
Statistical Analysis of Clewell et al. PBPK Model of Trichloroethylene Kinetics
Fr6deric Yves Bois

Institut National de L'Environnement Industriel et des Risques, INERIS, Verneuil-en-Halatte, France

A physiologically based pharmacokinetic model for trichloroethylene (TCE) in rodents and humans
was calibrated with published toxicokinetic data sets. A Bayesian statistical framework was used to
combine previous information about the model parameters with the data likelihood, to yield
posterior parameter distributions. The use of the hierarchical statistical model yielded estimates of
both variability between experimental groups and uncertainty in TCE toxicokinetics. After
adjustment of the model by Markov chain Monte Carlo sampling, estimates of variability for the
animal or human metabolic parameters ranged from a factor of 1.5-2 (geometric standard deviation
[GSDI). Uncertainty was of the same order as variability for animals and higher than variability for
humans. The model was used to make posterior predictions for several measures of cancer risk.
These predictions were affected by both uncertainties and variability and exhibited GSDs ranging
from 2 to 6 in mice and rats and from 2 to 10 for humans. Key words: Bayesian, human, Markov
chain Monte Carlo, mouse, PBPK model, rat, TCE, toxicokinetics, tricholoroethylene, uncertainty
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The recent development of a comprehensive
physiologically based pharmacokinetic (PBPK)
model of trichloroethylene (TCE) disposition
and metabolism in mice, rats, and humans (1)
offers us the opportunity to examine issues of
variability and uncertainty for that solvent. In
particular, uncertainties in prediction of vari-
ous cancer dose metrics deserve to be com-
puted, since they could be directly used as
input for improved risk assessments.

PBPK modeling provides a strong mecha-
nistic basis for prediction of disposition and
metabolism of toxicants. Yet much uneasiness
remains with the use of these models in toxi-
cology (2). Similarly, as discussed in a recent
review and an accompanying commentary,
PBPK modeling has not seen the develop-
ment it promised for therapeutic compounds
(3,4). The reason for this essentially lies in
the lack of statistical methods for calibrating
these models. Because of individual variability
and uncertainty, many parameters are diffi-
cult to measure accurately even for inbred
animal strains. Using input parameters or
presenting results in the form of a single value
can therefore be very misleading (5). In the
absence of rigorous statistical treatment,
inference presented by PBPK modeling is
largely empirical, hypotheses are left unvali-
dated, and predictions lack realistic measures
of uncertainty. This state of affairs is unfortu-
nate, when considering the consequences (for
public health and national welfare) of the
decisions made using these models.

Obviously, correct statistical treatment of
PBPK models is difficult, since these are large
nonlinear models with relatively small data
sets and a high degree of uncertainty and bio-
logical variability (6). It is also essential to
respect the fundamental specificity of PBPK
models, i.e., their high prior information

content, which they provide through the
opportunity to use physiological information
on parameter values. Yet, although several
parameters have physiological meaning and a
narrow range of possible values, others-often
specific of the compound studied-lack such
definition and need to be identified by the fit-
ting of the model to concentration-time pro-
files. Finally, most of the time, prior
physiological information is simply about
population averages and is not directly
applicable to any particular individual for
which data were obtained. Fortunately, all
these problems can be solved in a unified way
though a Bayesian population toxicokinetic
approach, which is worth implementing even
in the case of small numbers of study sub-
jects (7-10). Bayesian statistics provides a
natural way of merging a priori knowledge
gained by implementing a physiological
model, with the in vivo experimental data. A
Bayesian numerical treatment can also deal
efficiently with the multilevel error structure
of pharmacokinetic data (11). This is
achieved through the use of an explicit statis-
tical model, describing the links between the
various sources of variance (e.g., measure-
ment errors, population variability) present
in the data, in which the physiological model
is imbedded as a deterministic component.
These techniques are demonstrated here in
the case ofTCE PBPK modeling.

Methods
Data
Mice. Similar to the study of Clewell et al.
(1), data from six published reports were used.
From the reported experiments, a total of 33
groups of animals were defined. Fisher and
Allen (12) exposed groups of 3 or 4 male and

female B6C3F1 mice each (body weight [bw]
30 g), by gavage to TCE at concentrations of
487, 973, and 1,947 mg/kg (males, groups
1-3; females, groups 4-6, respectively).
Trichloroacetic acid (TCA) concentrations in
venous blood were measured at various times
in all groups, as well as the venous blood con-
centrations ofTCE for dosing group 2.

Fisher et al. (13) exposed groups of 14
female B6C3F, mice each (bw 26.5 g) by
inhalation to TCE in a closed chamber of
9.1 L, at concentrations of 300, 700, 1,100,
3,700, and 7,000 ppm (groups 7-11) and
groups of 15 male mice (bw 31 g) each to
1,020, 1,800, 3,800, 5,600, and 10,000 ppm
(groups 12-16). The concentration of TCE
in the air chamber was measured. The same
study also exposed four groups of 3 or 4 male
B6C3F, mice each to TCE (bw 31 g) for 4 hr
at concentrations of 110, 297, 368, and
748 ppm (groups 17-20); four groups of 3 or
4 female mice each to TCE for 4 hr at con-
centrations of 42, 236, 368, and 889 ppm
(groups 21-24). The venous blood concen-
trations of TCE and TCA were measured at
various times.

Larson and Bull (14) exposed groups of 4
male B6C3F, mice each (average bw 27 g) by
gavage to TCA at concentrations of 20 and
100 mg/kg (groups 25 and 26). The venous
blood concentrations of TCA and
dichloroacetic acid (DCA) were measured.
Given the analytical technique used, it is sus-
pected that the DCA concentrations may be
artifactually high (15).

Larson and Bull (16) exposed groups of
5-6 male B6C3Fi mice each (bw 26.4 g) by
gavage to TCE at concentrations of
15 mmol/kg (1972 mg/kg), 4.5 mmol/kg
(592 mg/kg), and 1.5 mmol/kg (197 mg/kg)
(groups 27-29). The venous blood concen-
trations of TCE, free trichloroethanol
(TCOH), and TCA were measured at various
times. The venous blood concentrations of
DCA were also measured in mice for group
27. Here also the DCA concentrations may
be artifactually high.
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Prout et al. (17) exposed male mice of
unspecified strain, most likely B6C3F, (bw
29.5 g) by gavage to 1,000 mg/kg TCE
(group 30). The venous blood concentrations
ofTCE, free TCOH, and TCA, as well as the
cumulated amount of TCE exhaled, were
measured at various times.

Templin et al. (18) exposed groups
comprising 4 male B6C3Fl mice each (bw
27 g) to TCE at concentrations of
3.8 mmol/kg (500 mg/kg), 0.76 mmol/kg
(100 mg/kg), and 15 mmol/kg (1,972.5
mg/kg) (groups 31-33). The venous blood
concentrations of DCA were measured in all
groups. The venous blood concentrations of
TCE, free TCOH, and TCA were also mea-
sured at various times for group 31. The DCA
concentrations may be artifactually high.

Rats. Ten experimental groups of rats
were identified in a subset of the above-
described reports. Fisher et al. (13) exposed
groups comprising 6 female F344 rats each
(bw 186 g) by inhalation to 600 ppm TCE
for 4 hr (group 1). The venous blood concen-
trations of TCE and TCA were measured at
various times. Under similar conditions,
groups comprising 6 male F344 rats each (bw
236 g) were exposed to 529 and 505 ppm
TCE (groups 2 and 3). The venous blood
concentrations of TCE were measured in
group 2; the venous blood concentrations of
TCA were measured in group 3.

Larson and Bull (14) exposed groups
comprising 4 male F344 rats each (bw 331 g)
by gavage to TCA at concentrations of 20 and
100 mg/kg (groups 4 and 5). The venous
blood concentrations ofTCA and DCA were
measured. For the same reasons as above, the
DCA concentrations may be artifactually high.

