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Experience with transient stimuli leads to stronger neural re-
sponses that also rise and fall more sharply in time. This sharpening
enhances the processing of transients and may be especially
relevant for speech perception. We consider a learning rule for
inhibitory connections that promotes this sharpening effect by
adjusting these connections to maintain a target homeostatic level
of activity in excitatory neurons. We analyze this rule in a recurrent
network model of excitatory and inhibitory units. Strengthening
inhibitory3excitatory connections along with excitatory3
excitatory connections is required to obtain a sharpening effect.
Using the homeostatic rule, we show that repeated presentations
of a transient signal will ‘‘teach’’ the network to respond to the
signal with both higher amplitude and shorter duration. The model
also captures reorganization of receptive fields in the sensory hand
area after amputation or peripheral nerve resection.
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Perhaps the most important proposition in the neuroscience of
learning is Hebb’s (1949) (1) famous postulate: when neuron A

participates in firing neuron B, the strength of the connection from
A to B is increased. An important consequence of Hebbian learning
is that it tends to increase both the strength and the duration of the
neural response elicited by a sensory stimulus. Consider a recurrent
network of mutually excitatory neurons. Suppose there are initial
connections of moderate strength among neurons and their near
neighbors. When a transient signal is applied to a neuron, it and its
neighbors will become activated, and, according to Hebb’s rule, the
excitatory connections between them will be strengthened. The
strengthening will cause the network to respond with stronger, as
well as longer, activation.

Increasing the duration of neural responses may have important
benefits in many cases, but there are situations in which it may not
be desirable, including cases in which it is necessary to follow a series
of brief transient signals. Consider the situation confronting some-
one listening to fluent speech. The signal changes very rapidly, and
important information for identification of many sounds is present
in transients with durations �40 ms (2). If perceptual responses to
speech become stronger and more robust with experience, this
strengthening would reduce the network’s ability to follow the
sequence of changing temporal signals if the response became more
temporally extended at the same time that it was strengthened.

A remedy to this problem would be to arrange neural circuitry so
that the neural response not only becomes stronger, but it also
becomes ‘‘sharper’’ (more temporally coherent or compact) with
experience (3). This sharpening could have several beneficial
effects. With experience, it would increase the overall temporal
resolution of the system. It would produce more accurate discrim-
ination of fine differences in timing of neural signals, which will
allow the system to follow a series of signals arriving at a high rate.
These benefits would co-occur with benefits at the neural level as
well; for a given amount of total activation, higher temporal
coherence should result in stronger postsynaptic depolarization of
downstream receiving neurons, increasing their ability to excite
such neurons sufficiently to induce downstream synaptic strength-
ening (4).

Just this sort of temporal sharpening in response to experience
has been observed in an important series of experiments by
Recanzone et al. (5–8). In these investigations, monkeys worked for
reward to discriminate different frequencies of vibration applied to
the skin surface of one finger. The difference between a 20-Hz
standard and a higher frequency target was reduced as the monkeys
improved in discriminating targets from standard stimuli in the task.
Successfully trained monkeys showed an increase in the size of the
population of neurons (and corresponding cortical surface) re-
sponding to each pulse of the stimulus. They also showed an
increase in temporal coherence or sharpness of the response (see
Fig. 1). Each monkey’s behavioral performance was well predicted
by the degree of coherence of its temporal response.

Inspired by these findings and considerations, we have asked the
following question: how might a neural system come to sharpen,
rather than broaden, its response as the strengths of excitatory
connections are increased? Based on analysis and simulations, we
propose a remarkably simple answer. We suggest that the brain may
achieve sharpening by adaptively modifying the strength of recur-
rent inhibition so as to conserve average neural activity. We also
suggest that the same mechanism, augmented slightly, can address
key findings in the literature on cortical reorganization after
amputation (9–12).

Homeostasis, the idea that the brain conserves or regulates its
average activity, has been proposed and supported previously (13),
and recurrent inhibition has been explored as one of the factors that
may play a role (14). We add the suggestion that, within the right
architecture, the homeostatic adjustment of recurrent inhibition
can promote temporal sharpening, along with regulation of total
neural activity.

