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The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal
tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of
digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal
motility and secretion have been well characterized. By altering the rate at which nutrients are
delivered to compartments of the alimentary canal, the control of food intake arguably constitutes
another point at which intervention may promote efficient digestion and nutrient uptake. In recent
decades, gut hormones have come to occupy a central place in the complex neuroendocrine
interactions that underlie the regulation of energy balance.

Many gut peptides have been shown to influence energy intake. The most well studied in this
regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1
(GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase
satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the
subject of ongoing investigation.

Local effects such as the inhibition of gastric emptying might contribute to the decrease in
energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further
food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly
on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and
area postrema are characterized by a deficiency of the blood–brain barrier. Some investigators
argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus
and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating
factors. Extensive reciprocal connections exist between these areas and the hypothalamic
paraventricular nucleus and other energy-regulating centres of the central nervous system. In
this way, hormonal signals from the gut may be translated into the subjective sensation of satiety.
Moreover, the importance of the brain–gut axis in the control of food intake is reflected in the
dual role exhibited by many gut peptides as both hormones and neurotransmitters. Peptides such
as CCK and GLP-1 are expressed in neurons projecting both into and out of areas of the central
nervous system critical to energy balance.

The global increase in the incidence of obesity and the associated burden of morbidity has
imparted greater urgency to understanding the processes of appetite control. Appetite regulation
offers an integrated model of a brain–gut axis comprising both endocrine and neurological
systems. As physiological mediators of satiety, gut hormones offer an attractive therapeutic target
in the treatment of obesity.

Keywords: pancreatic polypeptide; peptide YY; ghrelin; glucagon-like peptide 1; oxyntomodulin;
cholecystokinin
1. INTRODUCTION
It was with the discovery of gut hormones a century

ago that the field of endocrinology was born. It is

therefore fitting that in the last decade or so, gut

peptides have taken on an increasingly central role in

one of the most pressing public health problems

facing the world today, namely that of obesity.

The brain–gut axis provides a means by which the

gastrointestinal tract signals energy status to the

brain. In this review, we shall describe the key part

played by gastrointestinal hormones in regulating

energy intake.
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2. HISTORICAL PERSPECTIVES
For centuries, Western medical thought was dominated

by the doctrine of the humours, and the gut, in

particular, was accorded a central role. However, it

was not until the early twentieth century that the notion

of circulating regulators of gut function was set onto a

more sound experimental footing with the work of

Bayliss & Starling (1902). They demonstrated that

infusion of an acidic solution into a denervated loop of

jejunum stimulated pancreatic secretion, whereas

intravenous acid did not. Moreover, intravenous

injection of an extract of duodenal mucosa reproduced

this effect. The putative agent responsible was named

‘secretin’ and conferred upon its discoverers the

distinction of founding a novel branch of physiology.

The advent of the 1960s saw the application of a
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Table 1. Overview of the major gut hormones. (CCK, cholecystokinin; CNS, central nervous system; GH, growth hormone;
GIP, glucose-dependent insulinotropic polypeptide; GLP-1 and -2, glucagon-like peptides-1 and -2; GRP, gastrin-releasing
polypeptide; ICV, intracerebroventricular; PHI, peptide histidine isoleucine; PHV, peptide histidine valine; PP, pancreatic
polypeptide; PYY, peptide YY; OXM, oxyntomodulin.)

peptide primary sites of synthesis major actions important references

CCK I-cells of duodenum, jejunum;
widespread CNS expression

promotes gallbladder contraction Gibbs et al. (1973),
Kissileff et al. (1981)increases secretion of pancreatic enzymes

and bicarbonate
inhibits gastric acid secretion
slows gastric emptying
reduces food intake

gastrin G-cells of gastric antrum increases gastric acid Conover et al. (1989)
promotes gastric epithelial cell proliferation
no known effect on food intake

ghrelin A-cells of gastric fundus;
small and large intestine;
hypothalamic nuclei

promotes release of GH and other pituitary
hormones

Tschop et al. (2000),
Wren et al. (2001a)

increases food intake
promotes gastric motility
promotes PP release
inotropic effect on heart
vasodilatation

