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Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the
differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes
are necessary for normal mammalian development. This requirement has been proposed to have
evolved because of an interparental genetic battle for the utilization of maternal resources during
gestation and postnatally. The nonrandom requisite for monoallelic expression of a subset of genes
has also resulted in the formation of susceptibility loci for neurobehavioral disorders, developmental
disorders, and cancer. Since imprinting involves both cytosine methylation within CpG islands and
changes in chromatin structure, imprinted genes are potential targets for dysregulation by
epigenetic toxicants that modify DNA methylation and histone acetylation. Key words: Angelman
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Genomic imprinting is an epigenetic form
of gene regulation that results in monoallelic
expression. It is stably inherited during
somatic cell division but is reversed when
transmitted through individuals of the oppo-
site sex. Imprinting differs from classical
Mendelian principles of inheritance because
the two parental alleles are unequally
expressed despite both parents contributing
equal genetic content to their progeny. The
expressed allele is also parent-of-origin
dependent, unlike the random allele inacti-
vation that occurs at the Xist locus in
postimplantation embryos (1-4). Thus,
imprinting is a phenomenon in which the
expression of a gene in this generation
depends on whether it resided in a male or
female in the past generation.

Imprinted genes are normally involved in
mammalian embryonic growth and develop-
ment. They also act as disease susceptibility
loci because their functional haploid state
makes them vulnerable to being either inacti-
vated or overexpressed. Parental-specific epi-
genetic events such as DNA methylation at
CpG domains and histone acetylation are
implicated in the initiation and maintenance
of imprinting (2,5). Thus, environmental fac-
tors can induce imprint gene-dependent dis-
orders and diseases by both genetic and
epigenetic alterations (6,7). Because the
imprinting of genes varies between species,
individuals, tissues, cells, and stage of embry-
onic development (8-12), disease susceptibil-
ity due to alterations in genomic imprinting
represents a substantial epidemiologic and
genetic issue that must be addressed.

Imprint Gene Identification
Genomic imprinting was first described in
the fly, Sciara coprophila, in which the paternal
sex chromosome is preferentially lost from the

germ line and the soma during embryogenesis
(13). Imprinting has also been identified in
maize (14), zebra fish (15), and a variety of
other insects including Drosophila melano-
gaster in which the phenomenon has been
referred to as parental effects (13,16-19).
The viability of both gynogenic and andro-
genic flies and zebra fish (20-22) indicates,
however, that imprinted genes are not as
developmentally essential in these species as
in mammals (23-26).

The existence of imprinted genes in
mammals first became apparent when nuclear
transplantation experiments demonstrated
that diploid androgenotes derived from two
male pronuclei and gynogenotes formed from
two female pronuclei failed to develop prop-
erly during embryogenesis (24,25). Similarly,
in humans complete hydatidiform moles,
which contain only paternal chromosomes,
produce primarily placental tissue, whereas
dermoid cysts, which contain only maternal
chromosomes, produce primarily embryonic
tissue (23,26). These findings suggested that
the mammalian genome contains autosomal
genes required for development that are only
expressed from either the maternal or paternal
allele. These putative imprinted genes were
subsequently localized in the mouse genome
by the generation of mice with uniparental
disomies (UPD) at specific chromosomal
locations (27,28).

The first gene identified to have parent-of-
origin-dependent expression was the autoso-
mal transgene RsvIgmyc, which was expressed
exclusively from the paternal allele in the
heart (29). It was not until 1991 that the first
endogenous imprinted genes were discovered
(30,31). DeChiara et al. (31) observed that
homozygous Igf null mice were approxi-
mately 40% smaller than wild-type mice
when they were born, consistent with the

known growth effects of Igf2. Importantly,
the dwarfing phenotype was also unexpect-
edly observed in heterozygous mice but only
when the mutated allele was inherited from
the father. This demonstrated that the Igf2
gene is imprinted and expressed solely from
the paternal allele. IGF2 is also imprinted in
human tissues with two notable exceptions:
the adult liver, where expression is biallelic
because of alternate promoter usage after
birth (10), and the brain, where a natural loss
of imprinting (LOI) results in biallelic expres-
sion in both the fetal brain and pons region
of the adult brain (32).