We present our argument in the following series of steps. First,
we review some relevant physiology of the mammalian somatosen-
sory systems thought to be the sites of the plastic changes under
consideration. We then consider the effect of increasing the recur-
rent excitation in a simplified preliminary model of this system. We
show that, to achieve temporal sharpening when the strength of the
excitation is increased, the strength of recurrent inhibition must also
be increased. We suggest a simple homeostatic mechanism for
regulating the inhibition based on conserving average neural ac-
tivity in the population of excitatory units ‘‘seen’’ by the inhibitory
neuron, and we review data from systems-level experiments con-
sistent with this homeostatic approach. We implement this mech-
anism in a model addressing the strengthening and sharpening of
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neural responses as revealed in the Recanzone et al. (5–8) exper-
iments. Finally, we use the same model system to model cortical
reorganization after peripheral alteration, adding a mechanism
inspired by a proposal of Bienenstock et al. (15) for the regulation
of homeostasis itself that may promote reorganization.

Sites of Cortical Plasticity
Sensory maps in cortex are regulated by experience, both during
development and in adulthood. Whereas early studies focused on
thalamocortical synapses as the primary site of plasticity, recent
studies have identified intracortical excitatory synapses from layer
4 (L4) to L2�3 neurons and excitatory horizontal synapses across
columns within L2�3 as sites of plasticity as well (9). It has been
shown (16–22) that, in neonatal animals (�4 days old), thalamo-
cortical synapses are likely to be a principal site of plasticity. In older
animals, receptive field plasticity is most rapid in L2�3 and occurs
only later, if at all, in L4. Based on these experimental findings, we
examine a model in which the main sites of plasticity are recurrent
horizontal connections among excitatory and inhibitory cells
treated as a simplified model of somatosensory cortex layer L2�3.

Simplified Preliminary Model for Analysis
Excitatory neurons in layer L2�3 excite through direct excitatory
projections and inhibit via inhibitory interneurons. Here, we con-
sider a simplified model that relies on one excitatory and one
inhibitory unit (Fig. 2A) to model the mean activities of these
excitatory and inhibitory populations. To model recurrent excita-
tion, we include a self-excitatory connection from the excitatory
unit back to itself. Inhibition is modeled as an excitatory connection
from the excitatory unit to the inhibitory unit, plus an inhibitory
connection from the inhibitory unit back to the excitatory unit.
Dynamics of unit activities are given by

�e

dE
dt

� �E � Fe�Iexte � � �E � � �I�

�i

dI
dt

� �I � F i�Iexti � � �E� .

E is the firing rate of the excitatory unit and I is the firing rate of
the inhibitory unit. Iexte and Iexti are external inputs to the excitatory
and inhibitory units, Fe and Fi are gain functions of the excitatory
and inhibitory units, �e and �i are constants governing the response
rate of each type of unit, and �, �, � are parameters.

Somatosensory cortex produces a transient response to the onset
of a stimulus with little or no sustained component (23, 24). It has
been suggested (23, 24) that this effect is achieved in part by making

the inhibitory unit respond more slowly that the excitatory unit.
Accordingly, we set �i much larger than �e. To ensure that the
response even to a sustained stimulus is transient, it has further been
suggested that the inhibitory gain function must be much steeper
than the excitatory gain function. Indeed, in the cortex, pyramidal
neurons and interneurons show different f–I curves (25). Regular-
spiking (RS) excitatory pyramidal neurons show a continuous (type
1) f–I curve with negative acceleration at high input levels. Fast-
spiking inhibitory interneurons have a discontinuous (type 2) f–I
relationship, such that they do not fire below a critical input level
but fire at much higher frequency than RS neurons at high input
levels. We summarize these facts with the following gain functions
(Fig. 2B) for the E and I units

Fe�x� � ��e�ln�1 � exp��x � the���e�� [1]

Fi�x� � � i�ln�1 � exp��x � th i��� i�� . [2]

Here the and thi are thresholds and �e and �i are parameters
describing the smoothness of the gain functions.