Larson and Bull (16) exposed groups
comprising 5 or 6 male Sprague-Dawley rats
each (bw 404 g) by gavage to TCE at concen-
trations of 1.5 mmol/kg (197 mg/kg),
4.5 mmol/kg (592 mg/kg), and 23 mmol/kg
(3,024 mg/kg) (groups 6-8). The venous
blood concentrations of TCE, free TCOH,
and TCA were measured at various times.

Prout et al. (17) exposed male rats of
unspecified strain (bw 190 g) by gavage to
1,000 mg/kg TCE (group 9). The same
variables as in mice were measured.

Templin et al. (19) exposed groups com-
prising 4 male F344 rats each (bw 275 g)
with 0.76 mmol/kg (100 mg/kg) TCE (group
10). The venous blood concentrations of
TCE, free TCOH, and TCA were measured.

Humans. A set of published human
volunteer experiments was also analyzed.
Monster et al. (20) exposed volunteers (group
1-average weight, 69.8 kg; alveolar ventila-
tion rate, 16.7 L/hr; fraction of weight as fat,
15%) to 70 and 140 ppm TCE for 4 hr. The
exhaled air concentrations and venous blood
concentrations of TCE, venous blood

concentrations of free TCOH and TCA, and
the cumulated quantity of TCA excreted in
urine were recorded. In 1979, Monster et al.
(21) reported another set of experiments in
which a group of volunteers (group 2-aver-
age weight, 80.2 kg; alveolar ventilation rate,
16.7 L/hr; fraction of weight as fat, 15%)
were repeatedly exposed to 70 ppm TCE for
4 hr/day for 5 days. In addition to the vari-
ables measured in group 1, the cumulated
quantity of trichloroethanol glucuronide
(TCOG) excreted in urine was recorded at
various times.

Muller et al. (22) exposed a group of
humans (group 3) to 100 ppm TCE for 6 hr.
The same variables as for group 2 were fol-
lowed. Muller et al. (23) exposed a group of
volunteers (group 4) to 50 ppm TCE for
6 hr/day for 5 days. The venous blood con-
centrations of free TCOH and TCA, and the
cumulated quantities of TCA and TCOG
excreted in urine were recorded. In the same
article, Muller et al. report exposure of two
groups (5 and 6) of volunteers to 100 ppm
TCE for 6 hr. For group 5, the exhaled air
concentrations and venous blood concentra-
tions of TCE, and the venous blood concen-
trations of free TCOH and TCA were
measured. For group 6, only the venous
blood concentrations of free TCOH and
TCOG are reported.

Finally, group 7 comprises volunteers that
Stewart et al. (24) exposed to 198.3 ppm
TCE, 7 hr/day (with a 30 min break in the
middle) for 5 days. In this experiment, the
exhaled air concentration and venous blood
concentrations of TCE, and the cumulated
quantities of TCA and TCOG excreted in
urine were recorded.

Toxicokinetic and Statistcal Model
The description of the physiological model
used can be found in Clewell et al. (1). The
model equations were transcribed to a format
suitable for MCSim (25). Three modifica-
tions were made to the model: a) One com-
partment was added to describe closed-
chamber exposures of mice by Fisher et al.
(13). b) The volume of the poorly perfused
compartment and c) the blood flow to the
richly perfused compartment were computed
by difference at each iteration so that the sum
of the organ volumes equaled 82% of the
body weight and the sum of organ flows
equaled cardiac output. Given this reparame-
terization, the model has a total of 55 inde-
pendent parameters. Only 45 of these were
adjusted for mice and rats and 40 for humans
because there is no information in the above
described data about the remaining 10 or 15
parameters. Neither do these 10 or 15 para-
meters influence the fit to the data.

The statistical model describing un-
certainties and variabilities was constructed

using a hierarchical population approach
(10,26), as illustrated in Figure 1. It has two
major components: the group level and the
species or population level. At the group level,
various concentrations or quantities (y) were
measured. The expected values of these mea-
surements are a function (f) of exposure level
(E), time (t), a set of physiological parameters
of unknown values (9), and a set of mea-
sured, covariate parameters (q>) such as body
weight. E, t, 0, and q are experiment specific.
All animal or human subjects in an experi-
ment were supposed to have behaved simi-
larly from a toxicokinetic point of view. The
function f is the pharmacokinetic model
described above. The concentrations or quan-
tities actually observed are also affected by
measurement error and interindividual vari-
ability within the group. Since the data are
aggregated at the group level, it is not possible
to reliably disentangle the two sources of vari-
ability. The corresponding errors were
assumed to be independent and log-normally
distributed, with mean zero and variance 02
(on the log scale). This corresponds to a pro-
portional error model commonly used in
pharmacokinetic modeling (10,26,27). The
variance vector (J2 had nine components for
mice (since nine different variables were mea-
sured) and eight components for rats and
humans.

At the species level each component of the
0 parameter set was assumed to be distributed
log-normally, with species averages p and vari-
ances 12 (in log scale). Some a priori knowl-
edge of p and 12 is available in the form of
"standard" values for some parameters.
Uncertainty in these averages and variances

Figure 1. Graph of the statistical model describing the
dependence relationships between several groups of
variables. Symbols are P, prior distributions; p, mean
parameters for a species; Z2, variances of the species-
level parameters; E, exposure; t, experimental sampling
times; 9, unknown "average" physiological parameters
for the individuals of a group; qp, measured physiological
parameters; f, toxicokinetic model; y, experimental
data; o2, variance of the experimental measurements.
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was acknowledged under the form of a priori
log-normal distributions for the population
means p (with hyperparameters M and S) and
a standard inverse gamma distribution, with
parameters a =1 and 12= L: for the popu-
lation variances 12 (see section below on
a priori parameter values).

Three types of nodes are featured in
Figure 1:
* Square nodes represent variables for

which the values were observed, such as y
or 9p; were fixed by the experimenters,
such as E and t; or were fixed by our-
selves, such as the prior on p and 12.

* Circle nodes represent unknown variables,
such as a2, 0, p, or 12.

* The triangle represents the deterministic
physiological model f.
An arrow between two nodes indicates a

direct statistical dependence between the
variables of those nodes.

Prior Parameter Distributions
A major advantage of physiological modeling
is to provide a priori information on several
of the mean parameter values for a species, as
well as some idea of the variability of the
parameters across individuals. Values for the
hyperparameters M were set on the basis of
the parameter values used by Clewell et al.
(1). For VMTC and KMT (the Michaelis-
Menten parameters for the formation of
DCA from TCA) Clewell et al. assumed null
values for mice and humans. A low value,
with large uncertainty, was assumed here. To
specify S, the vector of a priori uncertainty
(standard deviations [SDs]) on the average
parameter values, a distinction can be made
between the physiological parameters or par-
tition coefficients (which are quite well
known) and the other metabolic or pharma-
cokinetic parameters (which are model spe-
cific and little known a priori). For the first
group of parameters, values of S correspond-
ing to coefficients of variation (CVs) of
20-50% were assigned (8-10). An exception
is the volume of the tracheobronchial com-
partment, quite uncertain and for which S
was set to correspond to 200% CV. For the
second group of parameters, a "vague" distri-
bution was assumed and S was set to corre-
spond to 200% CV (quite uncertain) or
500% CV (very uncertain). For those para-
meters "the data were left to speak." All priors
on p were truncated to ±2 x S or ±1.5 x S to
avoid reaching unrealistic values. The prior
SD, I:, on group variability, was set to 0.47
(corresponding to a CV of 50%) for all para-
meters. The square of that value was used as
parameter P in the inverse-gamma distribu-
tion, a default choice for variance compo-
nents in normal models (28), together with a
a of 1, giving a vague shape to this prior.
Table 1 gives the values of exp(M)-i.e. the

geometric mean-and exp(S), which lie on
the natural scale.

The standard no-informative prior distrib-
ution P(G12,. .. )an2) _ y12 X...X an 2 was
used for a2. To avoid the risk of overparame-
terization (a perfect fit could be obtained for
some data sets, leading to implausible null esti-
mates of variance), these variance components
were constrained to be larger than 0.29. That

value corresponds to a CV of approximately
30%, a reasonable, minimal value for the com-
pounded measurement uncertainty and
interindividual variability.

