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ABSTRACT This paper examines the relationship be-
tween various treatment parameters within a latent variable
model when the effects of treatment depend on the recipient’s
observed and unobserved characteristics. We show how this
relationship can be used to identify the treatment parameters
when they are identified and to bound the parameters when
they are not identified.

This paper uses the latent variable or index model of econo-
metrics and psychometrics to impose structure on the Neyman
(1)-Fisher (2)-Cox (3)-Rubin (4) model of potential outcomes
used to define treatment effects. We demonstrate how the
local instrumental variable (LIV) parameter (5) can be used
within the latent variable framework to generate the average
treatment effect (ATE), the effect of treatment on the treated
(TT) and the local ATE (LATE) of Imbens and Angrist (6),
thereby establishing a relationship among these parameters.
LIV can be used to estimate all of the conventional treatment
effect parameters when the index condition holds and the
parameters are identified. When they are not, LIV can be used
to produce bounds on the parameters with the width of the
bounds depending on the width of the support for the index
generating the choice of the observed potential outcome.

Models of Potential Outcomes in a Latent
Variable Framework

For each person 7, assume two potential outcomes (Yo, Y1,)
corresponding, respectively, to the potential outcomes in the
untreated and treated states. Let D; = 1 denote the receipt of
treatment; D; = 0 denotes nonreceipt. Let Y; be the measured
outcome variable so that

Yi=DYy + (1 — DYy,

This is the Neyman-Fisher-Cox-Rubin model of potential
outcomes. It is also the switching regression model of Quandt
(7) or the Roy model of income distribution (8, 9).

This paper assumes that a latent variable model generates
the indicator variable D. Specifically, we assume that the
assignment or decision role for the indicator is generated by a
latent variable D}

D?: wp(Z;) — Up;

D;=1if D¥=0, = 0 otherwise, [1]
where Z; is a vector of observed random variables and Up; is
an unobserved random variable. D} is the net utility or gain to
the decision-maker from choosing state 1. The index structure
underlies many models in econometrics (10) and in psycho-
metrics (11).
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The potential outcome equation for the participation state
is Yi; = wi(X;, Uy), and the potential outcome for the
nonparticipation state is Yo; = po(X;, Uoi), where X; is a vector
of observed random variables and (Uy;, Uy;) are unobserved
random variables. It is assumed that Y, and Y7 are defined for
everyone and that these outcomes are independent across
persons so that there are no interactions among agents.
Important special cases include models with (Y, Y;) generated
by latent variables and include w;(X;, U;i) = wi(X;) + U if Y
is continuous and w;(X;, U;;) = 1(XB; + U;; = 0) if Yis binary,
where 1(A) is the indicator function that takes the value 1 if
the event A is true and takes the value 0 otherwise. We do not
restrict the (w1, po) function except through integrability
condition iv given below.

We assume: (i) up(Z) is a nondegenerate random variable
conditional on X = x; (ii) (Up, U1) and (Up, Uy) are absolutely
continuous with respect to Lebesgue measure on N (iii) (Up,
U,) and (Up, Uy) are independent of (Z, X); (iv) Y7 and Y
have finite first moments; and (v) Pr(D = 1) > 0.

Assumption i requires an exclusion restriction: There exists
a variable that determines the treatment decision but does not
directly affect the outcome. Let Fy, be the distribution of Up
with the analogous notation for the distribution of the other
random variables. Let P(z) denote Pr(D 1|1z z) =
Fuy,(mp(z)). P(z) is sometimes called the “propensity score”,
following ref. 12. Let Up denote the probability transform of
Up: Up = Fy,(Up). Note that, because Up is absolutely
continuous with respect to Lebesgue measure, Up =~ Unif(0,1).
Let A, denote the treatment effect for personi: A; = Yy; — Y.

Itis the index structure on D that plays the crucial role in this
paper. An index structure on the potential outcomes (Y, Y1)
is not required, although it is both conventional and conve-
nient in many applications.