GIP K-cells of duodenum and
jejunum

incretin effect on insulin secretion Woods et al. (1981),
Meier et al. (2002),
Holst (2004)

increases fatty acid synthesis in adipose tissue
enterogastrone effect
diminishes intestinal motility
increases mesenteric blood flow
effects on food intake unknown—fourth

ventricle administration has no effect

GLP-1 L-cells of distal small and large
intestine; immunoreactivity
in hypothalamus, dorsovagal
complex, pituitary

incretin effect on insulin secretion Turton et al. (1996),
Meeran et al. (1999),
Edwards et al. (2001),
Tang-Christensen
et al. (2001), Verdich
et al. (2001a), Baggio
et al. (2004)

suppresses glucagon release
promotes pancreatic b-cell growth
inhibits gastric emptying
inhibits gastric secretion
inhibits energy intake
effects on cardiovascular system

GLP-2 L-cells of distal small and large
intestine; immunoreactivity
in hypothalamus, dorsovagal
complex, pituitary

promotes tissue repair and intestinal
mucosal growth

Tang-Christensen et al.
(2000), Schmidt et al.
(2003)enhances digestive and absorptive capacities

of intestine
inhibits gastric secretion
inhibits feeding when administered centrally;

no effect of peripheral administration

motilin proximal small intestine; some
reports of immunoreactivity
in CNS

prokinetic action on gut, mediates migrating
motor complexes

Olson et al. (1980),
Garthwaite (1985),
Asakawa et al. (1998)stimulates gallbladder contraction

promotes enzyme secretion in stomach and
pancreas

stimulates PP release
effects on food intake equivocal

oxyntomodulin L-cells of distal small and large
intestine; immunoreactivity
in hypothalamus, dorsovagal
complex, pituitary

inhibits gastric acid production Dakin et al. (2001),
Dakin et al. (2002),
Cohen et al. (2003),
Wynne et al. (2005b)

reduces gastric motility
role as incretin equivocal
inhibits food intake

PHI/PHV gastrointestinal tract; heart; lungs;
kidney; central and peripheral
nervous systems

main physiological effects unclear Olszewski et al. (2003)
PHI-injected ICV inhibits feeding

PP pancreatic islets of Langerhans; some
reports of expression in hypo-
thalamus, pineal gland, pituitary,
substantia nigra, hippocampus

relaxation of gallbladder Batterham et al. (2003b)
inhibition of pancreatic exocrine secretion
equivocal effect on gastric emptying
inhibits food intake

PYY3-36 L-cells of distal small and large
intestine; immunoreactivity in
hypothalamus, medulla, pons

inhibits food intake Batterham et al. (2002),
Batterham et al.
(2003a)

inhibits gallbladder secretion
reduces gut motility
inhibits pancreatic secretion
enterogastrone effect

(Continued.)

1188 O. Chaudhri and others Gut hormones regulating appetite

Phil. Trans. R. Soc. B (2006)



Table 1. (Continued.)

peptide primary sites of synthesis major actions important references

secretin S-cells of the duodenum stimulates pancreatic exocrine secretions Conover et al. (1989)
inhibits gastric secretion
promotes PP secretion
no known effect on food intake

somatostatin multiple organ systems, notably the
D-cells of the gut and pancreas;
hypothalamus

multiple actions across numerous organ
systems

Lotter et al. (1981),
Levine & Morley
(1982), Morley et al.
(1983)

inhibits gastric secretions
reduces gut motility
inhibits release of numerous other gut

hormones, including insulin, glucagon,
CCK, gastrin, OXM, PP

reduces food intake when administered
peripherally—physiological importance of
this effect unclear
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number of novel techniques to the field and rapid
progress flowed from the successive isolation, purifi-
cation and measurement in the plasma of secretin,
gastrin and other gut hormones (Lin & Chey 2003;
Dockray 2004; Rehfeld 2004).