Statistical Computation of Posterior
Parameter Distributions
Information about the distribution of a
group's 0 parameter values (which in this case

Table 1. Prior population geometric means, exp(M), and associated geometric standard deviations, exp(S), for the
PBPK model scaling coefficients. All numbers are on the natural scale. The GSDs measure uncertainty about the
mean.

Scaling Scaling Prior population geometric mean (GSD)
Parametera coefficient formula Mice Rats Humans

Body weight
Cardiac output
Alveolar ventilation rate
Blood flows

Fat
Gastrointestinal tract
Liver
Muscle and skin
Tracheobronchial

Volumes
Fat
Gastrointestinal tract
Liver
Other visceras
Tracheobronchial
VdTCOH
VdTCA
VdDCA

Partition coefficients
Blood/air
Fat/blood
Gut/blood
Liver/blood
Richly perfused/blood
Slowly perfused/blood
Tracheobronchial/blood

Metabolic parameters
VmaxTCE -+ ox.
KmTCE -e ox.
TCE/TCA ratio
VmaxTCOH > TCA
KmTCOH > TCA
VmaxTCOH + DCA
Km TCOH DCA
VmaxTCOH e TCOG
KmTCOH e TCOG
TCOG biliary Ke
TCOH recirculation
TCOG urine Ke
VmaxTCA DCA
KmTCA > DCA
TCA urine Ke
KfTCE -> DCVC
TB VmaxTCE + ox.
TB Km TCE -4 ox.
Kduod. - liver
Kstomach - duod.
VmaxDCAe
KmDCA4 ...
DCA urine Ke

BW
0CC
QPC

QFC
QGC
QLC
QSC
QTBC

VFC
VGC
VLC
VRC
VTBC
VDBWC
VDTCAC
VDDCAC

PB
PF
PG
PL
PR
PS
PTB

VMC
KM
PO
VMOC
KMO
VMRC
KMR
VMGC
KMG
KEHBC
KEHRC
KUGC
VMTC
KMT
KUTC
KFC
VMTBC
KMTB
KAD
KTSD
VMDC
KMD
KUDC

_b

16 (1 .34)
24 (1.34)

OCC. BW075
GCC. BWO75
OCC. BWO75
GCC. BW075
0CC. BWOt75

BW
BW
BW
BW
BW
BW
BW
BW

BWt.75

BWO.75

BW0.75

BW-0.25
BW-0.25
BW-0.25

BWO.75

BW-0.25
BW-0.25
BWO.75

0.05 (1.47)
0.14 (1.34)
0.02 (1.34)
0.25 (1.34)
0.005 (2.0)

0.07 (1.47)
0.04 (1.22)
0.05 (1.22)
0.05 (1.22)
0.0007 (1.22)
0.65 (2.0)
0.24 (2.0)
0.2 (2.0)

14 (1.6)
36 (1.6)
1.8 (1.6)
1.8 (1.6)
1.8 (1.6)
0.75 (1.6)
1.8 (1.6)

39 (5.0)
0.25 (5.0)
0.035 (2.0)
1 (5.0)
0.25 (5.0)
1 (5.0)

10 (5.0)
100 (5.0)
25 (5.0)

1 (5.0)
0.01 (5.0)
0.5 (2.0)
0.05 (5.0)
1.6 (5.0)
0.035 (2.0)
2 (5.0)
3 (5.0)
0.25 (5.0)
1 (5.0)

10 (2.0)
100 (5.0)

1,000 (5.0)
0.035 (5.0)

_b

15 (1.34)
24 (1.34)

0.07 (1.47)c
0.15 (1.34)c
0.03 (1.34)c
0.34 (1.34)c
0.021 (2.0)c

0.12 (1.47)
0.03 (1.22)
0.034 (1.22)
0.041 (1.22)
0.0007 (1.22)
0.65 (2.0)
0.25 (2.0)
0.2 (2.0)

19 (1.6)
28 (1.6)
1.3 (1.6)
1.3 (1.6)
1.3 (1.6)
0.5 (1.6)
1.3 (1.6)

12 (5.0)
0.25 (5.0)
0.02 (2.0)
0.12 (5.0)
0.25 (5.0)
0.1 (5.0)
10 (5.0)

100 (5.0)
25 (5.0)

1 (5.0)
0.01 (5.0)
0.5 (2.0)
0.1 (5.0)
10 (5.0)
0.05 (2.0)
2 (5.0)
0.3 (5.0)
0.25 (5.0)
0.6 (5.0)
10 (2.0)
50 (5.0)

1,000 (5.0)
0.05 (5.0)

70 (1.22)b
13 (1.34)
18 (1.34)

0.05 (1.34)c
0.18 (1.34)c
0.05 (1.34)c
0.25 (1.34)c
0.025 (1.34)c

0.2 (1.22)
0.017 (1.22)
0.026 (1.22)
0.05 (1.22)
0.0007 (1.22)
0.65 (2.0)
0.1 (2.0)

9.2 (1.6)
73 (1.6)
6.8 (1.6)
6.8 (1.6)
6.8 (1.6)
2.3 (1.6)
6.8 (1.6)

12 (5.0)
1.5 (5.0)
0.08 (2.0)

30 (5.0)
250 (5.0)

2 (5.0)
10 (5.0)
3.5 (5.0)

25 (5.0)
1 (5.0)
0.2 (5.0)
1.5 (2.0)
0.05 (5.0)
1.6 (5.0)
0.023 (2.0)
2 (5.0)
0.0045 (5.0)
1.5 (5.0)

Abbreviations: BW, body weight; duod., duodenum; Ke, elimination rate; Kf, formation rate; Km, Michaelis-Menten coefficient; ox,
oxidative metabolism; TB, tracheobronchial; Vmax, maximal rate. &Scaled parameter = scaling formula x scaling coefficient. Units:
weights in kg, flows in L/hr, volumes in L, kinetic parameters in mg/hr, mg/L or hr-1 11). For all parameters the scaling coefficients
were assumed to be log-normally distributed with truncations at ± 2 SDs except where indicated. bMeasured values given in the data
section were used when available. clruncation at -2 x SDs and +1.5 x SDs to respect summation constraints.
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are the parameters of interest) is given by the
experimental data and by the species parame-
ters. The species parameters are determined by
the 0 variables and their priors, which were
set. The variances a2 are also estimated but are
of lesser importance to us (however, high pos-
terior variances may indicate a poor fit).

From Bayes' theorem, the joint posterior
distribution of the parameters to estimate,
tO, a2, p, 121y, 9, E, t, M,Y , v4), is propor-
tional to the likelihood of the data multiplied
by the parameters' priors:

Ro) 02 p) 21y) pyE) t M) S4)
- P(yI0, a2, p, E, t)POIap, 12).Pa2)
*lRPlM,S) *X2lS2))

[1]

The likelihood term is given by the
normal measurement model:

log(y) - N(logf(0, 9p, E, t)a2), [2]

As mentioned above, the prior distribu-
tion for a2 iS: p(2 ... n2) - 1-2 X ...

X CT -2
The prior distribution of each component

of 9 is an independent normal distribution:

log(O) - N(,u, 12), [3]

with truncation constraints.
Finally each component of p, or 12 iS

assigned an independent hyperprior distribu-
tion, p - N(M,S2) and 12 _ inverse-
gamma(2,1;:), as described above.

Current practice in Bayesian statistics is to
summarize a complicated high-dimensional

posterior distribution by random draws of the
vector of parameters. This is currently the
most effective way to perform high-dimen-
sional numerical integration. Further simula-
tions can then be performed to compute,
under specified conditions, posterior distribu-
tions of quantities of interest, such as various
measures more closely related to cancer risk
than exposure to TCE. Because there are
many parameters to estimate, a combination
of Gibbs sampling and Metropolis-Hasting
sampling was used to perform a random walk
through the posterior distribution. These iter-
ative sampling procedures are particularly
convenient in the case of hierarchical models.
They belong to a class of Markov chain
Monte Carlo (MCMC) techniques that has
recently received much interest (10,29-34).
Three independent Markov chain Monte
Carlo runs were performed for each species.
Convergence was monitored using the
method of Gelman and Rubin (35).

