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INTRODUCTION the group B meningococcal genome offer promise of an effec-

Sixty years after their discovery, antibiotics remain virtually
the only weapons against bacterial meningitis (126). Antibiotic
therapy has changed meningitis from a uniformly fatal disease
to a frequently curable one. However, the outcome is still often
unfavorable, with a mortality of 5 to 10% and permanent
neurologic sequelae occurring in 5 to 40% of survivors, de-
pending on patient age and pathogen (5, 9, 31, 44). Recent
scientific progress has resulted in an effective polysaccharide-
protein conjugate vaccine against Haemophilus influenzae that
has reduced the current incidence of bacterial meningitis to
~4.0 per 100,000 population in most developed countries (140,
161). There are also effective conjugate vaccines against Strep-
tococcus pneumoniae and Neisseria meningitidis type C (87,
145). Maternal immunization with group B streptococcal
(Streptococcus agalactiae) conjugate vaccine may present a fea-
sible strategy to reduce neonatal group B streptococcal disease
incidence (14, 103). Development of a group B meningococcal
conjugate vaccine has been hindered by the potential risks of
autoantibodies that cross-react with glycosylated host antigens.
New vaccine candidates discovered during the sequencing of
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tive and safe vaccine against group B N. meningitidis, which
would result in a significant further reduction in morbidity and
mortality from bacterial meningitis (52). At present, however,
physicians depend on early antibiotic therapy in the remaining
cases of meningitis to avert dismal outcomes (6, 127, 166).

Two-thirds of meningitis-related deaths are attributable pri-
marily, or at least in part, to central nervous system complica-
tions; the remainder result from systemic complications, such
as septic shock (113). Increased insight into the pathophysiol-
ogy of bacterial meningitis has shown that the inflammatory
host response to bacterial products continues after the bacteria
are killed with antibiotics. This host response regrettably af-
fects host tissues and contributes significantly to central ner-
vous system injury (83, 90, 97, 137). Thus, the addition of
anti-inflammatory or neuroprotective agents would be ex-
pected to protect against tissue injury associated with menin-
geal inflammation. While this is a logical hypothesis, real-life
experience with modulation of the host inflammatory cascade,
such as in clinical sepsis trials, has yielded mixed results and
demonstrated that the setting is so complex that predicting the
benefit of any intervention is very tricky (39).

Adjuvant use of corticosteroids in clinical trials in bacterial
meningitis has demonstrated that there is an opportunity to
protect against tissue injury and thereby improve outcome.
Corticosteroids have been used against bacterial meningitis
since the 1950s, even though initial clinical studies with meth-
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ylprednisolone failed to demonstrate any benefit in children
with meningitis; it is important to note that no mention was
made of hearing evaluation in these patients. As concluded in
a recent meta-analysis, adjuvant dexamethasone therapy,
which is more potent than methylprednisolone, in children
with H. influenzae type b meningitis significantly reduces neu-
rologic sequelae, most notably severe hearing loss (number
needed to treat, 12) (89). Extending the efficacy of corticoste-
roids to adults and to meningitis due to other pathogens has
remained much debated, however, because the results from
several small trials showed no clear benefit of this intervention.

Following the introduction of the H. influenzae type b vac-
cine, the clinical use of corticosteroids in bacterial meningitis
became more controversial, and additional clinical trials of
sufficient size were warranted to resolve this issue (30). A
recently completed, large clinical trial in adult patients shows
that early dexamethasone treatment initiated before or with
the first dose of antibiotics improves outcome (25). The effect
was especially strong in patients with pneumococcal meningitis
(number needed to treat 4 to 10). Adjuvant dexamethasone
treatment did not result in an increased risk of serious adverse
events, such as gastrointestinal bleeding. Studies in the devel-
oping world, where presentation to hospital is often delayed,
showed that adjuvant steroid treatment could not improve
outcome in this setting (96, 123). These results indicate that
corticosteroids are only beneficial when administered early in
the course of the disease.

The clinical efficacy of corticosteroids is proof of the princi-
ple that reduction of injury to the central nervous system can
be achieved by modulation of the host response. Other ave-
nues of benefit may also exist. For example, although tissue
injury, such as disruption of the blood-brain barrier, cerebral
edema, and mild neuronal injury, always occurs in meningitis,
some patients survive the disease and recover fully. This illus-
trates the natural capacity of the body to repair injured tissues,
at least in part. Strengthening of the body’s repair systems may
present a second major avenue to achieving benefit and reduc-
ing permanent tissue damage in the central nervous system.
The molecular dissection of cell maintenance and repair mech-
anisms has given important leads to therapies that might en-
hance the body’s innate repair response.

CELLULAR DYSFUNCTION IN MENINGITIS

Endothelium of the blood-brain barrier

The cerebral microvascular endothelium has unique ultra-
structural properties, such as continuous intercellular tight
junctions and a slow rate of fluid endocytosis, that enable it to
function as a high-resistance barrier to circulating macromol-
ecules, also called the blood-brain barrier. Disruption of the
blood-brain barrier is a hallmark event in the pathophysiology
of bacterial meningitis. Disturbance of cerebral endothelial
function results in the development of vasogenic cerebral
edema in 30% of cases and cerebral herniation in 6 to 8% of
clinical cases in some series (113). Cerebral edema and result-
ant increased intracranial pressure impair tissue perfusion and
are associated with a high risk of death or severe neurologic
sequelae. Bacterial toxins in blood or cerebrospinal fluid
(CSF), such as gram-negative lipopolysaccharide (LPS), gram-
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positive peptidoglycan, and cytotoxins, engage Toll-like recep-
tors of endothelia and activate their downstream signaling cas-
cades. The endothelial cells then release mediators, such as
tumor necrosis factor alpha (TNF-a), nitric oxide, and matrix
metalloproteinase-2 (MMP-2), which increase endothelial per-
meability (63, 76, 125). The endothelium expresses multiple
leukocyte adhesion molecules and presents chemotactic fac-
tors such as interleukin-8 (IL-8) when activated by inflamma-
tory mediators. This combination promotes neutrophil adher-
ence and transendothelial migration. Upregulation of tissue
factor on the endothelial surface induces a procoagulant state
and stimulates thrombus formation. Cerebrovascular events
such as thrombosis and hemorrhage are frequently found in
autopsy cases (113).

Endothelial activation and vascular inflammation have a
negative impact on cerebral blood flow. Vasculitis character-
ized by subintimal infiltration of cerebral blood vessels by neu-
trophils causes narrowing of the vascular lumen and vaso-
spasms (112, 113). Release of vasoconstrictive agents, such as
the endothelins, and vasodilatory agents, such as nitric oxide,
causes loss of autoregulation of cerebral perfusion pressure. In
the face of systemic hypotension, these events further decrease
cerebral perfusion (121).