The gastro-entero-pancreatic system is now
regarded as the largest endocrine organ in the body,
and the range of identified hormones secreted by the
gut is extensive (see table 1). The primary function of
the gut is, of course, the digestion and absorption of
nutrients. The gut neuroendocrine system, and at a
higher level, the brain–gut axis, functions to optimize
this process. The regulation of appetite, and therefore
the regulation of the delivery of nutrients to various gut
compartments, may be regarded as another facet of
this. Many gut hormones therefore alter food intake
directly and indirectly, the majority acting to reduce
food intake and limit meal size.
3. CENTRAL NERVOUS SYSTEM APPETITE
CIRCUITS
It is now recognized that these peptides act as true
endocrine hormones and exert effects at distant target
organs. In particular, in the context of food intake,
many gut hormones act on hypothalamic and brain-
stem centres of appetite control. This provides one
means by which the gut may signal energy status to the
seat of satiety, the central nervous system (CNS).
These CNS neuronal circuits are reviewed in greater
detail elsewhere in this issue, but, briefly, the arcuate
nucleus (ARC) acts as the site of integration of a
number of neurological and blood-borne signals, due
to its privileged location near the median eminence.
This latter region lacks a complete blood–brain barrier
(Peruzzo et al. 2000), and therefore some investigators
have argued that the ARC is rendered susceptible to
influence by circulating factors (Cone et al. 2001).
Circulating factors modify the activity of two popu-
lations of neuron within the ARC. One population
co-expresses cocaine- and amphetamine-related tran-
script (CART) and proopiomelanocortin (POMC) and
inhibits food intake. Among the products of cleavage of
POMC is a-melanocyte-stimulating hormone, which is
a ligand for the melanocortin-4 receptor.
Phil. Trans. R. Soc. B (2006)
The importance of the melanocortin system in the
mediation of food intake is illustrated by the obser-
vation that up to 6% of monogenetic obesity in humans
results from defects in the melanocortin-4 receptor.
The second population of neurons increases food
intake and co-expresses neuropeptide Y (NPY) and
agouti-related protein (Cone et al. 2001; Ellacott &
Cone 2004; Farooqi & O’Rahilly 2005). Both popu-
lations project to the paraventricular nucleus (PVN)
and other areas important in the regulation of food
intake (figure 1; Schwartz et al. 2000).

Extensive reciprocal connections exist between the
hypothalamus and the brainstem, particularly the
nucleus of the tractus solitarius (NTS; van der Kooy
et al. 1984; Ter Horst et al. 1989). Like the ARC, the
brainstem is well placed to receive signals from the
blood due to its proximity to other regions with an
incomplete blood–brain barrier, e.g. the area postrema.
In addition, the brainstem receives vagal afferent
neurons from the gastrointestinal tract, and therefore
acts as another site of integration between endocrine
and neuronal signals.
4. CHOLECYSTOKININ
The first gut peptide to be implicated in the control of
appetite was cholecystokinin (CCK). CCK is derived
from a 115-amino acid precursor, pro-CCK, and
selective cleavage gives rise to a number of bioactive
forms (Rehfeld 2004). Biological activity resides in the
amidated C-terminus of the peptide and all the active
species of CCK share a C-terminal heptapeptide
sequence that also includes an O-sulphated tyrosine.
The major circulating forms in man are CCK-58, -33,
-22 and -8 (Rehfeld et al. 2001). Non-sulphated forms
of CCK also exist, but they constitute minor species of
peptide and their biological role remains unclear.

CCK is synthesized in a number of tissues in
humans, including the I-cells of the small intestine
(Buffa et al. 1976), from where it is rapidly released into
the circulation in response to a meal (Liddle et al.
1985). The basal plasma concentration of CCK is
approximately 1 pM, and levels rise to 5–8 pM
postprandially (Liddle et al. 1985), although many
assays for CCK also detect fragments of the peptide.
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Figure 1. Schematic of the two main appetite-regulating populations of neurons in the hypothalamic arcuate nucleus. a-MSH,
a-melanocyte-stimulating hormone (product of proopiomelanocortin cleavage); AgRP, agouti-related protein; CART, cocaine-
and amphetamine-related transcript; MC-3/4, melanocortin-3 and -4 receptors; NPY, neuropeptide Y; PVN, paraventricular
nucleus; C denotes stimulation of a receptor; K denotes inhibition.
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Whether all the CCK measured in plasma is bioactive
remains to be established. The concentration of CCK
in the circulation remains elevated for up to 5 hours
after a meal, and dietary fat and protein, or the
products of their digestion, are more potent stimulators
of CCK release than carbohydrate (Liddle et al. 1985).

CCK also has a dual role as a neurotransmitter, in
both the enteric and CNSs (Barden et al. 1981;
Hutchison et al. 1981). The post-translational modifi-
cation of CCK is tissue-specific, with CCK-8 the
predominant form in nervous tissue, whereas longer
species are preferentially synthesized in the endocrine
cells of the gut (Rehfeld et al. 2003).