Definition of Parameters

We examine four different mean parameters within this frame-
work: the ATE, effect of treatment on the treated (TT), the
local ATE (LATE), and the LIV parameter. The average
treatment effect is given by:

ATE(x) = E(A|X = x). [21
From assumption iv, it follows that E(A|X = x) exists and is
finite a.e. Fx. The expected effect of treatment on the treated
is the most commonly estimated parameter for both observa-
tional data and social experiments (13, 14). It is defined as:

ATT(x,D=1)=E(AlX =x,D = 1). [31]

From iv, ATT(x, D = 1) exists and is finite a.e. Fx|p - 1, where
Fx|p-1 denotes the distribution of X conditional on D = 1. It
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will be useful to define a version of A77(X, D = 1) conditional
on P(Z):
A™(x, P(z),D =1)=E(A|X =x, P(Z) = P(z), D = 1)
so that

1
ATT(X, D=1)= f ATT(X, P(z),D = 1)dFP(z)|X:x,D:1- [4]
0

From our assumptions, A77 (x, P(z), D = 1) exists and is finite
a.e. Fx pz)ip=1. In the context of a latent variable model, the
LATE parameter of Imbens and Angrist (6) using P(Z) as the
instrument is

AMTE(x, P(2), P(z')) =

E(Y|X =x, P(Z) = P(2)) — E(Y|X = x, P(Z) = P(z"))
P(z) — P(z') :

[5]

Without loss of generality, assume that P(z) > P(z'). From
assumption iv, it follows that AM7E(x, P(z), P(z')) is well
defined and is finite a.e. Fx p(z) X Fx,p(z). For interpretative
reasons, Imbens and Angrist (6) also assume that P(z) is
monotonic in z, a condition that we do not require. However,
we do require that P(z) # P(z') for any (z, z') where the
parameter is defined.

The fourth parameter that we analyze is the LIV parameter
introduced in ref. 5 and defined in the context of a latent
variable model as

JE(YIX = x, P(Z) = P(2))

AV, P(2)) = P

[6]

LIV is the limit form of the LATE parameter. In the next
section, we demonstrate that AV (x, P(z)) exists and is finite
a.e. Fix p(z) under our maintained assumptions.

A more general framework defines the parameters in terms
of Z. The latent variable or index structure implies that
defining the parameters in terms of Z or P(Z) results in
equivalent expressions. In the index model, Z enters the model
only through the wp(Z) index, so that for any measurable set

PrY,€AX=x,Z=2,D=1) =

Pr(Y; € A|X = x, Up = up(2))
PriY,€AlX=x,Z=2,D=0) =

PrY,;€A|X =x, Up > pp(2)).

Because any cumulative distribution function is left-
continuous and nondecreasing, we have

Pr(Y;€A|X =x, Up = upz)) =

Pr(Y,€A|X =x, Up = P(2))
PriY;€AlX =x, Up > pplz)) =

Pr(Y,;€ A|X =x, Up > P(2)).

Relationship Between Parameters Using the Index
Structure

Given the index structure, a simple relationship exists among
the four parameters. From the definition it is obvious that

AT(x, P(z),D=1)=E(A|X =x, Up = P(2)). [7]
Next, consider AL7TE(x, P(z), P(z")). Note that
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E(Y|X =x, P(Z) = P(2))
=P()[E(Y,|X =x, P(Z) = P(z), D = 1)]
+ (1 = P@)EYo|X =x, P(Z) = P(z), D = 0)]

P(z) _
= E(Y X =x, U=u)du
0

1
+ J E(Yo|X =x, U=u)du, [8]
P(z)

so that

E(YIX =x, P(Z) = P(2)) — E(Y|X =x, P(Z") = P(z"))

P(z) ~
= E(YX=x,U =u)du —

P(z')

P(z) ~
E(Yo|X =x, U=u)du
PE')

and thus
AATER P(z), PZ') = E(AIX =x, P(z') = Up = P()). 9]

LIV is the limit of this expression as P(z) — P(z'). In Eq. 8,
E(Y1]X = x, U) and E(Yy|X = x, U) are integrable with respect
todFga.e. Fy. Thus, E(Y1|X = x, P(Z) = P(z)) and E(Y,|X =
x, P(Z) = P(z)) are differentiable a.e. with respect to P(z), and
thus E(Y|X =z, P(Z) = P(z)) is differentiable a.e. with respect
to P(z) with derivative given by

IE(YIX =x, P(Z) = P(z))
dP(z)

=EY, - Y| X=x,U=P). [10]

From assumption iv, the derivative in Eq. 10 is finite a.e. Fx,g.
The same argument could be used to show that AL17E(x, P(z),
P(z")) is continuous and differentiable in P(z) and P(z’).

We rewrite these relationships in succinct form in the
following way:

AV (x, P(2)) = E(A|X =x, Up = P(2))
ATE(x) = J E(AIX =x, Up=u)du
0

P(z)
P)[A™"(x, P(z),D =1)] = f EAX =x,Up=u)du

0
and

P(z)
(P@z) — PE")A“(x, P(2),P(z")] = f EAX =x, Up = u)du
Pe)
[11]

Each parameter is an average value of LIV, E(A|X =x, U, =
u), but for values of Up lying in different intervals. LIV defines
the treatment effect more finely than do LATE, ATE, or TT.