The Neuron

In bacterial meningitis, hypoxia, neurotoxic bacterial prod-
ucts, and host mediators combine to cause neuronal injury.
Whether the damage is bacterial or leukocyte derived, the final
toxic element is often the free radical. These oxidants, includ-
ing reactive oxygen intermediates and reactive nitrogen inter-
mediates, have direct toxic effects on neurons (53). Activation
of apoptotic and necrotic cell death pathways causes neuronal
loss that may result in permanent neurologic sequelae or even
death (63, 76, 77, 99, 114, 125, 151, 153). Neuronal apoptosis in
the granular layer of the hippocampal dentate gyrus and ne-
crosis of pyramidal cells in the hippocampus are frequently
found in the brains of patients who died from bacterial men-
ingitis. Studies applying magnetic resonance imaging in survi-
vors of bacterial meningitis often demonstrate hippocampal
atrophy (37).

The cascade of pathophysiologic events during bacterial
meningitis is summarized in Table 1. Focal damage in other
brain regions such as the neocortex and brain stem is less
common. Long-term sequelae due to these processes of neu-
ronal death include deafness, intellectual and cognitive impair-
ment ranging from severe intellectual disability to educational
deficits and behavioural problems, and less commonly epilepsy,
spasticity, or focal neurologic deficits. (9, 12, 15, 24, 44, 140).

POTENTIAL INTERVENTIONS
Protect against Injury

Neutralize bacterial toxins. Clinical outcome in bacterial
meningitis is directly related to concentrations of bacteria and
bacterial antigens in the CSF (34, 90, 137). Because the CSF
contains few humoral and cellular defenses, bacteria multiply
freely before being detected, releasing toxic components such
as lipopolysaccharide (LPS), peptidoglycan, and teichoic acid,
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TABLE 1. Phases in the pathophysiology of bacterial meningitis

Time

(h postinfection) Pathophysiologic events

Clinical symptoms

0 Bacteria and bacterial products accumulate in CSF None
4 Release of inflammatory mediators and cytokines Fever
8-24 Blood-brain barrier disruption; development of cerebral edema; Elevated CSF protein; meningism/neck stiffness;

transendothelial migration of leukocytes; more proinflamma-
tory and toxic mediators; followed by impaired cerebral
blood flow, elevated intracranial pressure, and vasculitis

24-48 Neuronal injury

elevated CSF leukocytosis; possible systemic
complications; followed by altered mental status,
focal symptoms, and seizures

Focal symptoms; hearing loss; paralysis; cognitive
impairment; death

which elicit a strong inflammatory response. Bacterial hemo-
lysins and cytotoxins have direct lethal effects on host tissues.
Bacterial lysis associated with killing by bactericidal antibiotics
releases a pulse of toxic bacterial components comparable to
the Jarisch-Herxheimer phenomenon in syphilis (38, 155). One
should be aware, however, that the amount of toxins released
from untreated bacteria that continue to grow is considerably
greater (38). One strategy to minimize exposure of the brain to
bacterial toxins is to minimize the release of toxic bacterial
compounds. It is possible to lower the amount of bacterial
toxins released by choosing bactericidal antibiotics that act by
inhibiting RNA or protein synthesis or DNA replication (rifa-
mycins, macrolides, clindamycin, ketolides, and quinolones)
(16, 100). However, assessment of the effectiveness of different
antibiotic therapies is challenging, and at present insufficient
data are available to recommend a change in empirical antibi-
otic therapy (67, 126).

Neutralization of proinflammatory bacterial products is a
second logical strategy to prevent harmful effects. However, in
practice the potential of this approach is limited because no
single agent neutralizes both gram-positive and gram-negative
bacterial products. Preliminary studies evaluating antibody
neutralization of the gram-positive pneumococcal cell wall
have not been followed by successful clinical studies (153).
Neutralization of the lipid A moiety of LPS in gram-negative
bacterial meningitis by intrathecal administation of neutraliz-
ing antibodies, polymyxin B, or recombinant fragments of bac-
tericidal/permeability-increasing protein (rBPI) (an endoge-
nous LPS-neutralizing protein) has been studied in several
animal models of bacterial meningitis. All these agents had
only limited efficacy when administered at clinically relevant
timepoints in live-infection models (150; I. Lutsar, I. R. Fried-
land, H. Jafri, L. Wubbel, W. Ng, F. Ghaffar, and G. H. Mc-
Cracken, Jr., Abstr. 38th Intersci. Conf. Antimicrob. Agents
Chemother., abstr S117-B B-38, 1998). Therefore, this type of
adjuvant treatment is likely to fail in clinical practice, most
probably because the treatment is given too late following the
unleashing of the inflammatory cascade. This conclusion seems
to be supported by the disappointing results of clinical trials
evaluating LPS neutralization in gram-negative sepsis (43, 79,
174).

For most pathogens, the bacterial toxins that trigger host cell
apoptotic responses have not been identified. Studies with
pneumococcus have identified two toxins responsible for per-
manent loss of neurons in the hippocampus. Pneumolysin, a
pore-forming toxin, and hydrogen peroxide produced by the
bacterium induce apoptosis by the release and translocation of

mitochondrial apoptosis-inducing factor (19). For group B
streptococcus, an important pathogen in neonatal meningitis,
hemolysin has recently been identified as the toxin that triggers
host cell apoptosis (129). Since these toxins do not have struc-
tural homology, a strategy to neutralize them has not been
forthcoming. Targeting of bacterial toxins is summarized in
Fig. 1.

Reprogram the inflammatory response. The highly evolved
systems of innate and adaptive immunity generally allow the
host to detect microbial invaders and to initiate an inflamma-
tory response to dispose of the invaders without destroying
host tissues. However, in central nervous system infection,
because neuronal cells have little regenerative capacity, dam-
age to host tissues as a side effect of the inflammatory response
is more prominent. Experimental work has demonstrated that
the presence of dead bacterial material in the CSF elicits such
a strong inflammatory response that severe neuronal injury or
death may result. Since modern antibiotic therapy ensures
rapid killing of invading bacteria in clinical patients, some
components of the inflammatory response may no longer serve
a critical role in an effective inflammatory response. When
making a comparison to warfare, it is like bombing a city and
destroying it once the enemy has already been defeated. Ob-
viously this does not mean the whole sophisticated immune
system has become useless. Just attenuating or reducing the

bacterial pathogen
noniytic antibiotic / \

cellwall/membrane components ’

bacterial toxins

S. pneumoniae
S. agalactiae

» peptidoglycan
« lipoteichoicacid

N. meningitidis
E. coli
« lipopolysacharide
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* pneumolysin
« hydrogenperoxide

S. agalactiae
« hemolysin

pathogen specific
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FIG. 1. Targeting of bacterial cell wall, cell membrane compo-
nents, and toxins to prevent injury. Use of nonlytic antibiotic agents
may minimize the release of toxic components following initiation of
antibiotic therapy. Different organisms and different bacterial sub-
stances require separate neutralizing antagonists, making a uniform
strategy difficult to design.
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FIG. 2. Interventions aimed at cytokines may target different lev-
els: regulation of cytokine production via interference with transcriptin
factors, interference with procytokine activation by proteolytic enzyme
inhibition, direct blocking of the cytokine, and interference with the
cytokine receptor or signaling pathway.

immune response will delay effective clearance of bacterial
debris and tissue healing. However, within the context of mod-
ern bactericidal antibiotic therapy, reprogramming the inflam-
matory response, leaving some helpful components in place
and changing other harmful components of the cascade, may
improve outcome. What exact balance in the inflammatory
response constitutes “good” versus “bad” is hard to predict.