Posterior Distribution ofPredictions
The model was used to compute, a posteriori,
several surrogate exposure metrics. For lung
tumors, the dose metrics proposed are the
lifetime average daily area under the chloral
concentration-time curve (LAD-A UC, in
mg.hr-L-1) in the tracheobronchial region,
and the maximal chloral concentration
achieved in the tracheobronchial region
(Q,:, in mg.I-1); for kidney tumors, metrics
computed are the lifetime average daily
amount of cytotoxic metabolites (originating
from dichlorovinylcysteine) generated by
gram of kidney (LAD-A, in mg.g'1); for liver
tumors, the LAD-AUCand Cmax of TCA
and DCA are the proposed metrics.

To obtain the distribution of surrogate
dose measures, several exposure scenarios

were simulated for each species (either
continuous exposure through inhalation or
drinking water, inhalation exposure 8 hr per
day, 5 days per week, inhalation exposure 7
hr per day, 5 days per week, or gavage once
per day, every day). A population of 1,000
individuals was simulated by sampling for
each one a random parameter vector from
N(p,Z), for a random set of the final esti-
mates of p and 1. This sampling accounts for
covariance between values of the population
parameters, since the 1,000 parameter sets are
random draws from their joint (multivariate)
distributions, not just from the marginal dis-
tributions. These simulations required sam-
pling several parameters that could not be
estimated with the data at hand. The sam-
pling distributions of these parameters (sum-
marized in Table 2) were defined on the basis
of Clewell et al. estimates (1). In the absence
of relevant information, no covariance was
specified between those parameters.

Results
After a few thousand iterations, the trajectory
of each parameter oscillates randomly around
a mean value, and these oscillations have sta-
bilized to a stationary regime. Remember that
the simulations converge to a distribution,
not to a point. For mice and humans, 7,000
iterations were necessary to reach conver-
gence; for rats 12,000 had to be performed.
One of every 5 of the last 5,000 simulations
of three independent Markov chains were
recorded, yielding 3,000 sets of parameter
values from which the inferences and predic-
tions presented in the following were made.

Quality ofData Adjustment
Figure 2 presents the data values predicted for
each species versus their observed counterparts

Table 2. Sampling distributions of the unadjusted parameters. All numbers are on the natural scale.

Scaling Scaling Population geometric mean (GSD)
Parametera coefficient formula Mice Rats Humans

Body weight BW 0.029 (1.1) 0.28 (1.1) -

Volumes
Kidney VKC BW 0.017 (1.1) 0.007 (1.1) 0.004 (1.1)
Vd DCA VDDCAC BW - - 0.3 (1.3)

Metabolic parameters
Kduod. -> liver KAD - - 1 (1.5)
Kstomach -- duod. KTSD - - 10 (1.5)

VmaxDCA * ... VMDC BW0O75 - - 1,730 (1.5)
KmDCA +... KMD - - 1,000 (1.5)
DCA urine K, KUDC BW'025 - - 0.023 (1.3)

Kstomach - liver KAS 0.0 (1)b 0.0 (1)b o.o (1)b
Fraction Clara cells FCLARA 0.1 (1.3) 0.1 (1.3) 0.1 (1.3)
DCVC kidney tox. KBLC BW-025 0.4 (1.5) 17 (1.5) 37 (1.5)
K, DCVC by NAT KNATC BW025 0.5 (1.5) 1.1 (1.5) 19 (1.5)
TB Vmaxchloral VMCTBC BWO.75 250(1.5) 250(1.5) 250(1.5)
TB Kmchloral KMCTB 250 (1.5) 250 (1.5) 250 (1.5)

'Scaled parameter = scaling formula x scaling coefficient. Units: weights in kg, flows in L/hr, volumes in L, kinetic parameters in
mg/hr, mg/l or hr1 (1). blhis parameter was sampled from NbO, 11 with truncation [0, 2], to put high weight on zero or small values
while allowing for positive values.
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101.

10'r 10'm 10o10 10i'

Observed Data Value

Figure 2. Predicted versus observed data values (all
concentrations or quantities) for the Monte Carlo itera-
tions of highest posterior probability. The outlying points
for humans are 2 points in Monster et al. (20,21) experi-
ments (see Figure 5) and misfitted points in Muller et al.
(22,23) experiments.
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(all data values are concentrations). Predictions
were made with the parameter set of highest
posterior density. For a perfect fit, all points
would fall on the diagonal (equality of pre-
dicted and observed values). Such an adjust-
ment is not expected given the analytical
measurement errors in the data, but the devia-
tions are small and the fit seems overall reason-
able. The graph is presented on log-log scale,
since the errors are assumed to be lognormally
distributed and span a wide range. The residu-
als are evenly spread along the diagonal, in par-
ticular for mice. For rats, there seems to be one
outlying point in the venous blood concentra-
tions of free TCOH, the model fitting well all
other data points in the same experiment. The
fit to human data leaves four groups of points
with high residuals. There seems to be one
outlier in the TCA blood concentration data
of Monster et al. (21), and the last points are
very variable. More troublesome is the system-
atic underestimation, by a factor of 5, of TCE
concentration in exhaled air during exposure
for the experiments of Miller et al. (22,23).

The posterior means of the intragroup
SDs a (representing measurement error and
intersubject variability) are mostly between
0.3 and 0.5 (corresponding to coefficients of
variation of about 30-50%). Larger values are
found in mice for the venous blood concen-
tration of TCE (a = 0.55), caused by the
"noisy" data of Fisher and Allen (12) and of
Prout et al. (17), for the blood concentration
of DCA (a = 0.60) due to the noise and
underprediction of the data (14,16,18), and
for the blood concentration of free TCOH
(a = 0.65) in the data of Prout et al. in which
various animals were observed at various

E

MALE MICE
0
8910°

Time (h)
Figure 3. Evolution of TCE concentration in the exposure
chamber of groups of mice ( 13) as a function of time. The
continuous lines show maximum posterior probability fits.

times. For rats, the blood concentration of
DCA (a = 1.14) seems to be systematically
underpredicted. For humans, as mentioned
above, the concentration of TCE in exhaled
air in the experiments of Muller et al. (22,23)
is systematically overestimated and some
noise exists in the Stewart et al. (24) data.
This leads to high residual errors (a = 0.79).

Figure 3 presents the fit to the mouse data
of Fisher et al. (13). The residual error is
small, albeit with some degree of autocorrela-
tion. But, by their nature, these data are
prone to exhibiting such dependency of errors
and are quite difficult to model.

Fits to human data are crucial to risk
assessment and human toxicology of TCE.
Figures 4-7 show that very nice fits can be
obtained with the model to a range of data.
The model has been formally fitted and the
adjustments are systematically better than
those, already reasonable, obtained by Clewell
et al. (1). However, as mentioned above, some
data remain poorly fitted. The model overesti-
mates exhaled air concentrations measured by
Muller et al., while underestimating part of

10°

10.2

.o. *.

lnme (h)

Figure 4. Maximum posterior probability fit of Monster
et al. (20,21) human data on TCE concentration in
exhaled air during and after inhalation exposures. Dark
circles: repeated exposures to 70 ppm TCE; open circles:
4-hr exposures to 70 ppm TCE; crosses: 4-hr exposures
to 140 ppm TCE.

°10'
0

I
c

C0

C.

g o

200 300 400 500 600

Time (h)

Figure 5. Maximum posterior probability fit of Monster
et al. (20,21) human data on TCA concentration in venous
blood during and after TCE inhalation exposures. Dark cir-
cles: repeated exposures to 70 ppm TCE; open circles:
4-hr exposures to 70 ppm TCE; crosses: 4-hr exposures to
140 ppm TCE. Note the dispersion of points at later times.

the TCE blood concentration data in the
decay portion. The two "misfits" are certainly
related. However, the venous blood TCA and
TCOH concentrations from the same experi-
ments are well fitted (data not shown). A simi-
lar situation is observed in mice and rats, for
example, for the DCA data.