Given these features of the model, if we apply a strong stimulus
to both units simultaneously, the excitatory unit will respond more
quickly, but the activity of the inhibitory unit will eventually be
much higher than the activity of the excitatory unit and so will come
to suppress the excitatory unit, producing a transient response both
to transient and sustained stimuli. Within this regime, we can now
investigate how changes in connections may give rise to temporal
sharpening of the transient response along with experience-
dependent strengthening.

Model Analysis. We implemented and analyzed the model using the
XPPAUT package (26). To understand the effects of the strength
of the excitatory and inhibitory connections, we observed the
behavior of the network to changes in the strength of the connec-

Fig. 1. Temporal sharpening effect. [Reproduced with permission from ref.
8 (Copyright 1992, The American Physiological Society).]

Fig. 2. Simplified network: structure, gain functions, and dynamics. (A) The
two-unit network. E and I are excitatory and inhibitory units. (B) Gain func-
tions. The solid line represents the excitatory gain function and the dashed line
is the inhibitory gain function; �e � 0.2; �i � 0.2; the � 1; thi � 3. (C) The activity
level of the E cell over time as a response to a transient stimulus. Solid, dotted,
and dashed lines represent responses with increasing self-excitatory strength
(� � 3, 3.5, and 4) and fixed inhibitory-to-excitatory strength (� � 1.2).
Dot-dashed line represents response with both excitatory and inhibitory
connections increased relative to the solid curve baseline (� � 5; � � 3). Other
parameters were fixed with these values: �e � 1; �i � 20; �e � 0.2; �i � 0.2; the

� 1; thi � 2; Iexte � 5; � � 1.
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tions (Fig. 2C). First, we recorded the network’s response to a
transient stimulus with baseline choices of the strengths for the E–E
and E–I connections (Fig. 2C, solid line). As we increase the E–E
connection strength (� in the equations), the amplitude of activity
of the E unit increases in response to a transient external stimulus
(Fig. 2C, dotted line). However, as Fig. 2C shows, the response
duration also increases. Further increases just amplify the effect
(Fig. 2C, dashed line). Thus, strengthening of the self-excitatory
loop alone results in a stronger but also longer lasting response. If
we increase the inhibitory connection (parameter �) sufficiently
along with the change in the excitatory connection, we can observe
a response with higher amplitude and at the same time with shorter
duration compared with baseline (Fig. 2C, dot-dash line). In
general, our simulations indicate that, even with a positively accel-
erating inhibitory gain function and a negatively accelerating exci-
tatory gain function, sharpening does not occur when only the
excitatory connections are allowed to change. Sharpening along
with strengthening can occur if the strength of the inhibitory loop
is increased along with strengthening of the excitatory connection.

It was surprising at first that sharpening was not an automatic
consequence of strengthening in this circuit, given the positive
acceleration of the inhibitory gain function and the negative
acceleration of the excitatory gain function. In supporting infor-
mation, which is published on the PNAS web site, we investigate this
issue and explore how changing parameters � and � can influence
the amplitude and duration of the neural response. With the chosen
gain functions and inhibition slower than excitation, the analysis
shows that sharpening cannot occur with a change in the E–E
connection alone. The result can be proven for the case of inhibition
much slower then excitation but also holds when �e and �i are not
very different and holds for other choices of the gain functions as
long as the excitatory gain function is negatively accelerating.
Neurally realistic excitatory gain functions have this property, which
is itself a basic requirement for stability. We have also shown that
parameter � controls the amplitude of the response and its duration
(increasing � increases both the amplitude and the duration of the
response) and parameter � controls mainly the duration (increasing
� shortens the duration). Finally (Fig. 3), we have shown that, for
any increase in �, it is always possible to find a value of � such that
the resulting response time will be shorter than the original response
time before the change in �.