Two G-protein-coupled receptors for CCK have
been identified and may be distinguished by their
characteristic pharmacological profiles (Wank 1995).
Previously known as the CCK-A and gastrin/CCK-B
receptors, they are now designated the CCK-1 and
CCK-2 receptors, respectively. Both receptor sub-
types are distributed throughout the CNS and gut,
although CCK-1 receptors predominate in the
alimentary tract, and CCK-2 receptors in the brain
(Wank 1995).

CCK acts to cause gallbladder contraction, relax-
ation of the sphincter of Oddi, stimulation of
somatostatin release (and thus inhibition of gastric
acid secretion) and stimulation of pancreatic growth
and enzyme release via the CCK-1 receptor (Wank
1995). The CCK-2 receptor has been implicated in
schizophrenic and anxiety states, and other CNS
actions of CCK (Wank 1995; Zachrisson et al. 1999;
Miyasaka et al. 2002). Inevitably, however, the overlap
in distribution is reflected in an overlap in function
(Morisset et al. 2000; Sanjuan et al. 2004; Jang et al.
2005). Moreover, the hormone gastrin is structurally
Phil. Trans. R. Soc. B (2006)
related to CCK, and its actions on the gastric mucosa
are mediated via the CCK-2 receptor, which also binds
gastrin with high affinity (Dockray et al. 2001).

In addition to those effects summarized above, CCK
also alters appetite. Gibbs et al. (1973) first demon-
strated a dose-dependent effect of exogenous CCK in
reducing food intake in rats. This effect occurred
without evidence of toxicity and was specific to food
intake, CCK having no effect on water intake in water-
deprived rats. This finding was subsequently confirmed
in humans, in whom an intravenous infusion of the
terminal octapeptide of CCK reduced meal size and
duration (Kissileff et al. 1981). This effect of CCK is
short-lived. When administered more than 30 minutes
prior to the start of a meal, CCK did not alter food
intake (Gibbs et al. 1973).

The mechanism by which CCK might exert this
effect on appetite is still a matter of ongoing debate. It
has been proposed that the inhibitory effect of CCK on
gastrointestinal motility, and, in particular, its inhi-
bition of gastric emptying, might be contributory to its
inhibitory actions on feeding. Some authors have
suggested that in this way, CCK may promote
stimulation of gastric mechanoreceptors, and thus
invoke neural feedback from the gut to appetite centres
in the brain. In support of this hypothesis, low doses of
CCK reduced food intake in rhesus monkeys only after
a gastric preload of saline (Moran & McHugh 1982).
Similarly, in humans, gastric distension was found to
augment the reduction of nutrient intake effected by
intravenous CCK-8 (Kissileff et al. 2003). The use of
antagonists to the serotonin receptor subtype 3
(5-HT3) has recently pointed towards a role for
serotonin in the mediation of this effect (Hayes et al.
2004).
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However, CCK also alters food intake through

other pathways that are independent of its effects on
the stomach (Moran & McHugh 1988). While the

induction of satiety at higher doses of CCK may be
attenuated by surgical removal of the pyloric

sphincter, lower doses continue to be effective in
inhibiting food intake. Lesioning of the vagus nerve

abolishes the effects of CCK at the lower doses of the
dose–response curve (Moran & Kinzig 2004). The

induction of satiety by CCK at physiological concen-
trations may therefore rely crucially on direct

activation of vagal afferent fibres. Others, however,
argue that our notion of ‘physiological levels’ of CCK

has been inaccurate in the past due to deficiencies in

the assays used, and that the reduction of food intake
seen with CCK is pharmacological rather than

physiological (Lieverse et al. 1993; Baldwin et al.
1998; Rehfeld 1998).