Posterior Parameter Distributions
The joint distribution of all parameters is
obtained in output of the Markov chain
Monte Carlo simulations. This allows consid-
eration of marginal distributions (distributions
of the parameters considered individually) but
also of correlations of any order. Table 3 sum-
marizes the distributions of the species-level
parameter values obtained in the last 1,000
iterations of the three runs performed (results
of the three runs are pooled, and the distribu-
tions are established with 3,000 values). The
geometric means can be interpreted as repre-
senting the values for an "average" mouse, rat,
or human. Note that the columns of geomet-
ric standard deviations (GSDs) represent
group variability among the species. Means

10'
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Figure 6. Maximum posterior probability fit of Monster
et al. (20,21) human data on cumulated TCA quantity
excreted in urine during and after TCE inhalation expo-
sures. Dark circles: repeated exposures to 70 ppm TCE;
open circles: 4-hr exposures to 70 ppm TCE.
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Figure 7. Maximum posterior probability fit of Monster
et al. (20,21) human data on total TCOH concentration in
venous blood during and after TCE inhalation exposures.
Dark circles: repeated exposures to 70 ppm TCE; open
circles: 4-hr exposures to 70 ppm TCE; crosses: 4-hr
exposures to 140 ppm TCE.
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Table 3. Summary statistics of the species level (i.e., population) posterior parameter distributions for trichloro-
ethylene. The GSDs measure variability.a All numbers are on the natural scale.

Scaling Mouse population posterior Rat population posterior Human population posterior
coefficient Geo. mean GSD Geo. mean GSD Geo. mean GSD

20.1 (1.08)
21.8 (1.08)
0.054 (1.14)
0.18 (1.08)
0.021 (1.11)
0.247 (1.11)
0.005 (1.36)
0.063 (1.12)
0.040 (1.07)
0.050 (1.07)
0.050 (1.06)
0.0007 (1.07)
0.55 (1.33)
0.26 (1.19)
0.19 (1 .31)

16.4 (1.13)
30.6 (1.15)
1.71 (1.21)
1.73 (1.20)
1.75 (1 .21)
0.76 (1.21)
1.82 (1.21)

38 (1.15)
0.47 (1.57)
0.044 (1.27)
1.41 (1.49)
0.23 (1.91)
0.91 (1.61)
8.50 (2.06)

83.1 (1.37)
21.1 (1.70)
0.15 (1.35)
0.024 (1.81)
0.75 (1.26)
0.10 (1.56)
2.22 (2.09)
0.074 (1.13)
0.75 (1.55)
1.99 (1 .81)
0.25 (2.24)
1.14 (1.36)

17.3 (1.24)
118 (1 .93)

1,200 (1.93)
0.044 (2.27)

1.25 (1.04)
1.32 (1.05)
1.34 (1.06)
1.25 (1.04)
1.29 (1.05)
1.29 (1.05)
1.48 (1.11)
1.36 (1.06)
1.23 (1.03)
1.23 (1.03)
1.23 (1.03)
1.23 (1.03)
1.46 (1.11)
1.41 (1.08)
1.54 (1.13)
1.44 (1.09)
1.41 (1.08)
1.37 (1.08)
1.38 (1.08)
1.38 (1.07)
1.38 (1.07)
1.38 (1.08)
1.74 (1 .15)
2.34 (1.28)
1.46 (1.11)
1.49 (1.16)
2.52 (1.40)
1.96 (1 .31)
1.69 (1.24)
1.55 (1.18)
2.14 (1.36)
1.50 (1.12)
2.04 (1.38)
1.43 (1.11)
1.63 (1.22)
1.74 (1.26)
1.34 (1.06)
1.57 (1.18)
1.62 (1.23)
1.69 (1.25)
2.70 (1.23)
1.41 (1.10)
1.59 (1.21)
1.57 (1.20)
1.70 (1.25)

16.8 (1.16)
23.1 (1.15)
0.08 (1.16)
0.14 (1.15)
0.028 (1.15)
0.32 (1.15)
0.018 (1.44)
0.13 (1.21)
0.030 (1.11)
0.034 (1.11)
0.042 (1.11)
0.001 (1.11)
0.9 (1.50)
0.3 (1.27)
0.14 (1.44)

20.1 (1.22)
32.1 (1.24)
1.29 (1.29)
1.32 (1.30)
1.31 (1.30)
0.55 (1.29)
1.30 (1.29)

13.2 (1.30)
0.21 (2.40)
0.04 (1.29)
0.08 (2.28)
0.33 (2.66)
0.11 (2.75)

10.6 (2.94)
138 (1.96)
16.9 (2.14)
0.97 (2.37)
0.030 (2.50)
0.54 (1.51)
0.18 (1.85)

13.3 (2.46)
0.052 (1.27)
2.27 (2.48)
0.30 (2.92)
0.26 (2.80)
0.54 (1.60)

11.6 (1.42)
41.3 (2.33)

1,212 (2.60)
0.05 (2.86)

1.38 (1.09)
1.37 (1.09)
1.39 (1.10)
1.36 (1.09)
1.36 (1.09)
1.36 (1.09)
1.52 (1.15)
1.42 (1.11)
1.32 (1.07)
1.33 (1.08)
1.32 (1.07)
1.32 (1.07)
1.61 (1.20)
1.55 (1 .16)
1.58 (1.19)
1.41 (1.12)
1.45 (1.12)
1.49 (1.13)
1.48 (1.13)
1.47 (1.13)
1.49 (1.13)
1.48 (1.13)
1.45 (1.13)
1.82 (1.35)
1.43 (1.13)
1.75 (1.32)
1.78 (1.36)
1.77 (1.35)
1.80 (1.36)
1.57 (1.19)
1.61 (1.23)
1.90 (1.38)
2.36 (1.59)
1.58 (1.18)
1.73 (1.29)
1.72 (1.29)
1.60 (1.17)
1.79 (1.33)
1.82 (1.37)
1.76 (1.34)
3.60 (1.44)
1.61 (1.20)
1.84 (1.35)
1.76 (1.32)
1.83 (1.37)

72 (8.25)
15.2 (1.16)
16.1 (1.16)
0.05 (1.16)
0.18 (1.17)
0.050 (1.19)
0.21 (1.16)
0.025 (1.19)
0.20 (1.13)
0.017 (1.13)
0.026 (1.13)
0.048 (1.13)
0.0007 (1.13)
0.97 (1.24)
0.11 (1.26)

13.7 (1.19)
53.0 (1.22)
6.23 (1.33)
6.69 (1.32)
5.05 (1.28)
2.70 (1.23)
6.75 (1.32)

43.8 (1.97)
0.54 (2.35)
0.10 (1.36)

16.9 (2.11)
321 (2.15)

6.82 (1.67)
19.9 (1.78)
7.46 (1.76)

11.5 (1.87)
5.99 (1.64)
0.59 (1.52)
1.25 (1.45)
0.009 (2.00)
6.36 (2.11)
0.023 (1.23)
2.23 (2.77)
0.0042 (3.16)
1.54 (2.94)

1.36 (1.10)
1.41 (1.12)
1.39 (1.10)
1.47 (1.12)
1.43 (1.12)
1.42 (1.11)
1.41 (1.11)
1.43 (1.12)
1.37 (1.10)
1.37 (1.10)
1.37 (1.10)
1.37 (1.10)
1.37 (1.10)
1.51 (1.15)
1.50 (1.16)

1.52 (1.14)
1.50 (1.15)
1.51 (1.15)
1.52 (1.16)
1.51 (1.16)
1.49 (1.15)
1.52 (1.17)
1.70 (1.28)
1.76 (1.35)
2.03 (1.28)
1.64 (1.25)
1.66 (1.27)
1.49 (1.16)
1.53 (1.20)
1.56 (1.20)
1.58 (1.21)
1.61 (1.23)
1.57 (1 .21)
1.54 (1.17)
1.69 (1.30)
1.79 (1.39)
1.45 (1.14)
1.83 (1 .41)
1.81 (1.36)
1.85 (1 .41)

Geo, geometric. aGeometric mean and GSD are in parentheses and are given for each estimated population parameter. The GSD,
in that case, measures uncertainty in location or spread.

could be given for each animal or human
group defined in the data section above, but
the tables are too large to be presented here.
The following summarizes the information
the simulations give on the various strains or

individuals studied. Overall, the parameters
retain physiologically plausible values.