ALV(x, p) is the average effect for people who are just
indifferent between participation or not at the given value of
the instrument (i.e., for people who are indifferent at P(Z) =
p). ALV(x, p) for values of p close to zero is the average effect

See, e.g., Kolmogorov and Fomin (15), Theorem 9.8 for one proof.
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for individuals with unobservable characteristics that make
them the most inclined to participate, and ALV (x, p) for values
of p close to one is the average treatment effect for individuals
with unobservable characteristics that make them the least
inclined to participate. ATE integrates AXV(x, p) over the
entire support of Up (from p = 0 to p = 1). It is the average
effect for an individual chosen at random. AT7(x, P(z), D = 1)
is the average treatment effect for persons who chose to
participate at the given value of P(Z) = P(z); AT7(x, P(z), D =
1) integrates AXV(x, p) up to p = P(z). As a result, it is
primarily determined by the average effect for individuals
whose unobserved characteristics make them the most inclined
to participate in the program. LATE is the average treatment
effect for someone who would not participate if P(Z) = P(z')
and would participate if P(Z) = P(z). AMTE(x, P(z), P(z'))
integrates AV (x, p) from p = P(z') to p = P(2).
To derive TT, use Eq. 4 to obtain

1 P(z) ~
P@) f EAX =x, Up = u)du

0

ATT(x,D=1) = J

0

X dF piz)x=xp=1- [12]
Using Bayes rule, one can show that

Pr(D = 1|X = x, P(Z)) = P(2)
Pr(D = 1|X = x)

AdF pz)x=x-
[13]

dF P(Z)|X=x,D=1 —

Because Pr(D = 11X = x, P(Z)) = P(z),

1

ATT(x,D=1) = PrD = 1X)

i [re
X J‘ [f E(A'X =X, UD = u)du dFP(Z)|X=)r [14]
0

0

Note further that, because Pr(D = 11X) = E(P(Z)|X) =
Jo! (1 = Fpzyx=«(t))dt, we can reinterpret Eq. 14 as a
weighted average of LIV parameters in which the weighting is
the same as that from a “length-biased,” “size-biased,” or
“P-biased” sample:

1
ATT(X,D = 1) = m
x f f 1 = PQ)EQAX =x, U = u)du]dFP(Z)wx,
010
1

J (1 = Fpzyx=(1))dt

1
X
0

1
J EAX=x,Up=u)l(u=< P(z))dFP(Z)X_X] du
0

1 1-F _
= f EAX=x,Up=u) LC) du
0 f (1 = Fpzyx=x(t))dt
1
= J EAIX =x, Up = u)g(u)du [15]
0
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where g.(u) = 1 = Frzx=c(u)/] (1 — Fpzx=:(t))dt.
Replacing P(Z) with length-of-spell, g.(u) is the density of a
length-biased sample of the sort that would be obtained from
stock biased sampling in duration analysis (16). Here we
sample from the P(Z) conditional on D = 1 and obtain an
analogous density used to weight up LIV. g.(u) is nonincreas-
ing function of U. A¥V(x, p) is given zero weight for p =

P,
Identification of Treatment Parameters

Assume access to an infinite independently and identically
distributed sample of (D, Y, X, Z) observations, so that the
joint distribution of (D, Y, X, Z) is identified. Let % (x) denote
the closure of the support P(Z) conditional on X = x, and let
Pe(x) = (0, I\P(x). Let p™@*(x) and p”*(x) be the maximum
and minimum values in P (x).

LATE and LIV are defined as functions (Y, X, Z) and are
thus straightforward to identify. AM7E(x, P(z), P(z')) is
identified for any (P(z), P(z')) € P(x) X P(x). ALV(x, P(2))
is identified for any P(z) that is a limit point of ?(x). The larger
the support of P(Z) conditional on X = x, the bigger the set
of LIV and LATE parameters that can be identified.