The mannose 6-phosphate/insulin-like
growth factor 2 receptor (M6p/Ig2r) was also
shown to be imprinted but maternally
expressed (30). The M6p/Ig/2r maps to the
T-associated maternal effect locus on mouse
chromosome 17 (30) and is the gene respon-
sible for this maternally inherited lethal effect
(33). The M6P/IGF2R encodes for a receptor
in mammals that binds both M6P-containing
glycoproteins and IGF2 through independent
binding sites (34). The primary functions of
this receptor are the intracellular trafficking of
phosphomannosyl glycoproteins from the
Golgi apparatus to the lysosomes, and the
internalization of IGF2 and other extracellu-
lar ligands to the lysosomes for degradation
(34). IGF2 signaling is not mediated by the
M6P/IGF2R, but rather it occurs principally
through the IGF1 receptor (35) and the
insulin receptor isoform A (36).

Imprinting characteristics are becoming
apparent as more imprinted genes are identi-
fied. Imprinted genes are not randomly dis-
tributed throughout the genome but rather
are frequently found clustered in imprinted
domains. Two imprinted domains in humans
that have been extensively investigated reside
at human chromosomes 11pl5.5 and 15q11-
ql3 (syntenic to the distal and central region
of mouse chromosome 7, respectively).
Imprinted genes have been identified within

Address correspondence to R.L. Jirtle, Box 3433, Duke
University Medical Center, Durham, NC 27710.
Telephone: (919) 684-2770. Fax: (919) 684-5584.
E-mail: jirtle@radonc.duke.edu

This study was supported by National Institutes of
Health grants CA25951 and ES08823, Department of
Defense grant DAMD17-98-1-8305, Rohm & Haas
Chemical Company, Inc., Sumitomo Chemical
Company, Ltd., and Zeneca Pharmaceuticals, Ltd. For
additional information on genomic imprinting, visit the
website (http.//www.geneimprint.com).

Received 20 August 1999; accepted 7 October
1999.

Environmental Health Perspectives * Vol 108, Supplement 1 * March 2000 5



MURPHY AND JIRTLE

these domains that encode both translated
and untranslated RNA (37,38) as well as
antisense RNA that may be involved in
imprint control (39,40). Imprinted genes
such as H19 and IGF2 show coordinate reg-
ulation (41), and higher order regulation is
imposed upon domains by imprint control
centers (42). Imprinted genes also often
reside in chromosomal regions that undergo
asynchronous replication (43,44). Thus, the
meiotic recombination frequencies in these
regions may differ between the male and
female germ cells (45). Another characteristic
of imprinted genes is allele-specific cytosine
methylation of CpG dinucleotides that
appears to distinguish the parental alleles
(46-48). Tandem, repetitive sequence ele-
ments associated with the areas of differential
methylation have also been identified in sev-
eral imprinted genes (i.e. H19, M6p/Igf2r,
U2afJp-rs and p57kIP2) (49_53).

