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Lead Toxicity and Nutritional

Deficiencies
by Orville A. Levander*

Under appropriate conditions, deficiencies of certain minerals and vitamins as well as high intakes of
dietary fat increase the toxicity of a given dose of lead in experimental animals. The severity of lead
poisoning can also be increased by the consumption of either deficient or excessive levels of protein.
Mineral deficiencies appear to have some of the most profound effects on lead toxicity, since the conse-
quences of plumbism can be exaggerated by feeding diets low in calcium, phosphorus, iron, zinc, and, in
some cases, copper. Evidence for an antagonism between lead and nutritional levels of selenium is
inconclusive. Vitamin E deficiency and lead poisoning interact to produce an anemia in rats that is more
severe than that caused by either treatment alone. Lead apparently exerts a pro-oxidant stress on the red
cell, thereby causing its accelerated destruction. One of the biochemical mechanisms of lead poisoning
may be the disruption of normal membrane architecture, thereby leading to peroxidative damage.
Epidemiological surveys have suggested a negative correlation between the poor nutritional status of
children with regard to calcium and the concentration of lead in blood. Other examples of potential
interactions of mineral status and lead poisoning in humans include the hypothesized hazards of soft water
to public health in areas with lead plumbing and the possible role of mineral deficiencies in the etiology of
pica. Experimental studies have shown that in some situations combined nutritional deficiencies can have

an additive effect in potentiating lead toxicity.

Introduction

Toxicologists are becoming increasingly aware of
the fact that nutritional status has a profound effect
on the response of an organism to a given dose of a
poisonous substance. This is especially true in the
case of lead poisoning, the severity of which is in-
fluenced by a wide variety of nutrients (/=5). The
importance of dietary factors in determining the de-
gree of lead poisoning is emphasized by the obser-
vation of Morrison et al. (6) that the dietary content
of certain major minerals often had greater effects
on the toxicity and tissue content of lead than did a
doubling of the dietary lead content itself. Thus, one
cannot talk about the relative toxicity of this or that
level of lead exposure without knowing the nutri-
tional status of the organism involved.

This review summarizes certain recent data con-
cerning lead toxicity and nutritional deficiencies,
with a discussion of new work documenting a re-
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lationship between vitamin E deficiency and lead
poisoning. Also, a novel hypothesis implicating a
possible pro-oxidant effect as a mechanism of lead
toxicity is presented.

General Considerations

In the following sections are described several
experiments in nutritional toxicology that have been
carried out with laboratory animal models. Many of
these studies are somewhat unrealistic in that se-
vere nutritional deficiencies and/or very high doses
of lead were used. Why scientists often resort to
such drastic experimental conditions has been dis-
cussed elsewhere (5). Such experiments are ex-
tremely difficult to extrapolate to humans who are
likely to be suffering from multiple marginal nutri-
tional deficiencies and low level exposures to sev-
eral heavy metals simultaneously. Nonetheless, re-
search with animal models is useful because it al-
lows one to establish specific effects of particular
nutrients and toxicants. In this review, the rele-
vance of the animal data to possible human health
problems is pointed out wherever possible.
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Macronutrients
Protein

Several early experiments amply demonstrated
that the toxicity of lead can be increased by feeding
diets low in protein (7, 8). More recently, Der and
associates (9) showed that rats fed low protein diets
and poisoned with lead suffered marked retardation
of growth and reproduction and increased incidence
of infection. However, as pointed out by Mahaffey
(10), inappropriate lead dosage may have con-
founded these studies. Barltrop and Khoo found
that high as well as low protein diets elevated the
lead content of certain tissues (3). The practical sig-
nificance of these studies is that while protein defi-
ciency may accentuate lead toxicity, protein excess
may also, so the answer to lead exposure is not to
consume high levels of dietary protein in the form of
‘*health food’’ supplements or otherwise.

Fat

Barltrop discovered that lead absorption is de-
pendent upon the quantity and kind of dietary fat
). For example, increasing the corn oil in the diet
from 5 to 40% resulted in 7- to 14-fold increases in
the lead content of various tissues. Decreasing the
dietary fat from 5 to 0% had no effect on lead ab-
sorption. In animals fed fats with different contents
of various fatty acids, butterfat caused the greatest
increases in lead absorption whereas fats containing
large proportions of polyunsaturated fatty acids
(rapeseed and sunflower oils) had little effect. No
satisfactory explanation was available to account
for these different effects. The practical conse-
quences of increased butterfat consumption for in-
dividuals exposed to lead would seem to be clear,
but Barltrop cautioned that ‘*although the enhanced
absorption associated with butterfat would seem to
be of particular relevance to the normal human diet,
further studies are required for a more detailed
evaluation of the effects of individual fatty acids.”

