal fluorescence intensity (F0) from the maximal intensity
during 19 min Ang II treatment.

Measurement of the expression of TRPC proteins
Cardiomyocytes (3�106 cells) plated on six-well dishes were
directly harvested with 2� SDS sample buffer. The protein samples
were fractionated by 8% SDS–PAGE gel and then transferred onto
PVDF membrane. The expression of endogenous TRPC proteins
was assessed by Western blotting using anti-TRPC antibodies. To
examine the involvement of TRPC3 and C6, knockdown experi-
ments using siRNAs were performed (sequences of siRNAs used
in this study were presented in Supplementary Table 1). We used
Stealth (Invitrogen) siRNA sequence to eliminate nonspecific
responses by siRNA. Transfection was performed by lipofectamine
2000.

Measurement of hypertrophic responses of cardiomyocytes
Measurement of cardiomyocyte hypertrophy was performed
as described (Maruyama et al, 2002). Briefly, 24 h after infection,
cardiomyocytes were stimulated with Ang II (100 nM) for 48 h.
The cells were washed, fixed, and then stained with Alexa
Fluor 594-phalloidin to visualize actin filaments. Protein synthesis
was measured by [3H]leucine incorporation. After cells were
stimulated with Ang II (100 nM) for 18 h, [3H]leucine (1 mCi/ml)
was add to the culture medium and further incubated for 6 h. The
incorporated [3H]leucine was measured using liquid-scintillation
counter.

Electrophysiology
Single neonatal rat cardiac myocytes plated on thin coverslips for
1–2 days (3�10 mm; Matsunami, Japan) were used for patch-clamp
experiments. The details of patch-clamp experiments are described
elsewhere (Shi et al, 2004). Internal solution used for the whole-cell
variant of patch clamp; Kþ-internal solution (mM): 140 Kþ , 4 Naþ ,
2 Mg2þ , 144 Cl�, 2 EGTA, 2 ATP, 10 HEPES or Csþ -internal solution
(mM): 140 Csþ , 2 Mg2þ , 20 Cl�, 2 SO4

2�, 120 aspartate, 2 ATP,
5 EGTA (2 Ca2þ added), 10 HEPES, and 10 mM myo-IP3. For current-
clamp recordings, normal external solution and Kþ -internal
solution of the same composition as used for whole-cell voltage-
clamp experiments were used. All experiments were performed at
25–281C with the aid of a temperature control unit (Warner
Instruments) to facilitate the response to Ang II.

Statistical analysis
The results are shown as means7s.e.m. All experiments were
repeated at least three times. Mean values were compared with
control by Student’s t-test (for two groups) or one-way ANOVA
followed by Dunnett’s t-test (for three or more groups).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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