Presently, more than 20 human imprinted
genes have been detected, and it is postulated
that 100-500 imprinted genes may exist (54).
Identifying the full complement of imprinted
genes may therefore represent a daunting
task. Some of the unique characteristics of
imprinted genes described above have pro-
vided a means to systematically screen for new
imprinted genes. Positional cloning coupled
with candidate gene testing has been used to
identify novel human imprinted genes located
in imprinted domains (55-58). Parental dif-
ferences in DNA methylation and expression
have also been used to detect imprinted genes
(59,60). Subtractive hybridization or differen-
tial display techniques utilizing cDNA from
gynogenotes, androgenotes, and fertilized
embryos have yielded novel imprinted genes.
These include the paternally expressed genes
Peg]lMest, a mesoderm restricted hydrolase at
mouse chromosome 6; Peg3, a zinc-finger pro-
tein on proximal mouse chromosome 7; and
Peg5/Nnat, located on mouse chromosome 2
(61,62). Grfp and U2afl-rsl were identified
by a genomewide screen termed restriction
landmark genome scanning using methyla-
tion-sensitive restriction enzymes (60,63).
The GABAA receptor subunit genes
GABRB3, GABRA5, and GABRG3 were
shown to be exclusively expressed from the
paternal allele by microcell-mediated chromo-
some transfer (64). Clearly, the identification
of new imprinted genes needs to be a top pri-
ority to further our understanding of the mol-
ecular mechanisms underlying both their
expression and association with genetic
disorders and diseases.

Evolution of Imprinting
The functional haploid state of imprinted
genes eliminates inherent protection from
deleterious recessive mutations. Therefore,
genomic imprinting appears to be a risky

method for regulating gene expression,
particularly since imprinted genes are
involved in such critical aspects of embryoge-
nesis (i.e., growth control and behavioral
development). Explanations for why and
when imprinting evolved is therefore a hotly
debated topic (65,66). Numerous theories
have been proposed to explain the presence of
imprinted genes. Their presence blocks
parthenogenesis, guaranteeing a continued
role for the male in mammalian reproduc-
tion. Although this may be comforting to the
male gender, it is unlikely to be the driving
force for imprinting, as it does not explain
why both maternally and paternally
imprinted genes exist in the genome; neither
does the suggestion that imprinting devel-
oped to protect the cell against aneuploidy
(67), which would predict a random distrib-
ution for imprinted genes rather than discrete
domains. Imprinted genes are also postulated
to have arisen to protect the female from
ovarian germ cell tumors (68); however,
again this does not explain why both mater-
nally and paternally imprinted genes exist in
the genome. An alternative proposal for
imprinting suggests that the cytosine methy-
lation involved in imprint regulation evolved
as a defense mechanism for the inactivation of
parasitic sequences such as transposable ele-
ments and proviral DNA (69). This is sup-
ported by the finding that 5-azacytidine,
(5-azaC), an inhibitor of cytosine DNA
methyltransferase, activates silent retroviruses
(70). Nevertheless, it does not provide a com-
pelling explanation for the reason this host
defense system was used to create genes that
are functionally haploid.

The reciprocal imprinting of the Ig/2 and
M6p/Ig/2r genes suggests that the evolution
of genomic imprinting may have resulted
from an interparental conflict to control
intrauterine fetal growth (71). This parental
tug-of-war model of Haig predicts that
"... multiple paternity of a female's offspring,
in combination with postzygotic maternal
care, favors differential expression of maternal
and paternal alleles in offspring such that the
expression of paternal alleles increases the cost
of the offspring to its mother, whereas the
expression of maternal alleles reduces the cost
to the mother" (65). Thus, paternally
expressed genes are predicted to promote pre-
natal and postnatal growth, whereas mater-
nally expressed genes would suppress growth.
In support of this theory, the gene encoding
the fetal growth factor IGF2 is paternally
expressed, whereas H19, which encodes for
an untranslated RNA involved in silencing
IGF2 expression, is maternally expressed
(31,72,73). The genes that encode for the
M6P/IGF2R, which degrades IGF2, and
MEG1/GRB1O, which inhibits IGF2
signaling, are both maternally expressed

(30,34,74). Finally, inactivation of Peg]lMest
and Peg3 in mice results in growth retarda-
tion during embryogenesis, demonstrating
that these two paternally expressed genes
stimulate growth (75,76).