Quarterman et al. also found that the degree of
lead absorption varied with the type of dietary fat
and showed that lecithin, mixed bile salts, and, to a
lesser extent, choline stimulated lead uptake (/7).
They suggested that the stimulating effect of crude
dietary fat on lead absorption may be due partly to
the phospholipids contained therein and partly to
the stimulation of bile flow which would add phos-
pholipids and bile salts to the lumen contents. Rats
with cannulated and exteriorized bile ducts did not
absorb a significant portion of an oral dose of
radiolead. Others have shown that the bioavailabil-
ity of phospholipid bound lead is similar to that of
lead acetate (/2).
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Miscellaneous Dietary Components

Barltrop ¢) found no effect of low and high fiber
diets (0 and 12% cellulose, respectively) on the ab-
sorption of lead by rats in short-term experiments
but cellulose may not behave in the same way as
fiber that occurs naturally in animal or human diets.
Alginates are well known to decrease the absorption
of strontium by children (/3), but these materials
either increased (¢) or had only a small effect (/4) on
the absorption of lead by rats and had no effect (/5)
on the absorption of lead by humans. Pectin added
at 1% of the diet elevated blood lead levels in 2-day
experiments with rats (4), but calcium pectate given
at 10% of the diet markedly lowered blood lead
levels of rats after 2 weeks (/6). Sodium phytate fed
at 1% of the diet had no effect on lead absorption by
rats (4). Dietary lactose is thought to stimulate the
intestinal absorption of calcium and magnesium by
infants (/7), but Barltrop reported that addition of
10% lactose to their control diet had no effect on
lead absorption in rats (¢). Tannic acid had a pro-
tective effect against lead poisoning in mice (/8),
but the tannates in tea have also been shown to
interfere with iron absorption (/9). Iron status is
important in determining an individual’s ability to
resist the toxic effects of lead (see next section on
minerals).

Minerals

Calcium

The interaction of calcium and lead was pointed
out in 1926 by Aub et al. (20), who noted that the
‘lead stream’’ follows the "‘calcium stream’’ and
other early workers amply confirmed this relation-
ship 21, 22). More recently, Six and Goyer demon-
strated that feeding a low calcium diet markedly
increased the susceptibility of rats to the effects of
lead toxicity (23). The lead-poisoned rats on the low
calcium diet suffered elevated body burdens of lead,
more severe anemia, increased urinary excretion of
d-aminolevulinic acid, and a higher incidence of
renal intranuclear inclusion bodies. A dose-
response study showed that rats fed a high calcium
diet developed renal inclusion bodies only when
they were given 200 ug Pb/ml of drinking water,
whereas rats fed a low calcium diet developed in-
clusions when given as little as 12 ug Pb/ml (24).

Although the metabolic interrelationship of lead
and calcium has been the subject of numerous in-
vestigations, the mechanism by which low dietary
calcium affects lead metabolism is still not com-
pletely understood (25). Barton et al. (26) demon-
strated that different levels of intraluminal calcium
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decreased the absorption of test doses of lead from
ligated loops of small intestine in a dose-related
manner. The mechanism of this effect presumably
was a competition between lead and calcium for
mucosal acceptor ligands. These results confirm
those of Barltrop and Khoo, who found that in-
creased levels of calcium in perfusate media de-
creased the transfer of lead across ligated gut loops
(27). Meredith et al. showed that oral calcium ad-
ministered immediately before lead was highly ef-
fective in decreasing lead absorption (28). How-
ever, Barton et al. observed that manipulation of
dietary calcium had no significant effect on lead ab-
sorption (26). Rather, calcium-deprived rats had de-
creased excretion and thus increased body retention
of lead. This observation agrees with the work of
Quarterman and Morrison (29), who noted that the
release of lead already incorporated into the skele-
ton as a result of previous lead dosing was inhibited
by the subsequent feeding of diets low in calcium.
The physiological mechanism whereby low calcium
diets increase lead retention is not known, but
Goyer speculated that the site of action may be the
kidney (25).