All the adjustments we have discussed so far have been per-
formed manually. Now we ask: is there a simple policy whereby a
network could adjust its inhibitory connections to produce tempo-
ral sharpening when the strength of the response becomes stronger?
The key observation is the following: if the network adjusts its
inhibitory connections to ensure that the time-averaged activity of
the excitatory unit remains constant, then a higher-amplitude

response will necessarily be briefer than the original low-amplitude
response. We examine the implications of this observation through
the use of a simple homeostatic learning rule for inhibitory con-
nections in the somatosensory learning model described below.

Somatosensory Learning Model. The model described in this section
will be used to show how the homeostatic learning rule suggested
above can produce sharpening along with strengthening as ob-
served in the experiments of Recanzone et al. (5–8). It also
addresses the expansion of the cortical area activated by the
stimulus as a result of successful training in the Recanzone exper-
iments (5–8). Finally, it addresses the reorganization of somato-
sensory receptive fields after amputation, a pattern for which others
(9–12) have proposed a role for adaptive modification of inhibition
as well as excitation.

Our model is based on a recurrent network of excitatory and
inhibitory units intended as a simplified representation of cortical
neurons in layer L2�3 of mammalian somatosensory cortex (Fig. 4
Upper). For each excitatory unit there is a corresponding inhibitory
unit. There are connections from excitatory to excitatory units,
from excitatory to inhibitory units, and from inhibitory to excitatory
units. Excitatory connections to both excitatory and inhibitory units
are scaled by a Gaussian function of distance. Each inhibitory unit
projects only to the single corresponding excitatory unit. Both
excitatory and inhibitory connections onto excitatory units are
plastic. Connections to inhibitory units from excitatory units are
fixed.

As in the preliminary model, excitatory and inhibitory units are
classical Wilson–Cowan rate units (27) with dynamics of activities
described by equations

�e

du i

dt
� �u i � Fe�I i

exte � EE i � EI i�

Fig. 3. Response duration in the two-unit model as a function of the strength
of the excitatory connection (parameter �) and the strength of the inhibitory
connection (parameter �); �e � 1, �i � 10, � � 2.5.

Fig. 4. Somatosensory learning model: structure and dynamics. (Upper)
Network of excitatory (upper row) and inhibitory (lower row) units used to
model learning in somatosensory cortex layers 2�3. After training, several
units are involved in the response to a transient stimulus applied to the trained
unit, as indicated approximately by shading. (Lower) Activity levels of the
trained unit as a function of time. Different curves represent activity change
during training. Parameters were as follows: �e � 3; �i � 5; �e � 0.2; �i � 0.15;
the � 0.1; thi � 0.2; Iexte � 5; �syne � 300; �syni � 150; gee � 5; gei � 3.5; gie � 1;
wij

ie � 1. The standard deviation of the Gaussian weight function r(i, j) is 3 for
both excitatory-to-excitatory and excitatory-to-inhibitory connections.
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�i

dv i

dt
� �v i � F i�I i

exti � IE i�

EEi � gee��
j

r ij�w ij
ee�u j EI i � gei�w i

ei�v i

IEi � g ie��
j

r ij�w ij
ie�u j,

where ui is the activity of ith excitatory unit; vi is activity of ith
inhibitory unit; Fe and Fi are the excitatory gain functions intro-
duced in Eqs. 1 and 2; wij

ee, wi
ei, and wij

ie are synaptic weights; EEi is
the total synaptic input to excitatory unit i from other excitatory
units; EIi is the total synaptic input to excitatory unit i from
inhibitory units; IEi is the total synaptic input to inhibitory unit i
from excitatory units; �e and �i are time constants; gee, gei, and gie
are constants; Ie

exteand Ii
extiare external inputs to the excitatory and

inhibitory units; and rij is a Gaussian function of distance between
i and j.