A number of predictions are made by this
genetic conflict model. If the genetic interests
of the male are to promote the growth of his
offspring over those of competing males,
monogamous species should not require such
genetic mechanisms to guarantee potential
fitness. Tilghman and colleagues (77) tested
this postulate by generating crosses between
the monogamous rodent species Peromyscus
polionotus and the polyandrous Peromyscus
maniculatis. Although the two species are
similarly sized, the offspring generated from
these crosses exhibited striking growth
defects, consistent with the idea that
P. polionotus does not harbor imprinted
genes. Surprisingly, genomic imprinting was
maintained in both parental species but was
widely disrupted in the F, hybrids. These
results do not necessarily differ with the pre-
diction of the genetic conflict model because
if monogamous behavior developed in
P. polionotus after imprinting evolved in an
ancestral parent, it may still persist even
though a parental conflict no longer exists.

The parent-offspring conflict is also
predicted to be absent when the parental genes
are unable to influence the amount of nutri-
ents the offspring receive from their mother
during gestation. Thus, a second correlate of
the genetic conflict model is that imprinting
will play an important role in development in
viviparous animals but not in oviparous ani-
mals. The platypus, Ornithorhynchus anatinus,
is a monotreme that appears to be a eutherian
mammal-avian hybrid. It is the closest
oviparous relative of eutherian mammals. A
conflict between the maternal and paternal
genomes over control of intrauterine fetal
growth and allocation of maternal resources
should not exist in the platypus because its off-
spring hatch from an egg. Therefore, support
for the genetic conflict model would also be
generated by data showing a lack of imprinting
in this oviparous species. Such a finding would
also suggest that genomic imprinting is unique
to eutherian mammals, where fetal growth
occurs in utero. We are presently investigating
these intriguing postulates.

Imprinting and Genetic
Disorders
Regardless of which theory correctly accounts
for the presence of paternally and maternally
imprinted loci, a functional consequence of
genomic imprinting includes the cellular loss
of protection from deleterious recessive muta-
tions. Ironically, this has led to an increased
susceptibility to developmental defects,
behavioral disorders, and cancer.
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Bedkwith-Wiedemann Syndrome
There are a number of human genetic
disorders associated with imprinting defects
(78,79). Beckwith-Wiedemann syndrome
(BWS) maps to lp 15 and is characterized by
general overgrowth, with symptoms includ-
ing hemihypertrophy, macroglossia, and vis-
ceromegaly. Individuals with this disease also
have an increased incidence of Wilms tumor,
a childhood kidney malignancy (80). The
most common molecular event occurring in
BWS patients who do not have cytogenetic
abnormalities is the biallelic expression of
IGF2 due to LOI (81,82). LOI at the IGF2
locus may be accompanied by the methyla-
tion and silencing of the active maternal allele
of H19 (83,84). Translocations in BWS
patients may also lead to LOI at the IGF2
locus but without loss of H19 imprinting
(85). These translocations affect imprinting
by disrupting a gene involved in imprint con-
trol, or by altering the function of an
imprinting center. It is possible that multiple
genes within this imprinted cluster (e.g.,
IGF2, H19, p57KIP2, KvLQTJ) contribute to
the etiology of BWS. However, the available
evidence suggests that this syndrome results
from the dysregulation of IGF2 imprinting,
since transgenic mice that overexpress Igf2
develop symptoms similar to BWS (86).

Prader-Whlli and Angelman Syndromes
Two clinically distinct genetic disorders
associated with genomic imprinting on chro-
mosome 15ql -q13 are the Prader-Willi syn-
drome (PWS) and the Angelman syndrome
(AS). Each syndrome is associated with defi-
ciencies in sexual development and growth, as
well as behavioral and mental problems
including retardation (3,87). PWS and AS
are autosomal dominant disorders showing
parent-of-origin effects. The preferential loss
of the paternal or maternal allele in PWS and
AS, respectively, suggests the involvement of
imprinted genes (3).