The effect of dietary phosphate on lead metab-
olism and its interaction with calcium has been
studied by several workers. Barltrop and Khoo
showed that halving the recommended level of
phosphate increased lead uptake by rats in short-
term experiments but to a slightly lesser degree than
halving the calcium (27). On the other hand, Quar-
terman and Morrison found that feeding 33 and 70%
of the recommended levels of calcium and phos-
phate, respectively, caused similar increases in lead
retention in long-term studies (29). Both groups
agreed that feeding diets low in both calcium and
phosphate resulted in roughly additive effects on
lead uptake or retention. Quarterman and Morrison
also demonstrated that diets low in phosphate re-
duced the inhibition by diets low in calcium of the
release and excretion of lead already incorporated
into the carcass. These workers found that dosing
with vitamin D increased the absorption of lead by
vitamin D-depleted rats and therefore suggested
that the effects of calcium and phosphate on lead
absorption could be partially accounted for by
changes in the concentration of calcium binding
protein in the intestinal mucosa. Barton et al. (26),
however, suggested that lead absorption appeared
to be mediated primarily by a second mucosal pro-
tein of higher molecular weight that was not depen-
dent on vitamin D.

The metabolic interaction of lead and calcium has
several practical ramifications. At one time, indus-
trial hygienists hoped that increasing the dietary
intake of calcium of workers in lead industries by
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providing them free milk might give partial protec-
tion against lead toxicity (25). But more recent work
has shown that milk has no effect (28, 30) or may
actually increase lead absorption (3/). Possibly the
high fat and protein content of milk might coun-
teract the influence of calcium (3). Lead-calcium
interactions are of interest also in that a significant
negative correlation has been reported between
dietary calcium intake and the concentration of lead
in the blood of children (32, 33). Some nutrition
surveys have indicated that certain population
groups of children apt to be exposed to lead are also
likely to be deficient in calcium (2). Whether the
consequences of subclinical lead poisoning are
greater in such individuals remains unanswered.

The lead-calcium relationship may also have im-
plications with regard to the hypothesized public
health hazards of drinking soft rather than hard
water. The plumbosolvency of soft water is well
established (34), and more recent work has shown
that giving rats hard water or distilled water con-
taining calcium at a concentration similar to that in
hard water decreases the absorption of a concomi-
tant oral dose of lead (28). Thus, people living in
soft water areas appear to be in double jeopardy
concerning lead poisoning, since such water not
only dissolves more lead from lead plumbing but
also fails to provide any protection against absorp-
tion of lead by the gastrointestinal tract. Water per
se may also play an important role in lead absorp-
tion: Barltrop found that rats fed liquid diets con-
taining lead in solution had four times as much lead
in their blood as rats fed powdered diets containing
lead in the solid form (35).

Another aspect of the influence of calcium on
lead metabolism was reported by Jacobson and
Snowdon (36), who showed that calcium-deficient
monkeys failed to recognize the *‘presumed aver-
sive effects’’ of ingesting lead-containing solutions.
The animals continued to ingest relatively high
amounts of lead until dietary calcium levels were
restored to normal. These workers suggested that
subclinical calcium deficiency may cause lead pica
in children. Snowden later reported that deficien-
cies of zinc or magnesium also caused increased
lead ingestion by rats (37), thus discounting a
specific effect of calcium and suggesting rather
generalized mineral deficiency as a possible factor
in producing lead pica. However, in the latter study
the control group was fed a crude laboratory chow
type diet, whereas the deficient groups apparently
were fed synthetic purified diets. Thus, there were
several differences in the characteristics of the diets
fed the control and deficient groups so that the dif-
ferences in lead ingestion observed between these
groups are not necessarily the result of changes in
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only one dietary factor.

A tragic consequence of the similarity of lead and
calcium metabolism is the recently reported case of
severe lead poisoning in a film and television actress
who took a “‘health food'’ supplement prepared
from animal bone prescribed by her physician as a
dietary calcium supplement (38). Unfortunately, the
meal was derived from the bones of old horses and
was contaminated with 60 to 190 ppm of lead. The
patient diagnosed her condition herself after several
physicians had been unable to do so, apparently
because of their low **index of suspicion’’ regarding
human lead intoxication.

Iron

As in the case of calcium deficiency, lead toxicity
is accentuated in iron-deficient rats. Iron deficiency
caused increased body retention of lead and in-
creased urinary excretion of §-aminolevulinic acid
(39). Several hematopoietic effects were noted in
the iron-deficient lead-poisoned rats such as de-
pressed hematocrits, elevated reticulocyte counts
and a more severe hypochromic, microcytic
anemia. The mechanism by which iron deficiency
potentiates lead toxicity is not clear, but there are
several metabolic pathways in which an iron/lead
interaction could occur. For example, lead is known
to inhibit heme biosynthesis at many different steps
40, 41). Also, Kaplan et al. suggested that these
two metals might compete directly for specific
erythrocyte binding sites (42). Vanderkooi and
Landesberg (43) found that cytochrome c isolated
from liver mitochondria of lead intoxicated rats
lacked iron. They suggested that **mistakes’’ may
sometimes be made in lead poisoning such that this
hemeprotein is synthesized without iron, perhaps in
a way similar to the production of zinc protopor-
phyrin in either lead-poisoned or iron-deficient pa-
tients (44). Recently, Ragan has demonstrated a
five-fold increase in the absorption of lead in rats
when body-iron stores were reduced but before
frank iron deficiency was manifested (45).