Learning Rules. Excitatory–excitatory connections. We rely on a Hebbian
(correlation-based) rule for modification of the connections among
excitatory units. The rule includes an additional term that conserves
the sum of the squares of the weights onto each neuron (28)

�syne�w
•

ij
ee � 	 �u i�u j � w ij

ee�u i�s i,

where 	 is a constant, �syne is a time constant, and si��jwij
ee�uj. It

is easy to show that the sum of the squares of the weights to unit
i, �j(wij

ee)2, asymptotically approaches 	.
Inhibitory–excitatory connections. The homeostatic learning rule for
inhibitory connections is given by

�syni�w
•

i
ei � �u i � 
 i� ,

where wi
ei is the synaptic weight to excitatory unit i from the

corresponding inhibitory unit, 
i is the homeostatic threshold, and
�syni is the time constant. This rule strengthens the inhibitory
connection if the activity level of the excitatory unit is higher than

i, decreasing the excitatory unit’s activity, and weakens the inhib-
itory connection if the excitatory unit’s activity is �
i, increasing its
activity. We impose the restriction that wi

ei cannot become negative.
To allow the homeostatic regulation to closely track changes in
excitation, inhibitory learning happens on a faster time scale than
excitatory learning, i.e., �syni � �syne.

Simulation of Strengthening, Sharpening, and Increased Cortical Area
with Experience. We used a network that consisted of 20 excitatory
and 20 inhibitory units. We trained the network by applying a long
series of transient stimuli to a chosen excitatory unit and its
associated inhibitory unit.

Before training, the external stimulus activated the applied
excitatory unit and not much activity was observed in adjacent
units. The result of training is a spread of activity to adjacent units:
a stimulus applied to the trained unit causes transient activity in a
number of adjacent units, because of strengthening of recurrent
excitatory connections. This spreading reproduces the increase of
cortical area representing the trained digit in the Recanzone et al.
(5–8) experiments: more neurons are participating in the repre-
sentation of the trained digit.

The trained network also responded to a transient stimulus with
higher amplitude and shorter duration (Fig. 4 Lower). As in our
preliminary model, the higher amplitude of the response is due to
the stronger excitatory–excitatory connections (in this case, among
the stimulated unit and its neighbors), and the shorter duration is
a result of homeostatic strengthening of the inhibitory connections.

The learning rule we have implemented for inhibitory connec-

tions naturally leads to temporal sharpening with training. Accord-
ing to the rule, the inhibitory connection stops changing once the
activity of the excitatory unit is equal to the homeostatic value. But
because the external stimulus is transient, activity is not fixed but
changes in response to a transient stimulus. Thus, what the inhib-
itory learning rule does is maintain the total activity of the
excitatory unit during each cycle of the response. We take an
integral of the inhibitory weight change over a cycle of the stimulus
TC under the condition that the integral is zero:

w
•

i
ei � �u i � � i��� syni

�wi
ei � �

0

TC

dw i
ei �

1
� syni

��
0

TC

�ui � � i�dt � 0.

It follows that the total activity of the excitatory unit is constant:

�
0

TC

u i�dt � const.

Because the amplitude of the response increases due to changes in
the excitatory connections, the only way the integral can be held
constant is by shortening the response duration; this shortening is
achieved by strengthening the inhibitory-to-excitatory connections.
A similar effect would be achieved by using a similar homeostatic
learning rule to modify the excitatory-to-inhibitory connections.

Simulation of Receptive Field Reorganization. We have shown that,
to observe temporal sharpening, it is necessary to allow plasticity in
recurrent inhibition. This result raises a question: are there other
phenomena besides temporal sharpening where plasticity in inhib-
itory pathways may play a role?

It is known that GABAergic (inhibitory) synapses influence
receptive field size and participate in receptive field remapping
after amputation (9–12). As summarized in Fig. 5A, reorganiza-
tion after amputation proceeds through three phases. In phase 1,
right after amputation, receptive field size increases. This increase
is attributed to a reduction of inhibition because of the removal of
afferent stimulation. In phase 2, there is a further gradual increase
of receptive field size, because of a strengthening of horizontal
excitatory connections onto the deafferented units together with a
further, more gradual decrease in inhibition. In phase 3, the level
of inhibition increases, establishing a more refined receptive field in
a new location. We note that, in phase 2, the receptive field is larger
than at any other phase, with the neuronal responses to skin
stimulation at many sites being higher than in other phases.