PWS is a developmental and neuro-
behavioral disorder that results from the loss
of a paternally expressed imprinted gene(s)
(87). The identity and number of genes
involved in the etiology of PWS are
unknown, but SNPRIV (small nuclear ribonu-
cleoprotein N) is the best-characterized candi-
date (87-91). This genetic locus appears to
play a key role in regulating imprinting
throughout 15q1 1-q13. Microdeletions in
the 5' end of SNRPN alter promoter methy-
lation, prevent expression of the paternal
allele of SNPRN, and result in silencing of
other paternally expressed genes in this
imprinted domain (88-91). These micro-
deletions in PWS disrupt one component of a
bipartite imprinting center and block the
maternal-to-paternal switch of the entire
2-Mb imprinted domain that occurs

normally in the paternal germline (87,88,90).
This leads to the inappropriate downstream
effect of both parental alleles being
imprinted, with subsequent silencing of the
domain. SNURF (SNRPN upstream reading
frame), a protein transcribed along with SmN
from the SNURF-SNRPN bicistronic tran-
script, may be involved in this imprint-
switching process (92). Offspring inheriting
these microdeletions from their mother
exhibit no apparent deleterious phenotype;
however, a subsequent paternal transmission
can result in PWS (87,88,90).

AS patients lacking a chromosomal
deletion harbor a variety of mutations in
UBE3A, a gene encoding for E6-AP ubiqui-
tin-protein ligase involved in protein turnover
(93-95). UBE3A maps to human chromo-
some 1 5ql1 -q13. It is maternally expressed in
the human brain (96,97) and in the hippo-
campus and cerebellum of the mouse (98).
Abnormalities in maternal-specific UBE3A
expression during brain development are pro-
posed to cause AS. A small percentage of AS
patients also have microdeletions in the bipar-
tite imprinting center at the 5' end of
SNRPN (88,99,100). These deletions are dis-
tinct and upstream from those involved in
PWS and result in the loss of a novel 5' exon
of SNRPN (u5) (101). They block the pater-
nal-to-maternal imprint switch that occurs
normally in the maternal germline and may
therefore define sequences that are involved in
the regulation of the imprinting center.
Consequently, progeny inheriting these
microdeletions from their father do not
develop AS. However, maternal transmission
results in AS, presumably due to the aberrant
paternal epigenotype of the maternal allele,
which leads to transcriptional silencing of
UBE3A and possibly other maternally
expressed genes within this domain (99).

Imprinting and Behavior
Development
The paternally expressed human MEST
(mesoderm specific transcript) gene maps to
7q32, a region where maternal UPD is associ-
ated with intrauterine and postnatal growth
retardation (62,102) and allelic loss with
cancer (103). Recently, a targeted deletion
was introduced into the coding sequence of
the mouse homolog of MEST, Pegi/Mest, to
determine its function (76). Pegl/Mest-defi-
cient mice were viable and fertile when the
deletion was paternally derived; however, they
exhibited growth retardation and increased
lethality as predicted by the genetic conflict
model for imprint evolution (65,71).
Decreased reproductive fitness in the females
was also observed when the targeted disrup-
tion was inherited from their father. Maternal
behavioral deficiencies included failure to
ingest the extra-embryonic tissues (a normal

behavior in most mammals), reduced rate of
nest building, and pup neglect, compared to
wild-type control mice. This effect was not
based on the genotype of the progeny but
rather was due to an abnormal nurturing
behavior of the mutant parturient females.

Similarly, a mutation in the paternally
expressed gene Peg3 resulted in growth retar-
dation as well as a striking impairment of
maternal behavior that frequently resulted in
death of the offspring (75). It is presently
unknown whether inactivation of these genes
in humans has a detrimental effect on mater-
nal nurturing behavior. These results clearly
demonstrate that epigenetic regulation of
imprinted gene dosage can significantly alter
mammalian growth and behavior. They are
also consistent with the hypothesis that
genomic imprinting arose in mammals over a
parental genetic conflict to control distribu-
tion of maternal resources (104). They fur-
ther suggest that the increased cost of progeny
to the mother arising from paternally
expressed genes does not end at parturition,
as these same genes either directly or indi-
rectly influence the nurturing capacity of the
mothers toward their offspring.