The possible practical implications of iron defi-
ciency in human lead poisoning have been com-
mented upon several times (2, 46), for the children
that are most apt to be exposed to lead are also
likely to suffer from iron deficiency. In fact, one
physician has stated (47) that he believes that
‘there are very few children with anemia due to
lead intoxication alone’’ and that iron deficiency is a
common complicating factor in pediatric lead
poisoning. However, it must be pointed out that
Angle et al. 48) found that administration of the
usual dose of oral iron to children with mild iron
deficiency appeared to increase lead absorption.
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Thus, additional investigation is needed before any
large scale iron supplementation trials are begun in
an attempt to minimize the incidence of lead
poisoning in children. A role for iron deficiency in
human pica has been proposed (¢9), but Snowdon
found no support for this idea in experiments with
iron-deficient rats (37).

Zinc and Copper

Cerklewski and Forbes (50) showed that increas-
ing dietary zinc from 8 to 200 ppm in lead-poisoned
rats decreased lead concentrations in tissues, uri-
nary excretion of §-aminolevulinic acid, and inhibi-
tion of §-aminolevulinic acid dehydratase activity in
the kidney. This antagonistic effect of zinc on lead
was thought to be due to its interference in lead
absorption since zinc did not affect urinary lead
excretion and injected zinc had no effect on lead
toxicity. These authors felt that the effect of zinc on
lead absorption was not likely due to formation of a
zinc-lead complex of low solubility. Rather, they
hypothesized that zinc and lead competed for simi-
lar binding sites on a metallothionein-like protein in
the intestine responsible for metal transport. In-
teractions between zinc and lead are possible be-
yond the level of the gastrointestinal tract, how-
ever, since zinc added in vitro or given in vivo has
been shown to activate the enzyme §-amino-
levulinic acid dehydratase and to prevent the inhi-
bition of this enzyme by lead (5/, 52). In fact, con-
cern was expressed that in workers exposed to both
zinc and lead the zinc might activate the enzyme
enough to mask the excessive lead burden of the
body (53). Some researchers have concluded that so
many metals affect §-aminolevulinic acid dehydra-
tase that its activity may be of doubtful value in
screening large populations for increased lead ab-
sorption (54).

Cerklewski and Forbes (55) also found that
supplementary dietary copper did not lessen the se-
verity of lead poisoning but rather exaggerated it.
Their evidence included increased renal lead con-
centrations and increased urinary excretion of §-
aminolevulinic acid. In contrast, Klauder and Pe-
tering (56) noted that many of the characteristics of
the anemia due to lead poisoning are similar to those
of the anemia due to copper deficiency and postu-
lated that lead may induce copper deficiency and
thus interfere with iron metabolism and utilization.
The discrepancy in the results obtained by these
two groups was thought to be due to differences in
length of exposure to lead and to differences in the
dietary regimens employed. More work is needed to
establish the role of copper status in lead poisoning.

The possible significance of zinc and copper nu-
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triture in human lead poisoning is still to be deter-
mined, but over two-thirds of the self-selected diets
analyzed in a recent survey contained less than
two-thirds of the recommended nutritional allow-
ance for zinc and copper (57). Thomasino et al. (58)
have suggested that zinc supplementation may be a
useful adjunct to chelation therapy for lead toxicity.