Mice. For mice the posterior mean values
for flows, volumes, and partition coefficients
and most metabolic parameters are not very
different from their prior mean. However,
KM (oxidative affinity for TCE) is twice as

high as a priori estimated. Noticeable differ-
ences are also found for KEHBC (biliary

excretion rate of TCOG), which decreases by
a factor of 7, KEHRC (enterohepatic recircu-
lation rate of TCOH), VMTC and KMT
(Michaelis-Menten parameters for the reduc-
tion of reduction of TCA to DCA), KUTC
(urinary excretion of TCA), the last four
parameters being higher by a factor of 2,
KFC (production of DCVC from TCE),
twice less important than a priori assumed,
VMTBC (V,,,, for TCE in Clara cells) is also
lower, but with a large uncertainty, and
finally KTSD (transport rate from stomach to

duodenum) posterior mean is somewhat
higher than its prior estimate. Uncertainties

(SDs) about all these geometric means range
from a few percents (for physiological para-
meters) up to a factor of 2 for some metabolic
parameters. These uncertainties are usually
much lower than the prior uncertainties,
showing that substantial information on
about all parameters has been gained from the
experimental data.

Variabilities, as estimated by the inter-
group GSD (Table 3), range from 1.23,
which corresponds to a CV of about 20% for
some organ volumes, to 2.7 for KAD (intesti-
nal absorption rate, from duodenum to liver).
Metabolic parameters have intergroup vari-
abilities of at least 1.34 (about 30% CV).
Differences between groups do not seem to
be caused by differing sexes or exposure lev-
els, as no such pattern emerges from examina-
tion of group means. Strain cannot be a
factor, since only B6C3F1 mice were studied.
Differences should therefore be ascribed to
interindividual variability or to differences
between laboratories (which could have unre-
ported experimental differences, such as ani-
mal providers). Note that, a posteriori, there
does not seem to be a particular problem with
the DCA measurements in Larson and Bull
(14,16) data (groups 25-29) or Templin
et al. (18) data (groups 31-33). The meta-
bolic parameters directly related to DCA are
not systematically different for these groups,
and the fits to the data are as good as
for other experiments. Only two DCA
concentration-time points (at 0.25 hr) in
experiments 25 and 26 (14) may be too high
(the model underpredicts them by a factor of
2 or 2.5), but this may be simply due to noise
in the data.

Rats. For rats the posterior mean values
for most parameters are close to their prior
mean. The largest differences are found for
the scaling coefficients of the volume of dis-
tribution ofTCOH (VDBWC, increased by
a factor of 1.4), and of DCA (VCDCAC,
decreased by a factor of 1.4), the fractional
split of TCE to TCA (PO) doubled, and the
enterohepatic recirculation of parameter of
TCOH (KHERC) tripled. SDs for these geo-
metric means reach a factor of 3 and tend to
be higher than those for mice (this can be
explained by the smaller rat data set).

Variabilities, as estimated by the inter-
group GSD, also tend to be higher for rats:
they range from 1.32 to 3.6 for KAD (duode-
num to liver absorption rate). Differences
between groups, most apparent for KAD, the
urinary excretion of TCA (KUTC), and the
volume of distribution of TCA (VCTCAC),
cannot be ascribed to sex, strain, exposure
level, or laboratory, as no particular pattern
emerges from examination of group means.
Differences are therefore due to inter-
individual variability. Here also there does
not seem to be a particular problem with
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BW
QCC
QPC
QFC
QGC
QLC
QSC
QTBC
VFC
VGC
VLC
VRC
VTBC
VDBWC
VDTCAC
VDDCAC
PB
PF
PG
PL
PR
PS
PTB
VMC
KM
PO
VMOC
KMO
VMRC
KMR
VMGC
KMG
KEHBC
KEHRC
KUGC
VMTC
KMT
KUTC
KFC
VMTBC
KMTB
KAD
KTSD
VMDC
KMD
KUDC
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DCA measurements in groups 4 and 5 (14).
Metabolic parameters directly related to DCA
are not systematically different for these
groups, and the slight underpredictions of the
model for early time points (at most 70%)
could be due to measurement uncertainty.

Humans. The ratios of posterior to prior
mean values for metabolic parameters in
humans range from a factor of 0.2 for
VMTC (the maximal rate of DCA formation
from TCA) to a factor of 6 for KEHBC (the
biliary excretion of TCOG). The difference
for VMTC is actually a nice result: without
imposing a priori a null value to this parame-
ter, the resulting posterior is very low, indi-
cating that according to the human data very
little DCA is produced, even if this observa-
tion is indirect (i.e., this result is imposed by
the implicit mass balance of the other
metabolites in humans). SDs for these geo-
metric means are also quite higher than for
animals, and reach a factor of 3.2. This, as for
rats, can be explained by the small human
data set.

Interestingly, variabilities for physiological
parameters are systematically higher than for
animals but about the same for metabolic
parameters. Differences between groups can-
not be ascribed to sex, since only males were
studied. They may be due to interindividual
variability. The subjects studied by Muller
et al. (22,23) have much higher blood over
air partition coefficients than subjects in other
studies. This is linked to the poor fit of the
model for the same subjects. The model can-
not accommodate the (apparently) differing
blood-air partition coefficient observed dur-
ing exposure and after exposure. This could
be linked to an experimental peculiarity in
exhaled air concentration measurements for
those studies.

Table 4 shows the highest covariances
between pairs of parameters for human group

3- .. .,

4-

0 1 2 3 4 5 6
VMOC

Figure 8. Correlation between the natural logarithms of
VMOC (V,max for oxidation of TCOH to TCA) and KMO
Icorresponding (Km} for human group 2 (21)1. The correla-
tion coefficient is 0.81 (see also Table 4).

2 (21). Similarly, high correlations are
obtained for every animal or human group.
These covariances can be up to 0.81 (between
VMOC and KMO, Figure 8) or even 0.94
(between the parameters VMRC and KMR).
Any simulation neglecting to estimate these
covariances will produce incorrect predic-
tions, since these parameters cannot be sam-
pled independently without producing highly
improbable combinations and hence highly
improbable predictions.

Preictions ofCancer Dose Metrics
Additional subjects were simulated by
sampling parameter values from the esti-
mated population distributions summarized
in Table 3 and from the additional distribu-
tions given in Table 2. Sampling took into
account parameter covariance for the para-
meters listed in Table 3, since it was made
from 1,000 random samples of the MCMC
runs, at equilibrium. Remember that these
parameter sets are randomly drawn from

their joint (multivariate) distribution not just
from marginal distributions. Tables 5 to 8
summarize the posterior distributions of
LDA-AUC and Cm,. for TCA and DCA in
liver for several exposure scenarios. The
results for lung, kidney were also computed
(data not shown). The 95% posterior confi-
dence intervals presented are defined as the
interval between the 2.5th percentile and the
97.5th percentile. Figures 9 and 10 present
histograms of the posterior distributions of
TCA LDA-AUC and Cmax in the liver for
humans exposed continuously to 1 ppm
TCE. The impact of uncertainty and vari-
ability is large but not unrealistic; in these
extrapolations geometric SDs correspond to
factors from 1.8 to 9 (for chloral concentra-
tion in human lung when exposed through
drinking water). Except for one case, the val-
ues found by Clewell et al. (1) are all con-
tained within the 95% posterior confidence
intervals. The only area of disagreement is in
the mouse response to low-dose drinking

Table 4. Correlation coefficients among estimated model parameters for human group 2 (21). Parameter pairs for
which correlation coefficients were higher than 0.5 are in bold face.