Evidence for imprinting effects in human
disorders associated with mental abnormali-
ties includes the aforementioned Prader-Willi
and Angelman syndromes. Skuse et al. (105)
reported that an imprinted X-linked locus is
potentially responsible for differences in cog-
nitive function of females with Turner syn-
drome. In normal females (46, XX), one of
the two inherited X chromosomes is inacti-
vated. Turner syndrome results when all or
part of one X chromosome is deleted in
females and is manifested by a higher inci-
dence of social difficulties (106,107).
Evidence for imprinting came from the find-
ing that maternally inherited X chromosome
abnormalities (45, X') in Turner syndrome
generally result in more behavioral difficulties
than paternally inherited X-chromosome
abnormalities (45, XP) (105). Based on cyto-
genetic analysis it was determined that the
putative imprinted locus escapes X inactiva-
tion and potentially lies in Xpl 1 .23-Xqter.
Interestingly, Miller and Willard (108) have
recently identified a 5.5-megabase region on
human Xpl 1.2 1-pi 1.22 that contains eight
expressed sequences that escape X inactiva-
tion; an imprinted gene(s) in this region has
yet to be identified.

Parent-of-origin effects involved in other
behavioral and brain disorders have also been
reported. Included among these are bipolar
affective disorder (109-111), schizophrenia
(112,113), and autism (114). The involve-
ment of genomic imprinting in these exam-
ples remains to be elucidated. For an extensive
summary of parent-of-origin effects in human
disease, consult Morison and Reeve (115).
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Imprinting and Cancer
Imprinted genes are normally involved in
embryonic growth and behavioral develop-
ment. When imprinting is disrupted, some of
these genes can also either lose tumor sup-
pressor function or gain oncogenic potential.
Modifications in DNA methylation are pro-
posed to have a mechanistic role in carcino-
genesis (116). In the case of imprinted genes,
such epigenetic alterations may be more
immediately evident because of disruption to
their normal functionally haploid state. Loss
of heterozygosity or UPD at an imprinted
locus may result in the deletion of the only
functional copy of an imprinted tumor sup-
pressor gene (6,54). Alternatively, LOI or
UPD at an imprinted locus may result in
increased expression of an imprinted proto-
oncogene. Furthermore, genetic or epigenetic
inactivation of an imprint control center
could lead to abnormal expression of multiple
imprinted protooncogenes and/or tumor sup-
pressor genes, as imprinted genes often occur
in chromosomal domains (5,117). Imprinted
genes now known to be involved in carcino-
genesis include WT1, p57KIP2, p73, NOEY2
and the functionally related IGF2, and the
M6P/IGF2R (7,54).

IGF2 encodes for a growth factor that has
oncogenic potential when overexpressed
(118-120). Direct genetic evidence linking
tumorigenesis and aberrant imprinting was
shown for Wilms tumor, in which 70% were
found to have biallelic expression of IGF2
(121-123). LOI for IGF2 was also found in
both normal mucosa and colonic tumor tis-
sues of patients having colorectal carcinoma
(118). This indicates that increased IGF2
expression due to LOI is an extremely early
event in oncogenesis. Deregulation of IGF2
imprinting has now been shown to occur in
over 20 different tumor types, demonstrating
its fundamental mechanistic importance in
carcinogenesis (54).