CCK-1 receptors are present on afferent fibres of
the vagus nerve, and also in the brainstem and

dorsomedial nucleus of the hypothalamus (DMH).
The use of specific CCK-1 and CCK-2 receptor

antagonists has implicated the CCK-1 receptor in
the reduction of food intake by CCK (Moran et al.
1992). Chronic administration of CCK-1 receptor
antagonists or anti-CCK antibodies accelerates

weight gain in rodents, though without significant
hyperphagia (McLaughlin et al. 1985; Meereis-

Schwanke et al. 1998). The Otsuka–Long–Evans–
Tokushima Fatty (OLETF) rat, which lacks CCK-1

receptors, is both hyperphagic and obese (Moran
et al. 1998; Schwartz et al. 1999). Peripherally

administered CCK induces c-fos, a marker of
neuronal activity, in the brainstem (Zittel et al.
1999), and food intake in rats is also reduced

following direct injection of CCK into a number of
hypothalamic nuclei (Blevins et al. 2000). Work in

OLETF rats has implicated the orexigenic peptide
NPY in the mediation of the effects of CCK in the

DMH (Bi et al. 2001). Thus, the anorectic effects of
CCK appear to be mediated by a number of

mechanisms, both direct and indirect.
The usefulness of CCK as a therapeutic target in

the treatment of obesity, however, may be limited by
the short-lived nature of its effects on appetite.

Repeated administration does not alter body weight
in rats, for although food intake is reduced, meal

frequency increases, and so overall intake is
unchanged (West et al. 1984, 1987a,b). When given

to rats as a continuous intraperitoneal infusion, the
anorectic effect of CCK is lost after 24 hours

(Crawley & Beinfeld 1983) and Glaxo-Smithkline
recently halted trials of its CCK-1 receptor antagon-

ist 181771 after the results made it commercially

non-viable (Fong 2005). From the point of view of
body weight regulation, CCK may play more of an

indirect role in its interaction with signals of longer-
term energy balance, such as leptin (Matson et al.
2000; Morton et al. 2005). The therapeutic potential
of this relationship remains to be determined and the

physiological or pharmacological nature of the
actions of CCK on food intake also awaits further

clarification.
Phil. Trans. R. Soc. B (2006)
5. POLYPEPTIDE-FOLD PROTEINS
The polypeptide-fold (PP) family of proteins consists
of NPY and two peptides of the gastrointestinal–pan-
creatic endocrine system, pancreatic PP and peptide
YY (PYY). Members of this family of peptides are 36
amino acids in length (with the exception of chicken
PYY, which contains 37 amino acids) and undergo
C-terminal amidation as a necessary requirement for
biological activity. All share a common tertiary
structure consisting of a type II proline helix and
a-helix connected by a b turn. This structural motif is
known as the PP-fold (Fuhlendorff et al. 1990). Of this
group of peptides, NPY shows the greatest conserva-
tion across species, and PP the least (Conlon 2002).

(a) Receptors

Five receptors for the PP-fold family of peptides have
been cloned in mammals thus far. Named Y1, Y2, Y4,
Y5 and y6 (Michel et al. 1998), the y6 receptor is
truncated and non-functional in man. All are coupled
to inhibitory G-proteins (Gi), and therefore mediate an
inhibition of intracellular cyclic-adenosine mono-
phosphate (cAMP) synthesis (Mullins et al. 2002).
However, they also exhibit a degree of heterogeneity in
their coupling to other intracellular signalling
pathways. Mullins et al. (2002), for instance, showed
that while blockade of the protein kinase C pathway
completely abolished the effects of Y5 receptor
activation, it only diminished the downstream effects
mediated by the receptors Y1, Y2 and Y4.

The receptors are diverse in their distribution and
this is reviewed in detail elsewhere (Berglund et al.
2003). Of particular note in the context of appetite
regulation is the mainly presynaptic location of the Y2
receptor subtype in the hypothalamus and elsewhere.
Here, it acts as an autoreceptor and inhibits further
neurotransmitter release (Smith-White et al. 2001).
The receptors are classified according to their affinity
for different ligands. PYY binds with high affinity to all
five receptor subtypes, but the cleavage product PYY3-
36 shows selectivity for Y2 and Y5 receptors (see
table 2). This diversity in ligand affinity coupled with
the differing distributions of the five receptor subtypes
ensures that there is scope for this family of peptides to
mediate a wide range of biological effects.

(b) Peptide YY

PYY was first isolated from porcine intestine using a
technique for the assay of C-terminal amidated
peptides (Tatemoto 1982). It is secreted by the
L-cells of the gastrointestinal tract, and is widely
expressed throughout the gut. Levels of PYY immu-
noreactivity are low in the proximal small intestine, but
increase in the ileum, and continue to rise in the large
intestine towards the rectum (Adrian et al. 1985a).
PYY immunoreactivity has also been identified in the
human adrenal medulla (Ekblad & Sundler 2002) and
in areas of the CNS of the rat, including the
hypothalamus, medulla, pons and spinal cord
(Ekman et al. 1986).