ATE and TT are not defined directly as functions of (Y, X,
Z), so a more involved discussion of their identification is
required. We can use LIV or LATE to identify ATE and TT
under the appropriate support conditions: (i) If 2 (x) = [0, 1],
then A17E(x) is identified from ALV, If {0, 1} € P(x), then
AATE(x) is identified from AXTE, (i) If (0, P(z)) C P (x), then
ATT(x, P(z), D = 1) is identified from ALV, If {0, P(z)} €
P(x) then ATT(x, P(z), D = 1) is identified from AFATE,

Note that 7T is identified under weaker conditions than is
ATE. To identify TT, one needs to observe P(Z) arbitrarily
close to 0 (p™in(x) = 0) and to observe some positive P(Z)
values whereas to identify ATE, one needs to observe P(Z)
arbitrarily close to 0 and arbitrarily close to 1 (p”*(x) = 1 and
p™n(x) = 0). Note that the conditions involve the closure of
the support of P(Z) conditional on X = x and not the support
itself. For example, to identify A77(x, D = 1) from AM7E we
do not require that 0 be in the support of P(Z) conditional on
X = x but that points arbitrarily close to 0 be in the support.
This weaker requirement follows from A“Y(x, P(z)) being a
continuous function of P(z) and AM7E(x, P(z), P(z')) being a
continuous function of P(z) and P(z’').

Without these support conditions, we can still construct
bounds if Y; and Y, are known to be bounded with probability
one. For ease of exposition and to simplify the notation,
assume that Y, and Y, have the same bounds, so that

Pry. =Y, =yix=x) =1
and
Priyl =Y, =yY|X =x) = 1%,

For example, if Y is an indicator variable, then the bounds are
yL = 0andy" = 1 for allx. For any P(z) € P (x), we can identify

PEE(Y\|X =x, P(Z) = P(2), D = 1)]
P(z)
= f EY|X=x,U=u)du  [16]
0

and

#The modifications required to handle the more general case are
straightforward.
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(1 = P@)E(Yo|X =x, P(Z) = P(z), D = 0)]

1
= j E(Yo|X =x, U =u)du.
P(2)

[17]

In particular, we can evaluate Eq. 16 at P(z) = p™“*(x) and can
evaluate Eq. 17 at P(z) = p™"(x). The distribution of (D, Y,
X, Z) contains no 1nf0rmat10n on fpm(x) E(YX =x, U =
u)du and [§"" E(Yo|X = x, U = u)du, but we can bound these
quantities:

1

(1= p ™)y, = f EY X =x,U=u)du = (1 — p" @)

Pe(x)

prmin(x
Py, = j E(YolX =x, U = u)du = p"™"(x)y.
0

[18]
We thus can bound A47E(x) by$
PrEWIEY X =x, P(Z) = p"*(x), D = 1)]
+ (1= p™())ys —
(1 = p"™)E(YolX =x, P(Z) =
pr"(x), D = 0)] = p""(x)yy
< AMTE(y) <
PrEE)E(Y X = x, P(Z) = p"*(x), D = 1)]
+ (1 = pm ™ (x)yy —
(1 = p"™)NEYolX = x, P(Z) = p""(x), D = 0)]
= Py

The width of the bounds is thus
(1 = p™™ (@) = yo) + p"" @) (s —

The width is linearly related to the distance between p™%*(x)
and 1 and the distance between p”"'(x) and 0. These bounds
are directly related to the “identification at infinity” results of
refs. 9 and 18. Such identification at infinity results require the
condition that up(Z) takes arbitrarily large and arbitrarily
small values if the support of Up is unbounded. The condition
is sometimes criticized as being not credible. However, as is
made clear by the width of the above bounds, the proper metric
for measuring how close one is to identification at infinity is the
distance between p”%*(x) and 1 and the distance between
p™n(x) and 0. It is credible that these distances may be small.
In practice, semiparametric methods that use identification at
infinity arguments to identify ATE are implicitly extrapolating
E(Y|X =x, U = u) foru > p"*(x) and E(Yo|X =x, U = u)
for u < p™in(x).

We can construct analogous bounds for A7 (x, P(z), D = 1)
for P(z) € P(x):

1 )
EY\X=x,P(Z)=P@E),D=1) — @ [ o)y

§The following bounds on ATE also can be derived easily by applying
Manski’s (17) bounds for “Level-Set Restrictions on the Outcome
Regression.” The bounds for the other parameters discussed in this
paper cannot be derived by applying his results.
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+ (1 = p™"x)E(Y,X = x, P(Z) = p""(x), D = 0)
— (1 = PQ)E(Yo|X =x, P(Z) = p(z), D = 0)]

=A""x,P(z),D=1) <

1 )
E(Y\[X=x,P(Z)=P(z),D=1) — PG [p™" (x)ys +

(1 = p"™)E(Y|X =x, P(Z) =
=p(2), D =0)].
The width of the bounds on A77(x, P(z), D = 1) is thus:

P

P(Z) (Yx x

P, D = 0) -
(1= PG)E(Y|X = x, P(2)