The M6P/IGF2R, at human chromosome
6q26, is inactivated in a variety of tumors at
the earliest stage of transformation (124-127).
It is mutated in 60% of dysplastic liver
lesions and hepatocellular carcinomas of
patients with or without hepatitis virus infec-
tion (124,126-128). The M6P/IGF2R is also
mutated in rat liver tumors induced with the
genotoxic agent diethylnitrosamine (129).
The gene contains a poly-G region that is a
common mutational target in colon, gastric,
and endometrial tumors with mismatch
repair deficiencies and microsatellite instabil-
ity (130-132). Moreover, the M6P/IGF2R is
mutated in human gliomas that do not con-
tain mutations in the transforminggrowthfac-
tor b type II receptor or Bax genes (130), and
in 30% ofhuman breast tumors (125). Thus,
the M6P/IGF2R is frequently mutated in
a number of cancers, suggesting that this

multifunctional receptor normally serves as a
tumor suppressor.

Although gene imprinting is often
conserved between mammalian species, the
imprint status of the M6P/IGF2R in humans
and rodents is strikingly different. The
M6p/Ig2r is imprinted in mice (30) and rats
(129), but imprinting at this locus appears to
be a polymorphic trait in humans postnatally,
with most individuals having biallelic expres-
sion (12,133,134). The existence of individu-
als with an imprinted M6P/IGF2R tumor
suppressor suggests that they may have
increased susceptibility to tumor develop-
ment because of aberrant imprint control.
This postulate is supported by Xu et al.
(135), who reported partial imprinting of the
M6P/IGF2R in 50% of Wilms tumor
patients. Furthermore, only one inactivating
event, or hit, rather than the two hits postu-
lated by Knudson to be requisite for oncogen-
esis (136), would be needed to inactivate the
tumor suppressor function of the M6p/Igf2r
in mice. This may in part explain why mice
are more sensitive to tumor formation than
humans. It also suggests that transgenic mice
with directed biallelic expression of the
M6p/Igf2r may be better human surrogates
for carcinogen risk assessment.

Regulation of Imprinting
A cellular consequence of genomic imprinting
includes increased susceptibility to inappropri-
ate gene expression through inactivation of
functionally haploid loci. Importantly, both
genetic and epigenetic targets associated with
imprinted gene expression add to the inherent
susceptibility of these loci to phenotypic
abnormalities. These include the primary
nucleotide sequence of the imprinted gene,
regulatory sequences directing gene transcrip-
tion activity, and imprinting control centers,
which exert multigenic influence over
domains. Cellular factors that are required to
establish, maintain, and read the imprint
marks are also potential targets for perturba-
tion of the imprinting process. These cellular
components include the enzymatic machinery
required to both induce and sustain chro-
matin structure. Therefore, toxic agents capa-
ble of altering any one of these targets have
the potential to elicit disease in the recipient.
Depending on the particular allele affected,
this may also generate a heritable, deleterious
(epi)genotype that is inapparent until passed
through the germline of the opposite sex.

Although there is compelling evidence
for the role of sequence-specific elements in
the control of imprinted gene expression
(87,90,137), it is increasingly apparent that
these regulatory elements are also highly
dependent upon the context of their chromo-
somal location (138). In Drosophila, for exam-
ple, translocation of euchromatic sequence

into a region of heterochromatin induces con-
densation and gene silencing, a phenomenon
referred to as position effect variegation
(16,139). Similarly, imprinted expression of
the mouse transgene RsvIgmyc contrasts with
biallelic expression of the endogenous gene
(2,140). These contextual effects may be
induced by the interactions of multiple cis-
acting regulatory elements; however, a more
likely scenario is that they are induced by
alterations in chromatin structure.

All imprinted genes identified thus far have
exhibited differential methylation of parental
alleles. Methylation, therefore, likely plays a key
role in discriminating between the two alleles
and transmittance of information for imprint
reading (2). Differential methylation occurs
primarily in CpG islands, which are roughly
1 kilobase in length and are rich in the CpG
dinudeotide. The cytosine residue in this con-
text is recognized by (5-cytosine) DNA methyl-
transferases, which add a methyl group to the
5-carbon position (141-143). CpG islands are
found throughout the genome and are pre-
dominantly associated with genes (144). The
importance of DNA methylation for the
proper expression of imprinted genes was first
demonstrated with the use of methyltransferase
null mice (145). It was subsequently shown
that methyltransferase activity inhibition,
through treatment of cells with 5-azaC, also led
to biallelic expression ofIGF2 (146).