(i) Reset the cytokine balance. Cytokines are key regulators
of the immune response, switching on and off whole cascades
of events. These cytokines are released by macrophages, mi-
croglia, astrocytes, ependyma, and endothelia. Four major av-
enues exist to intervene in the inflammatory response at the
cytokine level: inhibition of transcription of the cytokine gene,
blockage of the cytokine itself or by cleavage to activate the
procytokine, and antagonism of the cytokine receptor and its
downstream signaling pathways, as summarized in Fig. 2. The
maximum benefit of interference with any cytokine can be
predicted by studies in knockout mice lacking the specific cy-
tokine gene or transgenic mice displaying altered expression of
a certain mediator.

Neutralizing cytokine antibodies and endogenous cytokine
inhibitors have been tested in animal models as adjuvant
agents. TNF-a and IL-1B antagonists (antibodies) reduced
meningeal inflammation in most animal models when instilled
into the CSF space at the beginning of the infection (128, 135,
149). Endogenous inhibitors of cytokines, such as recombinant
IL-1 receptor antagonist and soluble TNF receptor, were ef-
fective against cytokine-induced meningitis but failed to have a
significant effect against LPS-induced meningitis. This impor-
tant finding highlights the functional overlap between media-
tors (104) that frustrates the design of simple therapeutic in-
terventions. This could perhaps have been predicted by results
in knockout mouse models. In a live pneumococcal meningitis
model without antibiotic therapy, knockout mice deficient in
TNF-a (but still expressing TNF-B) did not show any decrease
in meningeal inflammation and experienced greater growth of
Streptococcus pneumoniae in the bloodstream, yet studies in
TNF receptor-deficient mice did show decreased meningeal
inflammation but no benefit in terms of reducing neuronal
injury (172). These opposite results again demonstrate the
functional overlap between different mediators and the prob-
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able conclusion that individual targets within the cytokine cas-
cade are not currently a fruitful area of pursuit in the devel-
opment of adjuvant therapies for meningitis.

An alternative target for cytokine inhibition may be found in
enzymes involved in the activation of procytokines. TNF-« is
produced as membrane-associated pro-TNF-a and cleaved to
its active soluble form by TNF-a-converting enzyme, a metal-
loproteinase closely related to matrix metalloproteinases. Ex-
periments in the neonatal rat model of bacterial meningitis
showed significantly downregulated CSF levels of TNF-a by
combined inhibition of matrix metalloproteinases and TNF-a-
converting enzyme with a broad-spectrum hydroxamic acid-
based metalloproteinase inhibitor (BB-1101). In addition, the
incidence of seizures, mortality, and neuronal injury was sig-
nificantly decreased (71). Current inhibitors of TNF-a-con-
verting enzyme have a low potency, necessitating the use of
high doses; however, it is expected that modifications will re-
sult in improved agents (10).

Similarly, IL-1B is formed by the cleavage of its precursor
pro-IL-1B by caspase-1. Treatment of rabbits and rats with
experimental pneumococcal meningitis with the caspase-1 in-
hibitor z-VAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluorom-
ethyl ketone) resulted in a reduced inflammatory response,
with lower fever, CSF white blood cell counts, and intracranial
pressure, fewer cerebrovascular changes, and less neuronal
apoptosis. This response is probably affected at least partially
by reduced IL-1p activation (64). Caspase-1 is further involved
in activation of the apoptotic cell death pathway (17).

Although disruption of the activity of individual cytokines
has been disappointing in gaining neurological benefit in men-
ingitis, several avenues have suggested that broader-spectrum
interventions have promise. These approaches include enhanc-
ing the native anti-inflammatory cascade, inhibiting several
cytokines by single agents, and blocking global transcription
factors. Anti-inflammatory cytokines such as IL-10 and trans-
forming growth factor beta downregulate the host inflamma-
tory response. Therapeutic administration of IL-10 has been
studied in animal models. Early intravenous administration of
IL-10 was consistently effective in modulating meningeal in-
flammation (59, 105), and transforming growth factor beta
inhibited cerebrovascular changes and brain edema in bacterial
meningitis (115). Since these downregulators have effects on
many positive inflammatory cascades, they offer more potential
for benefit in a true-life, clinical setting.

This concept can be modeled pharmacologically in the
case of thalidomide. In addition to its well-known sedative
and teratogenic effects, thalidomide possesses significant
and unique anti-inflammatory activities. It inhibits TNF-a and
IL-8 production by LPS-stimulated monocytes but does not
interfere with the production of IL-6 and IL-1B. Experiments
have shown that thalidomide can reduce peak CSF TNF-a
levels by 30 to 50% in conjunction with sustained inhibition of
CSF pleiocytosis (21). In animal models of tuberculous men-
ingitis, thalidomide greatly enhanced survival and decreased
brain pathology (152). However, a clinical trial of thalidomide
as an adjuvant treatment of tuberculous meningitis was halted
prematurely because of concern about adverse effects. A
6-month outcome analysis of the 47 children included in the
study showed a worse outcome for children receiving adjuvant
thalidomide therapy (138, 139).
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Modulation of Inflammatory pathways
C1-esterase inhibitor (complement system) ;
Bradykinin Receptor antagonists;
Histamine Receptor antagonists;
NSAID’s (prostaglandins);

Modulation of coagulation pathways
Activated protein C; ATIII;

N\
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.

Coagulation

FIG. 3. Interference with inflammatory pathways may target a whole spectrum of noncytokine mediators. Several mediators influence both the
inflammatory and coagulation cascades. NSAID’s. nonsteroidal anti-inflammatory drugs. ATIII, antithrombin III.

Intervention at the transcription level regulates the expres-
sion of many cytokines at once. NF-kB is an important tran-
scription factor, first recognized for its role in the immune
system. Various anti-inflammatory drugs including corticoste-
roids and anti-inflammatory cytokines such as IL-10 inhibit the
NF-kB pathway. In resting cells, the NF-kB heterodimer re-
mains in the cytoplasm, where it is associated with inhibitory
IkB proteins. Stimuli from outside the cell activate IkB via
phosphorylation and induce its proteolytic degradation, lead-
ing to translocation of NF-«kB to the nucleus, which results in
a concerted activation of target genes. Pharmacological ma-
nipulation of NF-«kB activation was recently investigated in
experimental meningitis-associated central nervous system
complications and clinical symptoms. Two agents were tested,
the NF-«kB inhibitor N-acetyl-leucinyl-leucinyl-norleucinial,
which interferes with IkB proteolysis, and BAY 11-7085, which
inhibits IkB phosphorylation. Both agents improved clinical
status and reduced the increase in intracranial pressure, blood-
brain barrier permeability, CSF pleiocytosis, and changes in
vascular status (58). Importantly, inhibition of NF-kB may pro-
tect against neural cell death (136). Given the broad involve-
ment of NF-kB in cell regulation, it is expected that systemic
inhibition will also affect nonimmune cells. The present chal-
lenge is to examine which components of the NF-«kB signaling
pathway can be inhibited without causing unacceptable side
effects.

