Abstract
To evaluate whether increased doses of amoxicillin should be used to treat acute pneumococcal otitis media, an in vitro pharmacokinetic model was used to evaluate the killing of pneumococci by amoxicillin when middle ear pharmacokinetics were simulated. Logarithmic-phase cultures were exposed to peak concentrations of 3, 6, and 9 microg of amoxicillin per ml every 12 h, and an elimination half-life of 1.6 h was simulated. Changes in viable bacterial counts were measured over 36 h. All three doses rapidly decreased the viable bacterial counts of penicillin-susceptible strains below the 10-CFU/ml limit of detection by 6 to 10 h and maintained counts below this limit through 36 h. The 3-microg/ml peak dose was much less effective against two of three strains with intermediate penicillin resistance and all three penicillin-resistant strains, with bacterial counts approaching those in drug-free control cultures by 12 h. The 6-microg/ml peak dose completely eliminated two of three strains with intermediate penicillin resistance and maintained viable counts of the other nonsusceptible strains at 1.5 to 2 logs below the initial inoculum through 36 h. The 9-microg/ml peak dose was most effective, completely eliminating all three strains with intermediate penicillin resistance and maintaining the viable counts of the resistant strains at 3 to 4 logs below the original inoculum. The pharmacodynamics observed in this study suggest that peak concentrations of amoxicillin of 6 to 9 microg/ml may be sufficient for the elimination of penicillin-nonsusceptible pneumococcal strains causing otitis media, especially those with intermediate resistance to amoxicillin. In vivo pharmacokinetic studies are needed to determine if these levels can be achieved in middle ear fluid with amoxicillin at 70 to 90 mg/kg/day divided into two daily doses. If these levels are reliably achieved, then clinical studies are warranted.
Full Text
The Full Text of this article is available as a PDF (238.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaser J., Stone B. B., Zinner S. H. Two compartment kinetic model with multiple artificial capillary units. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):131–137. doi: 10.1093/jac/15.suppl_a.131. [DOI] [PubMed] [Google Scholar]
- Block S. L., Harrison C. J., Hedrick J. A., Tyler R. D., Smith R. A., Keegan E., Chartrand S. A. Penicillin-resistant Streptococcus pneumoniae in acute otitis media: risk factors, susceptibility patterns and antimicrobial management. Pediatr Infect Dis J. 1995 Sep;14(9):751–759. doi: 10.1097/00006454-199509000-00005. [DOI] [PubMed] [Google Scholar]
- Boken D. J., Chartrand S. A., Moland E. S., Goering R. V. Colonization with penicillin-nonsusceptible Streptococcus pneumoniae in urban and rural child-care centers. Pediatr Infect Dis J. 1996 Aug;15(8):667–672. doi: 10.1097/00006454-199608000-00006. [DOI] [PubMed] [Google Scholar]
- Canafax D. M., Nonomura N., Erdmann G. R., Le C. T., Juhn S. K., Giebink G. S. Experimental animal models for studying antimicrobial pharmacokinetics in otitis media. Pharm Res. 1989 Apr;6(4):279–285. doi: 10.1023/a:1015938205892. [DOI] [PubMed] [Google Scholar]
- Cars O., Odenholt-Tornqvist I. The post-antibiotic sub-MIC effect in vitro and in vivo. J Antimicrob Chemother. 1993 May;31 (Suppl 500):159–166. doi: 10.1093/jac/31.suppl_d.159. [DOI] [PubMed] [Google Scholar]
- Craig W. A., Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J. 1996 Mar;15(3):255–259. doi: 10.1097/00006454-199603000-00015. [DOI] [PubMed] [Google Scholar]
- Daikos G. L., Jackson G. G., Lolans V. T., Livermore D. M. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis. 1990 Aug;162(2):414–420. doi: 10.1093/infdis/162.2.414. [DOI] [PubMed] [Google Scholar]