Selenium

As pointed out by Ganther (59), Wagner found no
evidence for selenium antagonizing lead in rats,
either in chronic or acute toxicity experiments (60).
Similarly, Stone and Soares reported that there was
no significant interaction of lead and selenium in
Japanese quail since selenium had no effect on the
reduced red cell §-aminolevulinic acid dehydratase
caused by lead poisoning (6/). Levander et al. found
that excess dietary selenium partially protected vi-
tamin E-deficient rats against lead poisoning, but
the levels of selenium needed were toxic in them-
selves (62). Cerklewski and Forbes showed that
selenium was mildly protective against the toxic
effects of lead at low levels but exaggerated lead
toxicity at excessive levels (63). Rastogi et al. ob-
served that toxic levels of selenium counterba-
lanced toxic levels of lead in rats as judged by
growth rate, food consumption, and §-amino-
levulinic acid dehydratase and P-450 enzymic ac-
tivities (64). Levander and Argrett, however, noted
that injecting rats with lead acetate had no effect on
the short-term metabolism of an injected dose of
sodium selenite (65). Bell et al. found that feeding
250 ppm lead had minor effects on chicks with some
indication that lead aggravated selenium deficiency
signs (66). Thus, although current data do not allow
complete definition of the scope of the interaction of
lead and selenium, present indications suggest that
the nature of the interaction is not nearly as pro-
found as those of mercury and selenium (67), cad-
mium and selenium (68), or arsenic and selenium
69).

Vitamin E
Vitamin E and Lead Toxicity

The first suggestion that vitamin E might have a
protective effect against lead toxicity was made in
1954 by de Rosa (70), who found that vitamin E
decreased the coproporphyrinuria and anemia in
rabbits suffering from subacute lead poisoning.
Some 20 years later, Bartlett et al. observed that
vitamin E deficiency increased the anemia and
basophilic stippling caused by lead in rabbits (7/).
Beginning in 1975, Levander and associates pub-
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lished a series of papers that related lead poisoning
and vitamin E. The initial paper showed that lead
poisoning caused a profound anemia, splenome-
galy, and increased red blood cell mechanical
fragility in vitamin E-deficient rats (72). Lead
poisoning per se caused a lesser anemia and
splenomegaly in vitamin E-supplemented rats but
had no effect on red cell mechanical fragility. In
nonpoisoned rats, vitamin E deficiency alone had
none of these effects. A pronounced reticulocytosis
in the lead-poisoned vitamin E-deficient rats indi-
cated that the anemia in these animals was not due
to impaired red cell production but rather was the
result of increased red cell destruction. The in-
creased mechanical fragility of red cells from
poisoned deficient rats suggested that lead might be
reacting with the red cell membrane thereby making
it more “‘brittle’’ and less resistant to mechanical
trauma. A reaction of lead with the red cell mem-
brane was also suggested by the decreased osmotic
and peroxidative fragilities observed in erythro-
cytes from poisoned deficient rats in the Fragili-
graph apparatus (73), since lead would be expected
to make the membrane *‘tougher’ as well as more
brittle and thereby more resistant to osmotic stress.
Moreover, a reaction of lead with the red cell mem-
brane might be expected to alter erythrocyte
deformability and this might help explain the in-
creased splenomegaly seen in poisoned deficient
rats. Rat erythrocytes have a diameter of about 7.5
um and must be able to stretch, bend, and squeeze
through microcapillaries as narrow as 3 um. The
physical demands placed on the red cell are greatest
in the spleen where not only are the capillaries the
narrowest but the red cell is also subject to severe
metabolic stress because of the low pH, low glucose
concentration, low oxygen tension, and slow blood
flow in this organ. Thus, when red cells lose their
flexibility, they are trapped in the spleen, their sur-
vival in the circulation is shortened, and congestive
splenomegaly results.

A convenient technique for estimating red cell
deformability or flexibility in the so-called erythro-
cyte filtration test (74, 75). In our modification of
this procedure (76), a 1% suspension of red cells in
Tris-buffered saline is incubated under air. After
various incubation periods, a 2-ml aliquot of sus-
pension is drawn off, and the time required for this
sample to pass through a polycarbonate filter with 3
pm pores under 10 cm water vacuum is determined.
As the red cells lose their deformability, the time
required for the cells to pass through the filter (fil-
tration time) increases, and the cells lose their **fil-
terability.”” Red cell filterability is considered by
most hematologists to be a valid index of erythro-
cyte deformality and therefore a useful guide for
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Table 1. Effect of vitamin E and lead on erythrocyte filterability.”

Lead in Filtration time (seconds) after incubation for

water,
Diet ppm 0 hr 2 hr 4 hr 6 hr
Vitamin E-supplemented 0 12=+1° 14 + 20 = 2 40+ &
Vitamin E-supplemented 250 131 15+ 1" 20 + 2 32 + 100
Vitamin E-deficient 0 12+ 0 15«1 22+ |° 229 + 9¢
Vitamin E-deficient 250 17 £ 1I° 56 + 11¢ 144 + 53¢ 453 + 89/

 Data from Levander et al. (76); mean values of four rats + SE: means in the same column with different superscript letters differ
significantly at the p <0.05 level (Duncan’s multiple range test); vitamin E added at 100 ppm as d/-a-tocopheryl acetate: lead added as

lead acetate.

predicting the ability of red cells to survive in vivo.