It must be appreciated that single mediators often induce
many effects and that there is considerable functional overlap
between different mediators. This explains why inhibition of
one mediator, once the concentration of a second mediator is
above a critical level, cannot prevent the progression of inflam-
mation (128). It is therefore unlikely that inhibition of a single
proinflammatory mediator will prove useful in clinical practice.

(ii) Noncytokine mediators. Inflammation activates the co-
agulation cascade. Not surprisingly, therefore, advanced bac-
terial meningitis is associated with thrombosis and ischemia.
Thus, modulation of inflammatory or coagulation pathways
may have a broader impact than suspected from the primary
target, as illustrated in Fig. 3. Several clinical trials testing the
therapeutic effect of different anticoagulant agents in sepsis

have been performed following promising increases in survival
in animal studies. One of these agents, recombinant activated
protein C, significantly reduced mortality in adult patients with
severe sepsis (13, 39). Activated protein C, a component of the
natural anticoagulant system, is a potent antithrombotic serine
protease with substantial anti-inflammatory properties. How-
ever, sepsis trials testing other anticoagulants such as anti-
thrombin III have all failed (168).

Why activated protein C was effective where antithrombin
III failed puzzles many people in the field. Sepsis therapy with
protein C is not perfect, however. Because of the anticoagulant
activity of activated protein C, the administration of this drug
might increase the risk of hemorrhage, and further studies to
assess safety in different categories of sepsis patients will be
needed. Activated protein C may pose too big a risk in men-
ingitis patients because intracranial bleeding is associated with
such poor outcome.

Several plasma enzyme systems are activated during in-
flammation and have been inhibited in experimental mod-
els. These include the complement system (P. G. J. Zwijnen-
burg, T. van der Toll, C. E. Hack, S. J. H. van Deventer, J. J.
Roord, and A.M. van Furth, Abstr. 39th Intersci. Conf. Anti-
microb. Agents Chemother., abstr 1600, 1999), the vasoactive
nonapeptide bradykinin (82), and the vasoactive amine hista-
mine (170). At present, the results of these studies are incon-
clusive. Complement inhibition might limit endothelial injury,
and results from a clinical trial with Cl-esterase inhibitor in
sepsis show some improvement in clinical status, but the data
are still limited (22, 57). Bradykinin and histamine are likely to
be too early in the cascade of mediators in bacterial meningitis
to be of clinical significance as therapeutic targets.

During inflammation, cytokines stimulate phospholipase
A2, which acts on membrane phospholipids, releasing ara-
chidonic acid and glycerophosphocholine. Arachidonic acid
is metabolized to cyclooxygenase products (prostaglandins
and thromboxanes) and lipooxygenase products (leukotri-
enes). Inhibition of the lipooxygenase pathway of arachidonic
acid metabolism (leukotrienes) by nordihydroguaiaretic acid
did not significantly decrease meningeal inflammation in an
animal model of meningitis. In contrast, inhibition of cyclooxy-
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TABLE 2. Selected strategies to target leukocyte influx

Phase of leukocyte influx Target

Agent class

Leukocyte attraction (chemotaxis)

Leukocyte activation cAMP production up

cAMP degradation down

Leukocyte adhesion and migration

Chemokines, e.g., IL-8, MCP-1

Selectin class of adhesins
Integrin class of adhesins

Monoclonal antibodies

A, , adenosine receptor agonist
Phosphodiesterase inhibitors, e.g., pentoxifylline

Carbohydrate antagonist, e.g., fucoidin
Monoclonal antibodies, peptides

genases (prostaglandins and thromboxanes) by the nonsteroi-
dal anti-inflammatory drug oxindanac was effective and even
reduced permanent sequelae and death in rabbits. The cyclo-
oxygenase inhibitors indomethacin and diclofenac sodium also
reduced inflammation, but not as effectively (155, 159). Oxin-
danac was more effective than corticosteroids in experimental
meningitis in rabbits; however, to our knowledge, the drug has
not been clinically developed, possibly because of the risk of
side effects (154).

(iii) Leukocyte attraction, activation, and adhesion. Should
we stop leukocytes? By analogy to other sites of infection, one
would intuitively infer a beneficial role for neutrophils. How-
ever, early experimental work has suggested detrimental effects
of the leukocyte response and inflammatory exudate in the
CSF space. Moreover, the absence of humoral immune com-
ponents in the CSF prevents opsonization of bacteria and
subsequent effective phagocytosis and killing by neutrophils.
Indeed, in vivo comparison of leukopenic with nonleukopenic
rabbits demonstrated that neutrophils fail to stop bacterial
multiplication in the CSF (32). The mean duration of survival
after intracisternal inoculation of pneumococci was actually
longer in leukopenic dogs than in normal nonleukopenic con-
trols (62 versus 47 h) (111). Still, the presence of neutrophils
limited the magnitude of bacteremia as a consequence of men-
ingitis, which may have clinical significance, since bacteremia is
associated with a worse outcome (34).

A large in vivo study by Giampaolo et al. examining the
interrelationships of sequential CSF bacterial titers and leuko-
cyte counts in nonneutropenic rabbits produced somewhat
contradictory results (40). In this study, a high CSF leukocyte
count on day 1 prior to antibiotic therapy correlated negatively
with the bacterial titer in the CSF, suggesting reduction of
bacterial multiplication by CSF leukocytes. This study also
showed an association of higher CSF leukocyte counts prior to
therapy with greater chances of survival. These latter results
are similar to the findings in clinical case series, in which
bacterial meningitis patients with an initial low CSF leukocyte
count, before initiation of antibiotic therapy, generally have a
worse outcome than patients with initially higher CSF leuko-
cyte counts (66, 166). However, the study by Giampaolo et al.
also showed that continued CSF leukocyte elevation after ini-
tiation of antibiotic therapy was associated with a greater
chance of death, indicating detrimental effects of CSF pleio-
cytosis in the context of effective antibiotics.

Previous experimental studies have demonstrated that the
number of leukocytes in the meninges immediately adjacent to
the cerebral cortex contributes significantly to death (88). Early
in vitro studies demonstrated direct cytotoxic effects of leuko-
cytes on cerebral cortex tissue (36). On autopsy, cortical leu-

kocyte infiltration and ventricular empyema are frequently
found (113). Since the combined evidence suggests that neu-
trophils are not very efficient in bacterial phagocytosis and
killing in the CSF environment and that persistent CSF pleio-
cytosis following initiation of antibiotic therapy is associated
with a worse outcome, inhibition of leukocyte recruitment into
the CSF compartment when initiating antibiotic therapy seemed
worthy of exploration. Three avenues to decreasing white
blood cell influx into the CSF have been examined: inhibition
of attraction, adherence, and activation, as summarized in Ta-
ble 2.