QCC QFC QGC VDTCAC PF PO VMOC KMO VMRC KMR VMGC KMG

QCC 1.00
QFC -0.25 1.00
QGC -0.54 0.50 1.00
VDTCAC 0.07 -0.04 -0.06 1.00
PF 0.55 0.55 0.02 0.00 1.00
PO 0.03 0.00 -0.04 0.65 0.01 1.00
VMOC -0.10 -0.05 0.01 -0.01 -0.13 -0.13 1.00
KMO -0.11 -0.01 0.01 0.02 -0.11 0.22 0.81 1.00
VMRC 0.02 -0.01 0.05 0.04 0.03 0.02 0.15 0.11 1.00
KMR -0.02 -0.04 0.04 0.10 -0.04 0.07 0.14 0.12 0.94 1.00
VMGC -0.10 0.01 0.02 0.11 -0.07 0.13 0.21 0.22 0.08 0.04 1.00
KMG -0.16 0.01 0.00 0.22 -0.13 0.26 0.06 0.22 -0.00 0.14 0.60 1.00

Table 5. Posterior distribution summaries for the liver tumor dose metric LAD-AUC of TCA concentration in liver.a All
numbers are on the natural scale.

Mouse LAD-AUC Rat LAD-AUC Human LAD-AUC
Exposure Geo. mean 95% posterior Geo. mean 95% posterior Geo. mean 95% posterior
conditionsa (GSD) CIb (GSD) CIb (GSD) Cib
Inhalation

1 c _ - _ - 88 (2.5) 13-500
10c _ - - - 1,200 (2.5) 160-5,800
50d _ - - - 1,500 (2.5) 200-7,600

looe 500(2.1) 120-1,900 110(2.4) 18-700 -

lDood - - - - 3,200 (2.4)
510-16,000

300e 970 (2.0) 270-3,600 230(2.4) 39-1,300 -

450e 1,200(2.0) 330-4,400 280(2.4) 44-1,600 -

600e 1,300 (2.0) 370-5,000 310 (2.5) 48-1,800 -

Oil gavagef
357 - - 290 (2.5) 48-1,700 - -

538 990 (2.1) 230-3,900 350 (2.5) 58-2,200 - -

714 1,100 (2.1) 250-4,400 400 (2.5) 68-2,500 - -

1,076 1,300 (2.1) 290-5,200 460 (2.6) 77-3,000 - -

1,448 1,400(2.1) 320-5,900 510(2.6) 83-3,200 - -

Drinking water
0.0286c - - - - 4.2 (2.4) 0.73-17
7.6c 43 (2.7) 4.3-200 17 (2.5) 2.8-110 - -

&Inhalation exposures in ppm; oil gavage and drinking water exposure in mg/kg/day. bCI means confidence interval. cContinuous expo-
sure. dExposure 8 hr per day, 5 days per week. *Exposure 7 hr per day, 5 days per week. fGavage once per day, every day.
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Table 6. Posterior distribution summaries for the liver tumor dose metric Cmax of TCA concentration in liver.a All
numbers are on the natural scale.

Mouse Cmax Rat Cmax Human Cmax
Exposure Geo. mean 95% posterior Geo. mean 95% posterior Geo. mean 95% posterior
conditionsa (GSD) Clb (GSD) Clb (GSD) Clb
Inhalation

1 c _ _ _ 3.9 (2.6) 0.54-23
loc _ _ _ _ 53 (2.5) 6.9-270
50d _- - 77 (2.4) 12-390

100e 62 (1.9) 17-200 10 (2.2) 2.1-51 - -

l ood _ - - - 170 (2.4) 28-830
300e 100(1.8) 33-300 20(2.3) 4.2-97 - -

4508 120 (1.8) 38-370 22 (2.3) 4.6-120 - -

600e 130 (1.8) 41-410 24 (2.3) 4.8-130 - -

Oil gavagef
357 - - 18(2.3) 4.0-100 - -
538 81 (1.8) 26-260 21 (2.4) 4.4-120 - -
714 89 (1.8) 29-290 23 (2.4) 4.6-130 - -

1,076 100 (1.8) 32-340 26 (2.5) 4.9-150 - -
1,448 110 (1.8) 33-370 28 (2.5) 5.0-170 - -

Drinking water
0.0286c - - - 0.18 (2.4) 0.030-0.80
7.6c 1.8 (2.7) 0.19-8.9 0.80 (2.5) 0.13-5.9 - -

&Inhalation exposures in ppm; oil gavage and drinking water exposure in mg/kg/day. bCI means confidence interval. Ccontinuous expo-
sure. dExposure 8 hr per day, 5 days per week. ¶Exposure 7 hr per day, 5 days per week. fGavage once per day, every day.

Table 7. Posterior distribution summaries for the liver tumor dose metric LAD-AUCof DCA concentration in liver.a All
numbers are on the natural scale.

Mouse LAD-AUC Rat LAD-AUC Human LAD-AUC
Exposure Geo. mean 95% posterior Geo. mean 95% posterior Geo. mean 95% posterior
conditionsa (GSD) Clb (GSD) Clb (GSD) Cib
Inhalation

1 c - -_ 0.45 (2.2) 0.080-1.7
1oc _ _ - - 4.1 (2.2) 0.68-16
50d _- - 4.9 (2.2) 0.83-19

1ooe 19 (2.6) 3.2-120 17 (4.2) 0.76-230 -

l ood _- - 9.6 (2.2) 1.7-38
300e 32 (2.7) 5.2-250 29 (4.1) 1.5-390 - -

450e 37 (2.7) 6.0-300 32 (4.1) 1.7-430 - -

600e 40 (2.8) 6.4-340 34 (4.1) 1.9-450 - -

Oil gavagef
357 - - 32 (4.0) 1.9-380 - -
538 33 (2.7) 5.1-270 37 (4.0) 2.1-420 - -
714 36 (2.7) 5.6-310 39 (4.0) 2.3-450 - -

1,076 41 (2.8) 6.3-350 43 (3.9) 2.6-480 - -
1,448 44(2.8) 6.8-400 45(3.9 2.7-510 - -

Drinking water
0.0286c - - - - 0.027 (2.0) 0.0060-0.094
7.6c 6.4 (2.6) 0.94-39 3.5 (4.3) 0.16-54 - -

&Inhalation exposures in ppm; oil gavage and drinking water exposure in mg/kg/day. bCI means confidence interval. cContinuous expo-
sure. dExposure 8 hr per day, 5 days per week. *Exposure 7 hr per day, 5 days per week. fGavage once per day, every day.

water administration of TCE, for which a

lower amount of TCA and a higher amount
of DCA are predicted here, compared to

Clewell et al. estimates.

Sensitivity ofDose Metrics to Model
Paraeters

Results of a stepwise multiple regression of
TCA LDA-AUCwith respect to the model
parameters in the case of humans continu-
ously exposed to 1 ppm TCE indicates that
many parameters condition the results (data
not shown). Among them figure key meta-
bolic constants but also physiological parame-
ters or partition coefficients. The number of
parameters conditioning TCA LDA-AUC

explain the relatively large SDs for the risk
estimates presented in Table 5. The same

variables, in about the same order, influence
TCA C. (data not shown).

Discussion
Data
The grouping by studies is somewhat arbitrary
but was imposed on us by the aggregate
reporting of the data. It can still be justified,
since heterogeneity in batches of animals and
differences in laboratory procedures are

expected. As a consequence, all individuals
were supposed to behave similarly in a given
experiment. This is likely to lead to a moderate

underestimation of variability. Note also that
other data sources could have been considered,
in particular for humans (36-43). These addi-
tional data sets might be useful for external
validation of the model.