A decreased filterability of red cells from vitamin
E-deficient rats was observed after various periods
of incubation in vitro and lead poisoning accen-
tuated this effect (Table 1). The fact that only minor
differences in erythrocyte filterability among the
different treatment groups were observed in cells
before in vitro incubation suggested that lead bound
to the cell membrane was not in itself responsible
for the different filtration characteristics. Rather,
the decreases in filterability of red cells from vita-
min E-deficient poisoned or nonpoisoned groups
seemed to be related to increases in red cell lipid
peroxidation and could be prevented by feeding
synthetic antioxidants. Also, the decreases in red
cell filterability could be partially prevented by ad-
ding tocopherol-rich plasma to the incubation
medium (77), whereas in vitro addition of pro-
oxidants such as hydrogen peroxide or dialuric acid
greatly accelerated the decline in filterability (78).
The decreased filterability of red cells from vitamin
E-deficient poisoned or nonpoisoned rats was
shown to be related to striking changes in the mor-
phology of these cells from the normal discocytic
shape to the highly abnormal stomatospherocytic
shape (79). These morphological changes fully ac-
count for the changes in filterability, for sphero-
cytes are hard, rigid bodies that cannot squeeze
through narrow passageways, whereas discocytes
with their high surface to volume ratio are quite able
to do so. The decreased filterability of blood sam-
ples from vitamin E-deficient poisoned or non-
poisoned rats was shown to be due primarily to a
decreased filterability of the old red cells which are
known to be more spherical and less deformable
than young red cells (80).

Since humans are likely to be deficient in several
nutrients simultaneously, we investigated the pos-
sible additive effects of calcium and vitamin E defi-
ciency on lead-poisoned rats. The theoretical
rationale for assuming that certain multiple nutri-
tional deficiencies may have additive effects in
potentiating heavy metal toxicity has been pub-
lished elsewhere (8/). A deficiency of calcium was
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studied because of its presumed occurrence in the
human population and because of its known poten-
tiation of lead toxicity (see discussion about calcium
under section on minerals above). For this experi-
ment, weanling male Fischer 344 rats were fed one
of four experimental diets which contained either
0.5 or 0.37% calcium, with or without supplemental
vitamin E (Table 2). These amounts of calcium rep-
resent 100 and 75%, respectively, of the National
Research Council (NRC) recommended nutrient
level for growth in rats (83). Each dietary group was

Table 2. Composition of diets adequate or low in calcium.

Adequate Ca (0.5%) Low Ca (0.375%)

diet, diet,
Ingredient % %
Casein” 16.000 16.000
Sucrose 75.258 75.565
Stripped lard® 5.000 5.000
Vitamin mix® 1.000 1.000
Low-Ca salts? 1.184 1.184
CaHPO, 1.072 1.072
CaCO, 0.454 0.147
DL-methionine 0.012 0.012
Vitamin E¢ 0.020 0.020

« Vitamin-free test casein, lot #610833, Teklad Test Diets,
Madison, WI 53713.

® Tocopherol-stripped lard, Teklad Test Diets, Madison, WI
53713.

¢ Vitamin E-deficient vitamin mix as described in Levander
et al. (82).

4 The salt mix provided, per kg diet: Na,HPO,, 1.544 g; KClI,
5.606 g; KH,PO,, 2.300 g; MgSO,, 1.980 g; MnSO,-H,0,0.151 g;
ZnCO,, 0.044 g; CuSO,, 0.012 g; FeCzH;0;-5H,0, 0.205 g;
KIO;, 0.000185 g; Na,SeO,, 0.000219 g. The casein used in this
experiment (lot #610833) also contributed (by analysis) when
added at a level of 16% of the diet the following minerals, per kg
diet: Ca, 0.0159 g; P, 1.2144 g; Zn, 0.007 g; Cu, 0.002 g; I,
0.00004 g; Fe, 0.0009 g; Mn, 0.050 g. The salt mix, casein,
CaHPO,, and CaCO, provided in the calcium-adequate diet 100%
of the National Research Council (NRC) recommended nutrient
requirement level of the rat (83) for the following minerals: Ca, P,
Na, Cu, I, Fe, Mg, Mn. K, Cl, Zn, and Se were added at 3.6, 1.0,
0.030, and 0.0001 g/kg diet, respectively, levels which are some-
what higher than the NRC recommendations.