The process of leukocyte attraction to the site of infection is
regulated by chemotactic substances such as complement fac-
tor C5a, platelet-activating factor, and chemotactic cytokines
called chemokines. The chemokines are subdivided into sev-
eral families according to structural features related to the
relative positions of their cysteine residues. Chemokine recep-
tors belong to the seven-membrane-spanning G-coupled pro-
tein receptor family (85). Chemokines are produced at sites of
inflammation and are then presented at the luminal side of
endothelial cells, sometimes on surface heparan sulfates (92).
The CSF of patients with bacterial meningitis contains detect-
able levels of the C-X-C chemokines (IL-8) and C-C chemo-
kines (monocyte chemotactic protein 1 [MCP-1], macrophage
inflammatory proteins MIP-1a and MIP-1B3) (144). In experi-
mental models of meningitis, systemic neutralization of IL-8
had a sustained effect, and neutralization of MCP-1 reduced
macrophage infiltration, whereas systemic neutralization of
MIP-1a or MIP-2 with antibody temporarily reduced neutro-
phil influx into the CSF. Intrathecal neutralization of IL-8 had
no effect on immune cell recruitment (27, 28, 102). Because of
multiplicity and overlap between chemokines, it will be difficult
to make a good formula to stop attraction of leukocytes.

Processes such as integrin-mediated leukocyte adhesion and
release of mediators require leukocyte activation. High levels
of the intracellular second-messenger cyclic AMP (cAMP) pre-
vent leukocyte activation. Drugs can influence intracellular
cAMP levels either by increasing the synthesis of intracellular
cAMP or by preventing the breakdown of cAMP. The level of
cAMP can be increased by stimulation of inhibitory leukocyte
receptors such as the adenosine receptor A,,. Indeed, treat-
ment with an A,, adenosine receptor agonist (WRC-0470)
inhibited pleiocytosis and reduced blood-brain barrier disrup-
tion in a rat model of LPS-induced meningitis (146). Degra-
dation of intracellular cAMP can be inhibitid by phospho-
diesterase inhibitors, such as the type IV phosphodiesterase
inhibitor rolipram. In addition, the phophodiesterase inhibitor
pentoxifylline (a methylxanthine derivative) reduced inflam-
mation in the subarachnoid space in several models of bacte-
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FIG. 4. Process of neutrophil transendothelial migration. Initially the neutrophil is slowed and rolls down the endothelium, following thethering
by an interaction of endothelial E-selectin and P-selectin with the leukocyte CD15 sialyl Lewis-X carbohydrate moieties and an interaction of
L-selectin with endothelial cell carbohydrate moieties. Chemokine binding to receptors on leukocytes activates leukocyte adhesins of the integrin
family, such as the B,a,, integrin CD18/CD11b. Simultaneously, mediators such as IL-8 upregulate the endothelial adhesins of the immunoglobulin
superfamily (e.g., intercellular adhesin molecule 1 [ICAM-1]) which bind CD18 on the leukocyte, initiating diapedesis into the cerebrospinal fluid.
Matrix metalloproteinases released by the leukocyte digest intercellular tight junctions and the basal membrane during diapedesis.

rial meningitis but had no significant effect on blood-brain
barrier permeability or neuronal damage (106, 133, 175). New
xanthine derivatives such as lisofylline, which have a similar
mode of action, are less toxic, making their clinical use more
feasible (165). Newly discovered regulators of neutrophil acti-
vation, such as inosine monophosphate, may lead to the devel-
opment of other effective inhibitors of neutrophil activation
(124). Since these drugs will affect leukocytes both in the
bloodstream and in the CSF, this seems a promising strategy.

Leukocyte migration into the CSF involves the interaction of
leukocytes with the vascular endothelium via several sets of
surface adhesion molecules. The process of leukocyte transmi-
gration is illustrated in Fig. 4.

Selectin-mediated rolling of leukocytes is essential for the
transendothelial migration of neutrophils, as elegantly demon-
strated in selectin-deficient mice (148). Several proinflamma-
tory mediators, such as histamine, stimulate the upregulation

of endothelial selectins and promote rolling of leukocytes. In-
terference with activation of the histamine (H1) receptor in a
rat model of bacterial meningitis temporarily inhibited leuko-
cyte rolling in the early phase of meningitis (170). In addition,
several carbohydrate agents prevent the selectin-mediated roll-
ing of leukocytes and inhibit neutrophil migration into the CSF
in models of meningitis. These agents include heparin (171),
the polysaccharide fucoidin (3, 42), and the polysaccharide
glucuronoxylomannan from the capsule of the yeast Cryptococ-
cus neoformans. Glucuronoxylomannan decreased TNF-« lev-
els in the CSF, an effect not studied for the other polysaccha-
ride agents (80). Though rolling is the initial phase of leukocyte
transmigration, inhibition of rolling by fucoidin at the time of
antibiotic treatment still affected CSF neutrophil numbers,
suggesting that treatment with fucoidin may be relevant in the
late phase of the disease, which is the important phase clini-
cally (41).

TABLE 3. Cellular dysfunction contributes to exacerbation of pathophysiology

Dysfunctional cell type Pathophysiologic event

Effect

Endothelium Disruption of bood-brain barrier
Procoagulant state

Loss of cerebral autoregulation
Vasoconstriction

Increased release of excitatory amino acids

Smooth muscle

Neuron

Vasogenic edema, increased intracranial pressure, compromised
cerebral bloodflow, cerebral herniation

(Micro)thrombi, ischemia

Cerebral hypo-/hypertension

Cerebral ischemia

Excessive stimulation, metabolic disturbances, cellular edema
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The B,-integrin (CD11a/CD18; CD11b/CD18) and intercel-
lular adhesion molecule-1 (ICAM-1)-dependent phase of leu-
kocyte endothelial transmigration can be inhibited by antibod-
ies or peptides blocking the CD18 complex or ICAM-1 (130,
131, 157, 169). Blockage of CD18-mediated adhesion in an
animal model prevented CSF pleiocytosis and protected
against enhanced blood-brain barrier permeability and brain
edema without changing the efficacy of bacterial killing by
ampicillin. Antibodies against leukocyte adhesion molecules
have already been used successfully in clinical trials as treat-
ment for primarily lymphocyte-dependent illnesses, including
transplant rejection and inflammatory bowel disease (23, 45).
An additional target for intervention may be the structural
tight junction components. Antibodies against the cerebral en-
dothelial tight junction component junctional adhesion mole-
cule inhibited leukocyte recruitment in a model of cytokine-
induced meningitis in mice (26) but not in a model of
infectious meningitis. Moreover, in the latter model, comple-
ment-mediated endothelial damage induced by the antibody
treatment was observed (69). Since the effects of activated
leukocytes in the CSF are very wide-ranging, further evalua-
tion of strategies to interfere with leukocyte actions still seems
worthwhile.