(i) General physiology
PYY is released into the circulation in response to a
meal in proportion to the calories ingested and in



Table 2. Summary of agonist affinities of Y-family receptor subtypes. (NPY, neuropeptide Y; PP, pancreatic polypeptide; PYY,
peptide YY (see also Berglund et al. 2003).)

receptor high-affinity agonists intermediate-affinity agonists low-affinity agonists

Y1 NPY, PYY, Leu31,Pro34NPY/PYY NPY2-36, NPY3-36,
NPY13-36

PP

Y2 (presynaptic) NPY, PYY, PYY3-36 Leu31,Pro34NPY/PYY PP
Y4 PP, NPY, PYY, Leu31,Pro34NPY/PYY NPY2-36 NPY/PYY fragments

PYY3-36
Y5 NPY, PYY, NPY2-36, NPY3-36, PYY3-36,

Leu31,Pro34NPY/PYY
PP, NPY13-36, PYY13-36 NPY/PYY fragments

y6 non-functional in man
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relation to the meal composition (Adrian et al. 1985a).
Higher plasma levels of PYY are seen following
isocaloric meals of fat compared with meals consisting
of protein or carbohydrate. PYY has been invoked as
contributing to the ‘ileal brake’ effect, acting to inhibit
further food intake once nutrients have reached the
distal small intestine. Interestingly, however, PYY
release has been shown to be similar whether
intraluminal fat is confined to the proximal or distal
half of the small intestine. The release of PYY in
response to fat in the proximal small intestine is
atropine-sensitive, raising the possibility that a neural
reflex (likely involving the vagus nerve) may also
mediate PYY release (Fu-Cheng et al. 1997; Lin &
Chey 2003; Lin & Taylor 2004). Other stimulants of
PYY release include intraluminal bile acids, gastric acid
and CCK (Onaga et al. 2002).

Studies of the actions of PYY initially focused on its
local effects within the alimentary tract. At doses of
0.2 pmol kgK1 minK1 and above, PYY infused into
healthy volunteers caused a significant suppression of
pentagastrin-stimulated gastric secretions (Adrian et al.
1985b). It delays gastric emptying (Allen et al. 1984;
Moran et al. 2005) and has an inhibitory effect on
gallbladder emptying, an effect probably mediated by
the vagus nerve (Hoentjen et al. 2001). In common
with other hormones of the gastrointestinal tract, PYY
also exhibits mitogenic properties, which has led to
interest in its effects in pathological states, such as acute
pancreatitis (Kazanjian et al. 2003).
(ii) Appetite control: PYY injected into the CNS
Similarly, the role of PYY in the regulation of appetite
and food intake continues to be debated. Initial
experiments, in which PYY was administered into the
lateral ventricle in rats, suggested the peptide to be a
mediator of orexigenic behaviour (Morley et al. 1985).
Other studies subsequently also found that PYY
administered into the CNS increased food intake in
rodents (Clark et al. 1987; Corp et al. 1990, 2001).
Observations have also been made of differences in
levels of PYY in the cerebrospinal fluid (CSF) of
abstaining patients with bulimia nervosa, compared
with the same patients shortly after binge eating and
vomiting, or compared with healthy controls and
patients with anorexia nervosa (Berrettini et al. 1988).
This has led some researchers to speculate on the
place of PYY, acting as a neurotransmitter, in the
aetiology of eating disorders. Others, however, point to
Phil. Trans. R. Soc. B (2006)
normalization of these differences in the context of
long-term remission as indicative that changes in CSF
PYY concentration are a consequence of eating
disorders, rather than a cause (Gendall et al. 1999).