Our model as already described provides nearly all of the
mechanisms required to simulate this three-phase pattern, as shown
in a simulation experiment (Fig. 5B). To establish a baseline, we first
applied a tonic stimulus to all excitatory units until connections
stabilized in the network. Once activity reached equilibrium, we
simulated the amputation by turning off the input to one unit,
keeping inputs to the rest of the units intact. Before amputation
(Fig. 5C), activity is maintained at the homeostatic level. After
amputation (at time 800), activity drops down but then quickly
shows a partial recovery. This recovery is due to weakening of the
inhibitory connections according to the homeostatic inhibitory rule.
Recovery is not complete because, even if there is no inhibition to
the unit, inputs from adjacent units are not strong enough to
activate the unit to the homeostatic level. Activity of the unit returns
to the baseline level later on, because of strengthening of the
recurrent excitatory connections. Once activity reaches a homeo-
static level, the inhibitory-to-excitatory connections rebuild and
maintain the activity of the ‘‘deprived’’ excitatory unit at the
homeostatic level.

As previously noted, it seems that the overall cortical activity
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is greater during phase 2 of the remapping process than it is at
steady state either before the amputation or at the end of the
recovery process. In the form described thus far, however, the
inhibitory learning rule we have implemented never allows
the activity of the units to exceed the homeostatic level. As a

result, after silencing following the amputation, the activity
asymptotically approaches the homeostatic level but never over-
shoots it. Although there could be other explanations, we
consider here the possibility that the homeostatic threshold
might actually be raised during recovery to encourage reengage-

Fig. 5. Receptive field reorganization during amputation experiments. (A) Receptive field size is sensitive to the level of GABA antagonist. Remapping of
receptive field (RF) location after amputation is accompanied by modulation of overall activity, which peaks part way through the recovery process. [Reproduced
with permission from ref. 9 (Copyright 2004, Elsevier).] (B) Phases of the simulated amputation experiment. Baseline, external input is applied to all cortical units;
amputation, input to one unit is removed, simulating amputation; recovery, the deprived unit’s activation returns because of decreased inhibition and collateral
excitatory inputs, which become stronger during recovery. (C) Activity of the deprived unit as a function of time during amputation experiment with the original
inhibitory learning rule. (D) Activity of the deprived unit as a function of time during amputation experiment with the modified inhibitory learning rule. (E)
Receptive field size of the deprived unit measured at three different times during receptive field remapping in the simulated amputation experiment (line 1,
right before the amputation; line 2, during reorganization; line 3, after reorganization). Parameters are as follows: �e � 3, �i � 5, �e � 0.2, �i � 0.15, the � 0.1,
thi � 0.2, Iexte � 5, toff � 800, �syne � 120, �syni � 30, �h � 1,000, gee � 1, gei � 2.5, gie � 2.5, wij

ie � 1, u0 � 0.05, p � 2.1. The Gaussian weight functions rij have
SD � 3 for both excitatory-to-excitatory and excitatory-to-inhibitory connections.
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ment and reorganization. To model this process, we adopt the
notion from Bienenstock et al. (15) that the homeostatic set point
of each unit is itself adjustable. Specifically, we employ the same
homeostatic inhibitory learning rule as before:

�syni�w
•

i
ei � �u i � 
 i� .

We add the notion that the homeostatic set point depends on the
average activity ui of the unit


i � � u0

u� i
� p

.

The dynamics of ui follows

du� i

dt
� �u i � u� i���h,

where u0 specifies the desired long-run activity level of the unit,
�h is a time constant much larger than any other time scale in the
model, and p is a constant �1.