Conserve cellular function. (i) Blood-brain barrier and in-
creased intracranial pressure. In bacterial meningitis, the
pathophysiologic changes are much broader than the above-
mentioned direct toxic effects of bacteria, release of proinflam-
matory mediators and activation of leukocytes. As a result of
the inflammatory response, many cell types, including endo-
thelium, smooth muscle cells, and neurons, dysfunction and
contribute to aggravation of the condition, as summarized in
Table 3. This vicious circle poses a major risk for death or
neuronal damage. One cause of an unfavorable outcome of
bacterial meningitis is cerebral edema and increased intra-
cranial pressure. At present, the only clinical treatments for
cerebral edema and elevated intracranial pressure are cortico-
steroids, infusions with hyperosmolar mannitol solutions, and
mechanical hyperventilation. All these treatment strategies are
controversial. Although corticosteroids reduce tumor-associ-
ated edema, it is unclear whether their beneficial effect in
bacterial meningitis is related to edema reduction. Mannitol
has been shown to reduce intracranial pressure in experimental
models of meningitis and has been used in the clinic (84, 93,
147). However, its use is debated because of possible paradox-
ical effects (46, 55). Similarly, mechanical hyperventilation will
reduce cerebral blood flow and thus intracranial pressure but
may inadvertently worsen cerebral ischemia (7).

Vasogenic edema is caused by the leakage of plasma pro-
teins into tissue following disruption of the blood-brain barrier.
Many of the inflammatory mediators mentioned above con-
tribute to this disruption of the blood-brain barrier. Vasoactive
mediators such as vascular endothelial growth factor (VEGF)
are released in response to bacterial toxins and proinflamma-
tory mediators (163). VEGF is intrathecally released from
invading neutrophils in the CSF in bacterial meningitis (164).
VEGF induces the formation of transcellular canals called
vesiculo-vacuolo organelles and causes loss of intercellular
tight junctions (35, 167). Blocking VEGF reduces cerebral
edema in experimental cerebral ischemia, but the role of
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VEGF in blood-brain barrier disruption in bacterial meningitis
awaits further evaluation (162).

Furthermore, degrading enzymes such as the matrix metal-
loproteinases are implicated in disruption of endothelial tight
junctions and the blood-brain barrier during leukocyte diape-
desis. Matrix metalloproteinases are a family of zinc-depen-
dent endopeptidases that are released in inactive form and are
regulated by endogenous tissue inhibitors of metalloprotein-
ases. Disruption of the blood-brain barrier in experimental
meningitis can be modulated by administration of matrix met-
alloproteinase inhibitors such as batimastat (BB-94) and hy-
droxamic acid-type inhibitors (GM-6001 and BB-1101) (78,
109). Broad-spectrum hydroxamic acid-based inhibitors simul-
taneously inhibit proteolytic activation of pro-TNF, thereby
inhibiting the progression of inflammation (75).

In addition to vasogenic edema, interstitial edema resulting
from decreased CSF outflow and cellular edema due to cellular
injury contribute to brain edema. Intracellular calcium is an
important mediator of inflammatory cellular responses, and
calcium channel antagonists have been demonstrated to mod-
ulate the production of cytokines and reactive oxygen interme-
diates and reduce cellular injury. In an experimental pneumo-
coccal meningitis model, nimodipine, a calcium channel
blocker, reduced intracranial pressure. In patients with sub-
arachnoid hemorrhages, nimodipine reduced the proportion of
ischemic neurologic deficits and improved overall outcome
(33). However, nimodipine failed to protect the brain from
ischemic stroke in the clinical setting (47). Because nimodipine
also induces cerebral vasodilation, which lowers cerebral per-
fusion pressure, hypotension and shock are regarded as con-
traindications for its use. Possible effects on cerebral blood
flow in meningitis require further experimental evaluation (108).

(i) Protecting cerebral blood flow. In bacterial meningitis,
the cerebral blood flow initially increases as a result of vaso-
dilating neuropeptide release and then steadily decreases due
to vasoconstriction and the pressure of surrounding cerebral
edema (7, 118, 158). In the early phase of pneumococcal men-
ingitis, dilation of pial vessels and increased blood flow are
initiated by endogenous vasodilating neuropeptides such as
substance P. Treatment with the substance P antagonist span-
tide reduced pial arteriolar dilatation (120). The vasodilatator
effects of substance P seem to be mediated, at least in part, by
nitric oxide production. Early pial vasodilatation is associated
with stimulation of endothelial inducible nitric oxide synthase
and neuronal nitric oxide synthase activity. Nitric oxide freely
diffuses into the cytosol and stimulates guanylate cyclase,
which transforms guanylate triphosphate into cyclic guanylate
monophospate, raising the intracellular cyclic GMP levels and
causing relaxation of smooth muscle cells. Nitric oxide antag-
onists (7-nitroindazole and N-nitro-L-arginine) prevent early
pial vasodilatation in experimental models, which suggests that
nitric oxide is a potential therapeutic target (107). However,
the early timing of inhibitor administration is crucial, because
administration of the inhibitor later in the disease process
exacerbates hypoperfusion (72, 142).

During bacterial meningitis, cerebral autoregulation is lost,
and systemic changes in mean arterial pressure influence ce-
rebral blood flow (95). This loss of cerebral autoregulation is
due at least in part to cerebral arteriolar dilatation and can be
restored by hyperventilation (94). Decreased blood flow is me-
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diated by vasoconstrictive agents such as endothelins, the levels
of which are significantly elevated in the CSF of patients with
bacterial meningitis (60). The vasoconstrictive effects of endo-
thelins may contribute to ischemic neuronal injury, because an
endothelin antagonist (bosentan) significantly reduced neuro-
nal injury in experimental meningitis. The protective effect of
bosetan was independent of an effect on nitric oxide produc-
tion (121). These results should be confirmed in further exper-
iments, especially because bosetan treatment was associated
with a substantial increase in spontaneous deaths, even though
the increase in mortality did not reach statistical significance.
Studies with endothelin B receptor-deficient rats and autopsy
studies of humans and rabbits suffering pneumococcal menin-
gitis indicate that endothelin may also function to increase
neuronal survival (29).

Cerebral blood flow can be further compromised by the
activation of platelets and the induction of a procoagulant state
on the endothelial surface. Cerebrovascular complications and
focal ischemia are frequently found on autopsy (113). De-
crease in cerebral blood flow is accompanied by a steady in-
crease in intracranial pressure and CSF lactate concentration,
which is a sign of deleterious metabolic changes. In clinical
practice, fluid restriction in bacterial meningitis patients for
fear of of inappropriate antidiuretic syndrome has long been
the standard of care. Experimental work on the effects of the
hydration status on cerebral blood flow and CSF lactic acidosis
has demonstrated better outcome with no fluid restriction
(160). This important conclusion is supported by some small
clinical studies (122, 143).

(iii) Neurotoxicity and intrinsic cellular death pathways.
Oxidants such as reactive oxygen species and reactive nitrogen
intermediates are terminal mediators of brain damage in bac-
terial meningitis (62). These highly reactive instable molecules
are cytotoxic through their inactivation of enzymes, damage to
membrane ion transporters, and initiation of lipid peroxidation
(76). In addition, they cause damage to DNA, causing single-
and double-strand breaks, which activate poly(ADP-ribose)
polymerase 1. Excessive activation of poly(ADP-ribose) poly-
merase 1 causes futile consumption of intracellular energy
stores, cellular dysfunction, and eventually necrotic cell death
(65).