Method

The proposed methodology is gaining interest
and is establishing itself for the calibration and
validation of PBPK models (8-10,44,45). A
Bayesian analysis allows us to combine two

forms of information: a) prior knowledge from
the scientific literature, and b) data from
Monster's experiments, in the context of the
physiological compartmental model. Neither
source of information is complete. If prior
knowledge were sufficient, experiments would
not need to be performed, but data alone are

insufficient to pin down all parameters to rea-

sonable values. Our goal was to fit the data
using scientifically plausible parameter values.
The posterior (i.e., after fitting) uncertainty for
such parameters is underestimated if all physi-
ological parameters are considered perfectly
known and set to predefined values, a practice
too often adopted to alleviate computational
burden. Prior uncertainty about physiological
parameter values needs to be taken into
account, unless it can be proven negligible by
sensitivity analysis of the posterior parameter
distributions (not by sensitivity of the final
predictions to be made). However, such a sen-

sitivity analysis of the fitting process itself, in
the case of PBPK models, is more difficult to
perform than simply considering all param-

eters uncertain. To obtain samples from the
joint posterior distribution of all parameters,
MCMC sampling was used. Figure 11 is an

illustration ofMCMC sampling compared to

simple Monte Carlo sampling. In the former,
the values drawn for each parameter start from
the prior distribution and converge, as itera-
tions progress, to a data-adjusted, or updated,
posterior distribution. The posterior density
corresponds to the product of the prior density
by the data likelihood. In the case of simple
Monte Carlo sampling, all values are drawn
from the same distribution (equivalent to a

nonupdated prior). Beyond improving the fit,
the method used here also provides distribu-
tions of estimates directly usable as inputs for
uncertainty analysis of cancer dose-response
relationships. In addition, the posterior distrib-
utions of Table 3 can be taken as new priors in
future studies. Finally, it can be checked a pos-
teriori that strong correlations exist between
parameters (Table 4). A calibration neglecting
to estimate and account for these covariances
would have produced incorrect estimates of
uncertainty, since these parameters cannot be
sampled independently without producing
highly improbable combinations of values and
hence highly improbable predictions. Another
sensitivity issue stems from the fact that
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when good prior information is missing the
definition of some priors is vague and some-
what arbitrary. Sensitivity analyses with respect
to those priors ideally should be performed.
However, in the context of a complex PBPK
model, such sensitivity analyses would involve
very heavy computations.

Results
Interindividual human variability of TCE
metabolism, as estimated here, is not very
large-GSDs of metabolic parameters range
from a factor of 1.5 to 2. However, only
small samples ofyoung Caucasian males were
analyzed. New data, developed by Dr.
Fisher's group, include females and allow an
assessment of potential sex differences (46),
although animal data do not point to such
differences. Metabolism in animals appears as
variable as in young Caucasian males. SDs
corresponding to factors of 1.5-3 are to be
expected. It should also be noted that the
analysis does not a posteriori point to prob-
lems with DCA concentrations in the Larson
and Bull (14,16) or Templin et al. (18)
experiments. There appears to be no conflict
between those data and others. The only
obvious misfit is in human exhaled air and
blood levels. Yet, it is present only for Muller
et al. (22,23) experiments and not for
Monster et al. (20,21) data. It is one of the
strengths of Bayesian PBPK modeling that
although the number of parameters is large,
overfitting is avoided and discrepancies in the
data are left apparent (47). Unfortunately
there is no obvious explanation for the
discrepancy. The new animal and human
data mentioned above may help us gain a bet-
ter understanding ofTCE inhalation kinetics.
Despite the problem with Muller et al.
(22,23) data on exhaled air and blood
concentrations of TCE, those experiments

.2 o 2 4 6 a

Natural Logarithm of TCA AUC-LAD in Human Liver

Figure 9. Posterior distribution histogram (n = 1,000) of
the natural logarithm of TCA LAD-AUC in human liver,
for a continuous 1-ppm inhalation exposure (see Table
5). The spread of these model-predicted values is condi-
tioned by uncertainty and variability. The smooth line
represents the corresponding normal approximation
[geometric mean: log(88) = 4.48; GSD: log(2.5) = 0.921.

Table 8. Posterior distribution summaries for the liver tumor dose metric Cmax of DCA concentration in liver.a All
numbers are on the natural scale.

Mouse Cmax Rat Cmax Human Cmax
Exposure Geo. mean 95% posterior Geo. mean 95% posterior Geo. mean 95% posterior
conditionsa (GSD) Clb (GSD) Clb (GSD) CIb
Inhalation

1 c _ _ _ _ 0.019 (2.2) 0.0033-0.073
10' c _ _ _ 0.17 (2.2) 0.028-0.69
50d _- - 0.45 (2.3) 0.073-1.8
lae 2.0 (2.9) 0.31-18 1.3 (3.7) 0.074-14 -

lood _- - 0.84 (2.2) 0.14-3.4
3008 3.6 (3.0) 0.51-32 1.9 (3.8) 0.12-20 -

4506 4.1 (3.0) 0.58-36 2.0(3.8) 0.12-22 -

600e 4.4(3.0) 0.585-42 2.1 (3.8) 0.12-23 -

Oil gavagef
357 - - 1.8 (3.8) 0.11-20 - -

538 4.0 (2.9) 0.54-32 2.0 (3.9) 0.12-22 - -

714 4.2 (2.9) 0.56-35 2.1 (3.9) 0.12-23 - -

1,076 4.3 (2.9) 0.57-39 2.2 (3.9) 0.13-25 - -

1,448 4.4 (2.9) 0.58-40 2.25 (3.9) 0.14-26 - -

Drinking water
0.0286C - - - - 0.0011 (2.0) 0.00025-0.0039
7.6c 0.27 (2.6) 0.040-1.6 0.17 (4.4) 0.0073-2.7 -

aInhalation exposures in ppm; oil gavage and drinking water exposure in mg/kg/day. bCl means confidence interval. cContinuous
exposure. dExposure 8 hr per day, 5 days per week. &Exposure 7 hr per day, 5 days per week. tGavage once per day, every day.

were not discarded from the data set. The
model is not much affected by the misfit, and
metabolite levels are well predicted.

The posterior predictions for risk
measures are affected by expectedly large
uncertainties and some degree of variability.
Uncertainties depend on species (conditioned
by the amount of data available for that
species), end points (still conditioned by the
data), or exposure levels and patterns (since
different parameters or combinations thereof
condition outcome in different situations).
Variabilities seem to be of about the same
magnitude in small groups of humans and
animals. For the modeling of animal cancer
bioassay internal exposures or human popula-
tion exposures, the variability found here

-4 -2 0 2 4 6
Cmax TCA liver human 1 ppm

Figure 10. Posterior distribution histogram (n= 1,000) of
the natural logarithm of TCA Cmax in human liver, for a
continuous 1-ppm inhalation exposure (see also Table
5). The spread of these model predicted values is condi-
tioned by uncertainty and variability. The smooth line
represents the corresponding normal approximation
(geometric mean: log(3.9) = 1.36; GSD: log(2.6) = 0.96).

would be damped by averaging effects.
Uncertainty would therefore dominate, and
variability could be neglected, in a first
approximation. This would require condi-
tioning internal exposure estimates at various
dose levels on the same parameter vectors;
exposure groups would not be simulated
independently.

Finally, one of the challenges to modeling
in toxicology is the full exploitation of the
numerous data sets collected during epidemi-
ological or occupational hygiene studies, and
generally in settings where exposure levels are
unknown. Most of the times very simplistic
analyses of such data are performed because

Iteration

Figure 11. Illustration of Markov chain Monte Carlo
(MCMC) sampling, compared to simple Monte Carlo
sampling. In MCMC sampling, the values drawn for a
parameter 8 (circles) start from the prior distribution and
converge, as iterations progress, to a data-adjusted, or
updated, posterior distribution. The posterior density
corresponds to the product of the prior density by the
data likelihood. In the case of simple Monte Carlo sam-
pling (crosses), all values are drawn from the same dis-
tribution (equivalent to a nonupdated prior).
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of lack of experience in more powerful
methodologies. There is no difficulty, in the
above statistical framework, in considering
exposure as a parameter or function to esti-
mate. A major problem, however, resides in
accounting fully for the uncertainties stem-
ming from unknown time-varying exposures.
The impact of particular functional forms for
the time evolution of exposure has not yet
been thoroughly studied and validated. As
progress is made on such questions, toxico-
kinetic modeling will become a more power-
ful and widespread tool for drug development
and toxicity assessment. A publicly accessible
database of individual animal and human
data on kinetics and metabolism of major sol-
vents should be gathered and offered to pub-
lic access. This would allow a standardization
of analyses and their improvement.
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