The width of the bounds is linearly decreasing in the distance
between p™"(x) and 0. Note that the bounds are tighter for
larger P(z) evaluation points because the higher the P(z)
evaluation point, the less weight is placed on the unidentified
quantity [ E(Yo|X = x, U = u)du. In the extreme case,
Where P(z) = p™"(x), the width of the bounds simplifies to y;
- yx

We can integrate the bounds on A77(x, P(z), D=1) to bound
ATT(x, D = 1):

)
f [E(YllX =x,PZ)=P@E),D=1)

0

1
e ( "+ (1= p")
X E(Yo|X =x, P(Z) = p™"(x),D = 0)
— (1 = PQ)E(Yo|X =x, P(Z)
=P(),D = 0)>:|dFP(Z)|X,D—1

=A"Tx,D=1)

mm.(x)
= fp [E(Yllx=x, PZ) = Pe),D = 1)

0

P( ) @mln(x)yx

(1 — p""(x)E(Yo|X = x, P(Z) = p"™"(x), D = 0) —

1- P(Z))E(Y0|X=X, P(Z) = Pz),D = 0)) dFP(Z)LX,D:I'

The width of the bounds on A77(x, D = 1) is thus:

) ; P q
) (v — vy % dFP<Z)\X:x,D:1-

prin(x)

Using Eq. 13, we have

pmax(x) 1
mm 6y dF - — mm x) (" x
( ) (y;: x f P( ) P(Z)|X=x,D=1 — ( ) (y

pmin(x)

pmﬂ\f(x 1
Xf Pr(D:—1|X:x)dFP(Z)|X=x [19]

prin(x)
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1
— min u _ 1
=P 00 =) pap —qx = x)

Unlike the bounds on ATE, the bounds on TT depend on the
distribution of P(Z), in particular, on Pr(D = 1|X = x) =
E(P(Z)|X = x). The width of the bounds is linearly related to
the distance between p™"(x) and 0, holding Pr(D = 1|X = x)
constant. The larger Pr(D = 1|X = x) is, the tighter the bounds
because the larger P(Z) is on average, the less probabil-
ity weight is being placed on the unidentified quantity

JE" Y E(YolX = x, U = u)du.
Conclusion

This paper uses an index model or latent variable model for the
selection variable D to impose some structure on a model of
potential outcomes that originates with Neyman (1), Fisher
(2), and Cox (3). We introduce the LIV parameter as a device
for unifying different treatment parameters. Different treat-
ment effect parameters can be seen as averaged versions of the
LIV parameter that differ according to how they weight the
LIV parameter. ATE weights all LIV parameters equally.
LATE gives equal weight to the LIV parameters within a given
interval. TT gives a large weight to those LIV parameters
corresponding to the treatment effect for individuals who are
the most inclined to participate in the program. The weighting
of P for LIV that produces TT is like that obtained in length
biased or sized biased samples.

Identification of LATE and LIV parameters depends on the
support of the propensity score, P(Z). The larger the support
of P(Z), the larger the set of LATE and LIV parameters that
are identified. Identification of ATE depends on observing
P(Z) values arbitrarily close to 1 and P(Z) values arbitrarily
close to 0. When such P(Z) values are not observed, ATE can
be bounded, and the width of the bounds is linearly related to
the distance between 1 and the largest P(Z) and the distance
between 0 and the smallest P(Z) value. For TT, identification
requires that one observe P(Z) values arbitrarily close to 0. If
this condition does not hold, then the TT parameter can be
bounded and the width of the bounds will be linearly related
to the distance between 0 and the smallest P(Z) value, holding
Pr(D = 1|X) constant.

Implementation of these methods through either parametric
or nonparametric methods is straightforward. In joint work
with Arild Aakvik of the University of Bergen (Bergen,
Norway), we have developed the sampling theory for the LIV
estimator and empirically estimated and bounded various
treatment parameters for a Norwegian vocational rehabilita-
tion program.

We conclude this paper with the observation that the index
structure for D is not strictly required, nor is any monotonicity
assumption necessary to produce results analogous to those
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presented in this paper. The index structure on D simplifies the
derivations and yields the elegant relationships presented here.
However, LIV can be defined without using an index structure
(5); so can LATE. We can define LIV for different sets of
regressors and produce relationships like those given in Eq. 11
defining the integrals over multidimensional sets instead of
intervals. The bounds we present also can be generalized to
cover this case as well. The index structure for D arises in many
psychometric and economic models in which the index repre-
sents net utilities or net preferences over states, and these are
usually assumed to be continuous. In these cases, its applica-
tion leads to the simple and concise relationships given in this

paper.
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