Experimental and endogenous antioxidants (a-phenyl-fert-
butyl, superoxide dismutase, catalase, the 21-aminosteroid
U74389F, and uric acid) (54, 73, 81, 83, 116, 117, 119) and
several clinically used antioxidants (N-acetylcysteine, desferox-
amine, and trylizad mesylate) (8) reduce brain edema, cortical
damage, and changes in cerebral blood flow in experimental
meningitis. Assessment of the effect on hippocampal neurons
produced conflicting results, varying from reduction of apopto-
sis by a-phenyl-tert-butyl in group B streptococcal meningitis to
aggravated apoptosis and learning deficits with the same agent
in pneumococcal meningitis (73, 81). Inhibition of poly(ADP-
ribose) polymerase 1 by 3-aminobenzamide also reduces cen-
tral nervous system complications (65). Interference with re-
active oxygen species and reactive nitrogen intermediates as
terminal mediators of meningitis-associated central nervous
system cell damage holds much promise for future therapeutic
interventions. When agents prove protective for brain function
in clinical trials of cerebral ischemia, they will be excellent
candidates as adjunctive therapy in bacterial meningitis.
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Inflammation-induced production of excitatory amino acids
(glutamate, aspartate) causes neuronal damage due to exces-
sive stimulation. The excitatory amino acids activate cells by
opening receptor-operated calcium channels, resulting in ele-
vated intracellular calcium levels and metabolic changes which
lead to cellular edema and neuron death. Stimulation of exci-
tatory amino acid receptors (such as the NMDA [N-methyl-p-
aspartate] receptors) contributes to inflammation by activation
of inflammatory gene expression (50). In the neonatal rat
group B streptococcus meningitis model, kynurenic acid, an
NMDA receptor antagonist, significantly reduced neuronal in-
jury in the cortex and hippocampus compared to that seen in
control animals (74). In an experimental model of pneumo-
coccal meningitis, an NMDA antagonist (HU-211) reduced
brain edema and blood-brain barrier impairment even when
given together with antibiotics as late as 18 h after infection
(11). However, NMDA blockade could not reduce ischemic or
traumatic brain damage in several animal models, and depend-
ing on the timing of inhibition, NMDA blockage may even
increase neuronal cell death (49). Moreover, the results of
clinical trials evaluating the supposed protective efficacy in
ischemic brain damage have been disappointing (70). Blockade
of another glutamate receptor subtype, the a«-amino-3-hy-
droxy-5-methyl-4-isoxazole propionate receptor) to date seems
very promising in experimental studies but has not yet been
tested in experimental meningitis or clinical trials in other
neurologic diseases (49).

Nonpharmacological therapies may also effectively improve
the outcome of bacterial meningitis. For example, hypother-
mia, which is clinically applied in neurosurgery to lower me-
tabolism in the brain and to make the brain less vulnerable to
neuronal damage, has been tested in an experimental menin-
gitis model. Hypothermia successfully reduced meningitis-in-
duced changes, particularly the increased intracranial pressure
(2). However, the differential effects of hypothermia on out-
come demand further investigation. Inflammatory mediators in
the CSF trigger the activation of caspases, a specific class of
proteases involved in cell survival. Activation of caspases ulti-
mately results in neuronal apoptosis. Bacterial meningitis may
cause apoptotic cell death in specific areas of the brain, as
evidenced by the presence of apoptotic neurons in the hip-
pocampus at autopsy (101, 176). This neuronal loss may ex-
plain some of the learning and memory difficulties seen in
survivors of meningitis.

In animal experiments, treatment with the caspase inhibitor
z-VAD-fmk greatly reduced the extent of meningitis-associ-
ated apoptosis (17). Caspase antagonist therapy still reduced
neuronal damage and CSF white blood cell counts when
started 8 h postinfection, but since the largest increase in CSF
white blood cell counts in a rabbit model of pneumococcal
meningitis occurred from 12 h postinfection onward, further
evaluation of the window of opportunity is needed (156).
Other investigators have shown the efficacy of z-VAD-fmk
when administered up to 6 h after infection in a rat model of
pneumococcal meningitis (64). The relevance of caspase-1 for
both inflammation and apoptosis in bacterial meningitis has
been studied in a caspase-1-deficient knockout mouse model of
meningitis. However, the results are conflicting (64; M. V.
Mering, A. Wellmer, U. Michel, and R. Nau, Abstr. 40th In-
tersci. Conf. Antimicrob. Agents Chemother., abstr 431, 2000).
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FIG. 5. Neuronal cell death pathways may be divided into necrotic pathways, caspase-independent apoptotic pathway, and caspase-dependent
apoptotic pathway. Bacterial and host oxidants cause damage to cell membranes via lipid peroxidation, leading to loss of membrane integrity and
depolarization and finally necrotic cell death. Oxidants also cause DNA damage, resulting in the energy-consuming activation of the poly(ADP-
ribose) polymerase (PARP). When DNA repair is futile because of the magnitude of the damage, massive energy depletion will cause necrotic cell
death. Oxidants, high concentrations of excitatory amino acids (EAA), and bacterial toxins such as the pneumolysin of S. pneumoniae or the
hemolysin of S. agalactiae all cause increased cytosolic free calcium levels. This may result in PARP activation and contribute to necrotic death but
primarily causes damage to the mitochondrial outermembranes with PARP-dependent release of apoptosis-inducing factor (AIF). Free cytosolic
apoptosis-inducing factor will move into the nucleus and cause chromatin condensation and apoptotic cell death. Release of inflammatory me-
diators such as TNF-a in response to the invading bacterial pathogens will result in activation of caspases. This results in activation of the apoptotic
pathway and will also inhibit necrosis through inactivation of PARP. Release of cytochrome ¢ from mitochondria following mitochondrial damage
in response to increased cytosolic free calcium levels also causes activation of caspases and apoptotic death. As indicated in the figure, several crossroads
exist between the different death pathways. In many cases, both necrotic and apoptotic cell death may be revealed on histologic examination.

Since neuronal apoptosis is the final common pathway of the CSF and cerebral tissue will sustain metabolic disturbances

many damaging factors, the components of the apoptosis path-
way are attractive novel targets for adjuvant neuroprotective
therapy (20). It must be kept in mind, however, that there are
many pathways to apoptosis, both caspase dependent and in-
dependent. Thus, the involvement of the individual pathways
must be compared in order to choose agents with the most
potential benefit. For instance, in pneumococcal infection, an
equal contribution of caspase-dependent and -independent
pathways suggests that at least two inhibitors would be needed
(18). The different neuronal cell death pathways and their
interactions are summarized in Fig. 5.