¢ dl-a-Tocopheryl acetate, powder (500 I. U. vitamin E/g),
Grand Island Biological Co., Grand Island, N.'Y. 14072. This
was omitted in the vitamin E-deficient diets.
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Table 3. Effect of calcium and vitamin E deficiencies on lead-poisoned and nonpoisoned rats.”

Dietary supplement

Lead in Weight Spleen Hematocrit
Calcium, Vitamin E, water, gain, weight, value,

% ppm ppm g % of body wt % by volume
0.5 100 0 235 + 5b¢ 0.19 = 0.01° 45 = b
0.5 100 250 177 + 44 0.25 = 0.01° 41 = I¢
0.5 0 0 236 + 26 0.20 = 0.01® 45 = (@
0.5 0 250 177 + 44 0.24 = 0.02® 40 = I°
0.375 100 0 244 = P 0.18 + 0.01° 45 = 1°
0.375 100 250 141 = 4 0.34 = 0.03 38 I°
0.375 0 0 237 = 6 0.20 = 0.01° 4 = I°
0.375 0 250 133 £ 6 0.82 = 0.31° 34 =24

2 Mean values of four rats + SE; means in the same column with different superscript letters differ significantly at the p <0.05 level

(Duncan’s multiple range test).

Table 4. Effect of calcium and vitamin E deficiencies on the filterability of erythrocytes from lead-poisoned and nonpoisoned rats.”

Dietary supplement

Lead in Filtration time (sec) after incubation for varying times
Calcium, Vitamin E, water,
% ppm ppm 0 hr 1 hr 2 hr 4 hr 6 hr

0.5 100 0 131 16 = 1° 19 = 1° 26 + 3 323
0.5 100 250 120 14 + ¢ 18 = 1° 23 £ 20 29 + 20
0.5 0 0 12+1° 17+ 1° 24 + 3 47 = P > 6007
0.5 0 250 131 16 = 1° 18 = 1° 29 + 3 495 + 62¢
0.375 100 0 131 16 = 0 19 = 12 30 1° 43 + 12¢
0.375 100 250 152 18 + 20 18 = 1° 24 + 10 357
0.375 0 0 12+1° 14 =10 18 = 12 34 + 6 559 + 42¢
0.375 0 250 37 + 200 193 + 136 222 + 128° 292 + 111° > 6008

2 Mean values of four rats + SE; means in the same column with different superscript letters differ significantly at the p <0.05 level

(Duncan’s multiple range test).

divided into two subgroups; one received distilled
water and the other received water containing 250
ppm lead as lead acetate. Table 3 shows that the
growth inhibition, splenomegaly, and depressed
hematocrits caused by lead poisoning all tended to
be exaggerated by feeding the diet low in calcium
and simultaneous vitamin E deficiency further ac-
centuated this trend. Likewise, lead poisoning ac-
celerated the decline in the filterability of red cells
from vitamin E-deficient rats at the low level of cal-
cium intake (Table 4). Unfortunately, in this ex-
periment lead poisoning had no effect on the filtera-
bility of red cells from rats fed the vitamin E-
deficient calcium-adequate diet. Refractoriness of
certain groups of vitamin E-deficient experimental
animals to the effects of lead toxicity has been noted
previously (84). It can be overcome by increasing
the severity of the lead poisoning by increasing the
dose of lead administered to the animal (84) or, as in
this case, by intensifying the effect of a given dose
of lead by producing an additional nutritional deficit
(calcium deficiency) in the experimental animal. At
any rate, the experiment described above verified
the concept that discrete multiple nutritional de-
ficiencies can have additive effects in potentiating
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the toxicity of certain heavy metals such as lead,