According to the new learning rule, the activity of each unit of
the network will be adjusted based on the average activity of the
unit over a long time. If the average activity of a particular unit is
high during some time, then the homeostatic threshold will be
lowered, which leads to stronger inhibitory connections. This
learning rule provides an effective feedback mechanism that con-
trols activity level of the units. This feature of the learning rule
follows the sliding threshold mechanism of the Bienenstock–
Cooper–Munro (BCM) learning rule (15). The BCM rule uses a
threshold for excitatory-to-excitatory synapses, decreasing the
threshold to encourage excitatory plasticity if the unit is not active
enough. In our case, we adapt a threshold for inhibitory-to-
excitatory connections, increasing the threshold so that inhibition is
reduced when the unit is not active enough.

We simulated the amputation experiment a second time incor-
porating the adaptation of the homeostatic threshold. As before, a
baseline period is followed by amputation at time 800 (Fig. 5D). As
before, we observe an immediate drop in activity, followed by fast
but incomplete recovery. This recovery reflects the direct adjust-
ment of inhibitory connections in response to the removal of the
input and takes place during a period that is much shorter than
the period required for a change of the homeostatic threshold. In
the next phase, we see the combined effects of Hebbian modifica-
tion of excitatory-to-excitatory connections coupled with the effect
of the slow adjustment of the homeostatic threshold. After ampu-
tation, the average activity of the deprived unit is much less than the
homeostatic activity level. This shortfall of activity leads to a slow
increase of the homeostatic threshold, allowing higher activity for
the deprived unit during the recovery period. This process produces
the overshoot of the activity at the time indicated by point 2 in Fig.
5D. The activity is higher than the homeostatic level because of the
higher threshold. Once the long-run average activity of the unit

increases back to its long-run target, the homeostatic set point
returns to the original level.

We also measured receptive field size in our simulated amputa-
tion experiment (Fig. 5E). We stopped stimulations at three points
within each phase: homeostatic, hyperactive, and recovered. We
turned off all plasticity and external inputs and measured activity in
the deprived unit while we stimulated one of the adjacent units. We
plot activity of the deprived unit as a function of stimulus location.
We can see that receptive field size increases during the hyperactive
phase compared with the original homeostatic size, but at the final
stage, the receptive field shrinks again. This nonmonotonic behav-
ior of the receptive field size correlates with the experimental
finding that the receptive field enlarges during remapping before it
converges at a new location. Because the amputation affects one
unit, the recovered receptive field is symmetrically placed around
the site of the amputation. With a larger amputation, units to each
side of the middle of the amputation will have receptive fields
dominated by responses to surviving inputs on the same side of the
center point of the amputation, resulting in new receptive fields
concentrated on the corresponding side of the lesion.

We have run simulations using the modified learning rule and
observed that it still leads to temporal sharpening under the
conditions of our earlier sharpening simulation. In the modified
learning rule, the time scale for changes of the threshold is much
longer than the time scale for changes of inhibitory and excitatory
synapses, so changes of the homeostatic threshold are slow and
negligible during each cycle.

Discussion
Our work calls attention to important roles that the adjustment
of inhibitory connections may play in regulating both the func-
tion and the structure of neural circuitry and highlights the
consequences of using a homeostatic learning rule for inhibitory
synapses. As noted earlier, others have emphasized homeostatic
regulation as a broad principle of brain function (13, 14). Here,
we add a specific observation on the homeostatic regulation of
inhibition. In a regime where inhibition is slower than excitation,
the homeostatic regulation of inhibition promotes a combined
temporal sharpening and strengthening of neural activity. We
note as well that the homeostatic regulation of inhibition may
enhance spatial as well as temporal sharpening. Both forms of
sharpening increase the resolution of the nervous system.

Future research should address, among other things, the role of
adaptive modification of inhibitory connections in establishing
neuronal selectivity during development. Inhibition may play a key
role in the critical period observed in the development of ocular
dominance columns (29). The stabilization of neuronal response
properties during development, like their adaptive destabilization
after injury, may be affected by plasticity in inhibitory connectivity.
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