Enhance Repair

Endothelial recovery. When inflammation subsides, restora-
tion of blood-brain barrier integrity is important because con-
tinuing vasogenic edema and leakage of potentially harmful
molecules such as excitatory amino acids from the blood into

in the brain. The mechanisms responsible for endothelial re-
pair have long remained elusive. Until recently, vascular en-
dothelial growth factor (VEGF), a hypoxia-inducible, angio-
genic factor, was the only proven specific and critical factor for
endothelial growth and blood vessel formation. The advance in
genetic techniques has resulted in the discovery of a whole
series of new growth factors acting on the vascular endothe-
lium, including new members of the VEGF family, four mem-
bers of the angiopoietin family, and at least one member of the
ephrin family (173). Furthermore, it has become clear that
many other growth factors that are not vascular endothelium
specific are important for blood vessel growth and repair, such
as transforming growth factor beta.

A challenging new concept in the understanding of blood
vessel formation is the recruitment of bone marrow-derived
endothelial progenitor cells to sites of angiogenesis (86). The
possible role of these cells in repairing damaged and leaky
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TABLE 4. Strategies to enhance repair

Cellular target Aim

Potential agents

Restore blood-brain barrier
Limit vasogenic edema

Endothelium

Endothelial growth factors, e.g., angiopoietin

Protect composition of CSF and interstitial fluid in brain

Neurons Stimulate recovery
Prevent neuron loss

Replace dead neurons

Stimulate recruitment of endogenous progenitor cells

Growth factors, e.g., transforming growth factor beta,
VEGF

Growth factors, e.g., epidermal growth factor, fibroblast
growth factor 2

vessels following inflammation and possibly ischemia has to be
studied further. Experimental work has demonstrated how an-
giopoietin 1 administration protects the adult vasculature from
damage and leaks induced by inflammation and VEGF. The
role of signaling mechanisms from astrocytes or other cells in
maintaining and restoring the defined characteristics of the
blood-brain barrier are still poorly understood and require
further study (48, 110, 132). It is expected that these new in-
sights will result in therapeutics that improve vascular re-
pair, which might limit the development of cerebral edema
and cerebrovascular complications in the context of bacte-
rial meningitis.

Neurotrophic factors. Neurotrophic growth factors may have
therapeutic potential to protect brain tissue from damage. For
instance, receptors for VEGF are present on neuronal cells.
VEGF promotes survival of neuronal cells in culture and stim-
ulates axonal outgrowth and survival of mouse dorsal root gan-
glions in vivo, but also protects neuronal cells from the effects
of hypoxia (51). Many of the neurotrophic growth factors have
additional critical roles for many other systems. For instance,
VEGF may also assert negative effects, since it may induce vas-
cular permeability and vasogenic edema (162). VEGF can be de-
tected in the CSF of bacterial meningitis patients, suggesting
that it may have a biological role in bacterial meningitis (164).

In general, proinflammatory cytokines are neurotoxic. Some
anti-inflammatory cytokines, such as transforming growth fac-
tor beta, possess neurotrophic functions. Transforming growth
factor beta 2 has additional beneficial effects, since it inhibits
cerebrovascular changes and brain edema in bacterial menin-
gitis (115).

The functions and therapeutic potential of neurotrophic and
neuroprotective factors have drawn much research attention in
recent years (1). However, the list of neurotrophic growth
factors is long, and it remains an enormous challenge to de-
termine the exact effects and potential of the individual factors
and their interactions, and much research is needed before
therapeutic applications can be expected.

Neuronal regeneration. Recently, it has become evident
that, even in adults, neurons are continuously born from en-
dogenous stem cells and added to the dentate gyrus through-
out life. This process is regulated by several growth factors
important in neuronal development, e.g., epidermal growth
factor and Sonic hedgehog (68). Hippocampal pyramidal cells
can be replaced by endogenous progenitors which migrate into
the hippocampus to generate new neurons, although this po-
tential for regeneration declines with age (56, 98, 141). The
dentate gyrus and hippocampus are the primary sites of neuron
loss in clinical meningitis. In animal experiments, intraventric-
ular infusion of growth factors (e.g., fibroblast growth factor 2

and epidermal growth factor) augments the regenerative re-
sponse in the hippocampus following ischemia, providing hope
for the concept that this endogenous regenerative potential
may be applied therapeutically to ameliorate hippocampal at-
rophy (98). Other animal experiments have shown how an
enriched environment providing adequate stimulation im-
proves hippocampal neurogenesis and behavioral performance
(56). Potentially, this source of neuronal self-renewal may one
day be fully employed. Several strategies to enhance the body’s
repair mechanisms are summarized in Table 4.

FUTURE PROSPECTS

Considering ways to improve outcome in bacterial meningi-
tis, the experience gained in sepsis and stroke research has to
be taken into account. The retrospective evaluation of several
unsuccessful clinical trials has taught us the value of thorough
preclinical evaluation. When all available preclinical data are
reexamined, it seems that some of the drugs that failed in
clinical trials for stroke or sepsis did not have a reasonable
chance to succeed when these trials were initiated. Since well-
designed clinical trials to evaluate the effect of adjuvant agents
in bacterial meningitis require an enormous effort from many
people, it is of utmost importance that drugs proposed for such
trials undergo sufficient preclinical evaluation to select the
most promising candidates (30). Researchers need to be aware
of the limitations of different animal models, and methods to
assess data from several animal experiments are available (61,
91, 134). Guidelines of adequate preclinical drug evaluation
such as those developed for stroke research are relevant to
prevent futile trial efforts in bacterial meningitis, which may
damage the execution of more promising future trials (4).

Knowledge of the effects of timing during the course of
disease and the optimal dose agents often seems to be crucial
to reaching a beneficial effect. As mentioned above, many
mediators may be beneficial early in the disease process or at
low doses but may have detrimental effects later or in higher
doses. For instance, corticosteroids protect clinically against
unfavorable outcome when administered early but have no
effect when administered later during the course of disease (89,
96, 123). Successes in related conditions, such as adjuvant
treatment with activated protein C for severe sepsis, should not
be simply assumed to apply to bacterial meningitis as well (13).

Unlike antibiotic therapy, the effectiveness of adjuvant ther-
apy may be very different in sepsis or meningitis. It is important
to appreciate the differences in pathology between these dif-
ferent diseases, which are likely to translate to different risk-
benefit profiles for individual agents. In the case of activated
protein C, the risk of intracranial bleeding in bacterial menin-



426 vAN DER FLIER ET AL.

gitis may outweigh other beneficial effects, such as a decrease
in ischemic events. However, clinical experience with protec-
tion against injury or enhancement of cellular repair in sepsis
and stroke may help select agents to evaluate for bacterial
meningitis. For some substances, such as neuroprotective
agents, it is probably best to first await successes in clinical
stroke trials, which allow faster patient recruitment.

Based on the compiled experimental evidence, it seems un-
likely that inhibition of a single proinflammatory mediator will
prove useful in clinical practice. Encouraging results have been
found with several avenues that simultaneously reprogram a
broader range of mediators. Particularly exciting are the ad-
justment of cytokine combinations such as effectuated by inhi-
bition of the NF-«kB signal pathway and the results with leu-
kocyte activation inhibitors. Equally promising are strategies to
interfere with oxidant-mediated damage processes, to inhibit
neuronal apoptosis, and to enhance endothelial and neuron
repair.
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