In attempting to relate these in vitro decreases in
red cell filterability to in vivo increases in spleen
size it was puzzling to note impaired red cell filtera-
bility and no splenomegaly in our nonpoisoned vi-
tamin E-deficient rats. Increased red cell turnover is
observed in vitamin E deficiency (85), but the ex-
tent of hemolysis is generally slight and splenome-
galy is not usually observed. Apparently, both
stresses—i.e., deficiency and toxicity—are required
to precipitate the massive red cell destruction and
accompanying splenomegaly observed in lead-
poisoned vitamin E-deficient rats. How does lead
cause this increased destruction of red cells? First
of all, lead could react with the red cell membrane
and disrupt the normal arrangement of lipids in
bilayers thereby rendering polyunsaturated fatty
acid residues more susceptible to peroxidative
damage. Or lead could catalyze the lipid peroxida-
tion of polyunsaturated lipids (86) or act to destroy
tocopherol directly (87). Whatever the precise
mechanism of any pro-oxidant effect of lead, the
fact that vitamin E was much more effective than
selenium in preventing the lead-induced changes in
red cells (62) suggests that the site of action of lead
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is in a hydrophobic area of the cell membrane
(where vitamin E is apt to localize) rather than in a
hydrophilic region of the cell sap (where selenium in
the form of the soluble cytoplasmic enzyme
glutathione peroxidase is likely to be found).
Another possible mechanism by which lead could
increase the splenic destruction of red cells is by
marking them as abnormal. Red cells coated with
polyvalent metals suffer increased susceptibility to
splenic sequestration (88) and lead is known to ren-
der certain bacilli more susceptible to phagocytosis
(89), apparently as a result of forming metallo-
protein complexes on the cell surface. Splenectomy
ameliorates the anemia induced by lead poisoning,
presumably because this organ is no longer present
to remove defective erythrocytes (90). Any effect of
lead causing the red cell to be recognizable as unfit
by the spleen might be independent of the vitamin E
status of the animal and hence could account for the
mild splenomegaly seen even in lead-poisoned vi-
tamin E-supplemented rats. Of course, the red cells
in deficient_poisoned animals would be under twin
stresses since not only would the red cells be recog-
nized by the spleen as abnormal due to lead expo-
sure, but these cells would also be much more sus-
ceptible to splenic destruction due both to antioxi-
dant lack and any pro-oxidant effect of lead (9/).

Vitamin E and the Mechanism of Lead
Poisoning

Many early investigations into the biochemical
mechanism of lead poisoning focused on the reac-
tion of lead with biological membranes (92, 93).
More recently, however, there has been a shift in
emphasis so that the primary thrust of research has
been to study the effects of lead on soluble enzymes
such as the §-aminolevulinic acid dehydratase of red
cells (94, 95). While there is no question that lead
can inhibit several steps in the heme biosynthetic
pathway (40, 41), lead can also react directly with
the red cell membrane to produce changes in eryth-
rocyte fragility (96) and this latter effect of lead
should not be ignored. Our data relating lead
poisoning and vitamin E deficiency present addi-
tional evidence that, at least under some conditions,
lead can have profound effects on erythrocyte
membrane stability and integrity. The most reason-
able explanation for our results is that lead exerts a
pro-oxidant effect in red blood cells. The observa-
tion that children living near lead smelters have an
increased incidence of Heinz bodies (97), an indi-
cator of oxidative stress to red cells, supports this
hypothesis. Also, Kao and Forbes found that lead-
exposed red blood cells are more susceptible to
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hemolysis by phenylhydrazine than are normal cells
(98). Moreover, Sifri and Hoekstra have reported
that administration of lead increases the overall ex-
tent of in vivo lipid peroxidation as judged by ethane
evolution (99), so lead may have pro-oxidant effects
in a variety of tissues other than red cells. For
example, intravenous lead acetate injection in-
creases oxygen toxicity in rats (/00) apparently by
activation of the intrinsic coagulation pathway, re-
sulting in consumptive coagulopathy and dissemi-
nated intravascular coagulation (/0/). Whether any
pro-oxidant effect of lead could be involved in
lead-induced encephalopathy is not known at this
time, but the focal cerebral hemorrhages observed
in lead-treated rats are more probably related to
damage to the vascular system of the brain than to
depressions in the activity of §-aminolevulinic acid
dehydratase in the brain (/02). Degeneration of
cerebellar capillaries is a feature of vitamin E defi-
ciency in chicks (/03), and failure of cerebellar cell
multiplication has been reported in studies of
lead-induced encephalopathy in the developing rat
(/104). Vitamin E also protects against the cerebellar
degeneration (/05) and in vivo (106, 107) and in vitro
(108) neurotoxicity caused by methylmercury. It
has been recently suggested that the neurotoxicity
of methylmercury may result partially from free
radicals formed by its breakdown (/09). Copper in-
duces a peroxidative hemolysis in certain patients
with Wilson’s disease (/10), iron causes a hemolytic
anemia in premature infants low in vitamin E (//1),
and silver precipitates lesions of selenium-vitamin E
deficiency in pigs fed diets otherwise adequate in
these nutrients (//2). Thus, pro-oxidant effects may
be an important aspect of the mechanism by which
some metals exert their toxic effects. Hopefully,
study of the interaction of heavy metals with mem-
branes will prove to be a fruitful field of investiga-
tion in the future. :
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