For genes not imprinted, CpG islands are
primarily unmethylated and the genes are tran-
scriptionally functional. Methylated CpG
islands are normally heterochromatic and
induce transcriptional silencing when associ-
ated with the promoter of an imprinted allele
(144). Conversely, unmethylated CpG
islands located 3' of the promoter on the
opposite allele are associated with transcrip-
tional activity, often producing antisense
RNAs (3,147-149). The antisense RNA pro-
duced from the M6p/Ig2 imprinting box,
located within an intragenic CpG island
(149), is thought to function in cis to repress
gene expression (2). This may be similar to the
mechanism by which Xist RNA reportedly
randomly inactivates the additional X chromo-
some in human females by first coating the
length of the targeted chromosome, and then
inducing heterochromatin spreading in cis (2).

Like unmethylated CpG islands, acetylated
histones are associated with euchromatin
(150). Therefore, differential histone acetyla-
tion between parental alleles may provide
another means by which imprinted genes are
regulated (151). In support of this postulate,
treatment with histone deacetylase inhibitors
results in loss of imprinting for both IGF2
(151) and H19 (152). The evidence indicates
that imprinting is influenced by chromatin
structure resulting from the status of both
DNA methylation and histone acetylation.
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Recently, a provocative connection
between these two epigenetic modifications
was established. The methyl-binding protein 2
binds specifically to methylated DNA and also
forms a complex with histone deacetylase, pro-
viding a link between the two in the establish-
ment of chromatin structure (150,153,154). It
has been suggested that DNA methylation and
histone acetylation (155) together serve as
layers for epigenetic gene silencing, with
methylation acting to commit genes into a
transcriptionally repressed state (153,156,
157). Although a number of chemical agents
disrupt DNA methylation (158-161) and
histone deacetylation (150,156,162), their
influence on genomic imprinting is largely
unknown. It is therefore crucial to determine if
these agents or other environmental toxicants
are capable of causing alterations in genomic
imprinting. Such a finding would have
far-reaching ramifications both for our under-
standing of the disorders of genomic imprint-
ing and for the design of potential preventative
or therapeutic measures.

In summary, epigenetic mechanisms of
gene inactivation involved in the progression
to a disease state are becoming more widely
recognized (144). Imprinted genes, therefore,
need to be considered as toxicologic targets
for both genetic and epigenetic alterations.
Unfortunately, apart from the few studies
showing that inhibitors of histone deacetyla-
tion and DNA methylation disrupt imprint-
ing (146,151,152), little is presently known
about the ability of physical and chemical
agents to perturb the status of an imprinted
gene, cluster, or domain.

Conclusions
Genomic imprinting has evolved in eutherian
mammals as an elaborate mechanism to
control gene expression. Imprint establish-
ment, maintenance, and reading appear to
involve both genetic (e.g., CpG islands,
imprint boxes, primary sequence elements)
and epigenetic mechanisms (e.g., chromatin
structure, as a result of cytosine methylation
and histone acetylation). The inherent plas-
ticity of the imprinting system implies that
deleterious alterations in such genes may
result in a gradation of phenotypical effects.
Furthermore, inheritance of an imprinting
mutation may not be evident if the sex of the
carrier does not switch, as is seen in
Prader-Willi and Angelman syndromes
(99,163,164). An additional complication is
that some genes exhibit polymorphic
imprinting (11,165-167). Thus, genomic
imprinting not only creates serious complica-
tions for genetic counseling of afflicted fami-
lies, but also for human risk assessment. It is
necessary to now directly test the ability of
environmental pollutants to alter imprinting
and disease susceptibility.
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