- Daikos G. L., Lolans V. T., Jackson G. G. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991 Jan;35(1):117–123. doi: 10.1128/aac.35.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doern G. V., Brueggemann A., Holley H. P., Jr, Rauch A. M. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother. 1996 May;40(5):1208–1213. doi: 10.1128/aac.40.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Chait B. T., Tomasz A. Altered peptidoglycan structure in a pneumococcal transformant resistant to penicillin. J Bacteriol. 1988 May;170(5):2143–2147. doi: 10.1128/jb.170.5.2143-2147.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleland L. B., Gilleland H. E., Gibson J. A., Champlin F. R. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol. 1989 May;29(1):41–50. doi: 10.1099/00222615-29-1-41. [DOI] [PubMed] [Google Scholar]
- Krause P. J., Owens N. J., Nightingale C. H., Klimek J. J., Lehmann W. B., Quintiliani R. Penetration of amoxicillin, cefaclor, erythromycin-sulfisoxazole, and trimethoprim-sulfamethoxazole into the middle ear fluid of patients with chronic serous otitis media. J Infect Dis. 1982 Jun;145(6):815–821. doi: 10.1093/infdis/145.6.815. [DOI] [PubMed] [Google Scholar]
- Marshall K. J., Musher D. M., Watson D., Mason E. O., Jr Testing of Streptococcus pneumoniae for resistance to penicillin. J Clin Microbiol. 1993 May;31(5):1246–1250. doi: 10.1128/jcm.31.5.1246-1250.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath B. J., Bailey E. M., Lamp K. C., Rybak M. J. Pharmacodynamics of once-daily amikacin in various combinations with cefepime, aztreonam, and ceftazidime against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother. 1992 Dec;36(12):2741–2746. doi: 10.1128/aac.36.12.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson C. T., Mason E. O., Jr, Kaplan S. L. Activity of oral antibiotics in middle ear and sinus infections caused by penicillin-resistant Streptococcus pneumoniae: implications for treatment. Pediatr Infect Dis J. 1994 Jul;13(7):585–589. doi: 10.1097/00006454-199407000-00001. [DOI] [PubMed] [Google Scholar]
- Odenholt-Tornqvist I., Löwdin E., Cars O. Pharmacodynamic effects of subinhibitory concentrations of beta-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1991 Sep;35(9):1834–1839. doi: 10.1128/aac.35.9.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sande M. A., Korzeniowski O. M., Allegro G. M., Brennan R. O., Zak O., Scheld W. M. Intermittent or continuous therapy of experimental meningitis due to Streptococcus pneumoniae in rabbits: preliminary observations on the postantibiotic effect in vivo. Rev Infect Dis. 1981 Jan-Feb;3(1):98–109. doi: 10.1093/clinids/3.1.98. [DOI] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 1992 Nov;15(5):824–839. doi: 10.1093/clind/15.5.824. [DOI] [PubMed] [Google Scholar]
- Stark C., Edlund C., Hedberg M., Nord C. E. Induction of beta-lactamase by cefoxitin in anaerobic intestinal microflora. Eur J Clin Microbiol Infect Dis. 1995 Jan;14(1):18–24. doi: 10.1007/BF02112613. [DOI] [PubMed] [Google Scholar]
- Todd P. A., Benfield P. Amoxicillin/clavulanic acid. An update of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1990 Feb;39(2):264–307. doi: 10.2165/00003495-199039020-00008. [DOI] [PubMed] [Google Scholar]
- Vergères P., Blaser J. Amikacin, ceftazidime, and flucloxacillin against suspended and adherent Pseudomonas aeruginosa and Staphylococcus epidermidis in an in vitro model of infection. J Infect Dis. 1992 Feb;165(2):281–289. doi: 10.1093/infdis/165.2.281. [DOI] [PubMed] [Google Scholar]
- Vogelman B., Gudmundsson S., Leggett J., Turnidge J., Ebert S., Craig W. A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988 Oct;158(4):831–847. doi: 10.1093/infdis/158.4.831. [DOI] [PubMed] [Google Scholar]
- Wald E. R., Rohn D. D., Chiponis D. M., Blatter M. M., Reisinger K. S., Wucher F. P. Quantitative cultures of middle-ear fluid in acute otitis media. J Pediatr. 1983 Feb;102(2):259–261. doi: 10.1016/s0022-3476(83)80536-8. [DOI] [PubMed] [Google Scholar]
- Zighelboim S., Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):434–442. doi: 10.1128/aac.17.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]