Matters are complicated by the existence of two
species of PYYand multiple receptors (see table 2). As
well as the full-length peptide, a truncated form,
PYY3-36, is created by cleavage of the N-terminal
residues by dipeptidyl peptidase IV (DPP-IV; Eberlein
et al. 1989; Grandt et al. 1994). As described above,
PYY3-36 demonstrates relative specificity for the Y2
receptor. When injected into the cerebroventricular
system, PYY3-36 also mediates an increase in food
intake (Kanatani et al. 2000). This effect is attenuated
in Y1 and Y5 knockout mice. Injection directly into the
ARC, however, inhibits feeding in rodents (Batterham
et al. 2002). The inhibitory Y2 autoreceptor is highly
expressed on orexigenic NPY neurons in the ARC
(Broberger et al. 1997), whereas Y1 and Y5 receptors
are distributed in areas such as the PVN. It has
therefore been suggested that the orexigenic effects of
ICV-administered PYY and PYY3-36 are mediated by
action at Y1 and Y5 receptors. The ARC, however, is
associated with a relative deficiency of blood–brain
barrier, and is therefore more exposed to circulating
PYY3-36 than other appetite regulatory areas of the
hypothalamus. Fasting results in an increase in NPY
message and peptide expression in the ARC, and it has
been proposed that circulating PYY3-36 acts on Y2
receptors in the ARC to reduce NPY expression and
thus also reduce food intake. An understanding of the
differential distribution of Y-type receptors, and their
relative affinities for ligands of the PP-fold family of
peptides, is therefore crucial to fully understanding the
mechanisms underlying gut hormone regulation of
feeding.
(iii) Appetite control: peripheral injection
Batterham et al. (2002) administered intraperitoneal
(IP) injections of PYY3-36 to rats and demonstrated a
reduction of food intake in fasted rats, and in non-
fasted rats freely feeding during the dark phase (again,
when NPY levels in the ARC are high), without a
detectable effect on gastric emptying. The dose of
PYY3-36 sufficient to bring about this inhibition of
feeding resulted in peak plasma levels 15 minutes post-
injection that were comparable with physiological
postprandial levels of PYY3-36 and resulted in
significant induction of c-fos expression in the ARC.
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Incubation of hypothalamic explants in vitro with
PYY3-36 resulted in a decrease in NPY release and
an increase in a-MSH secretion, and IP injection of
PYY3-36 to rats significantly decreased hypothalamic
NPY mRNA expression and non-significantly
increased POMC mRNA expression (Batterham et al.
2002). More recent evidence from studies in which
POMC and melanocortin-4 receptor knockout mice
have been shown to retain sensitivity to the anorectic
actions of PYY3-36 have suggested that the melano-
cortin system may not be essential for the mediation of
the inhibitory effects of PYY3-36 on energy intake
(Challis et al. 2004; Halatchev et al. 2004).

The effect of peripheral PYY3-36 on feeding has
since been replicated in a number of species, including
non-human primates (Challis et al. 2003; Adams et al.
2004; Halatchev et al. 2004; Pittner et al. 2004;
Chelikani et al. 2005; Moran et al. 2005; Scott et al.
2005; Talsania et al. 2005), though with varying effects
on gastric emptying. Furthermore, unlike CCK, this
feeding effect does not appear to be subject to
attenuation with more chronic administration of the
peptide. Twice-daily IP injections of PYY3-36 for a
period of seven days resulted in reduced food intake
and weight gain in rats (Batterham et al. 2002).

In support of the hypothesis that peripherally
administered PYY3-36 acts via the Y2 receptor, the
peptide’s anorectic actions are not seen in Y2-null mice
(Batterham et al. 2002). Nor does endogenous or
exogenous PYY3-36 inhibit feeding in rats that have
been injected with BIIE0246, a selective antagonist of
the Y2 receptor, directly into the ARC (Abbott et al.
2005b).

Evidence also exists, however, that runs counter to
the ‘leaky ARC’ model described above, and some
authors favour alternative mechanisms through which
the anorectic effects of PYY3-36 may be mediated. Y2
receptor mRNA is also expressed in the NTS and the
nodose ganglion of the vagus nerve (Gustafson et al.
1997; Koda et al. 2005). This observation and the
reciprocal connections that exist between the ARC and
NTS have led some investigators to suggest that PYY3-
36 may inhibit feeding via an effect on the vagus.
Abbott and co-workers have demonstrated that both
bilateral subdiaphragmatic vagotomy and tran-
sectioning of the brainstem–hypothalamic neuronal
pathways abolish the anorectic effects of peripheral
PYY3-36. Interestingly, these procedures also attenu-
ate the induction of c-fos in the ARC in response to
PYY3-36, lending support to the case against an effect
of circulating PYY3-36 directly on the ARC (Abbott
et al. 2005a). Similar observations have been made by
other researchers (Koda et al. 2005). Clearly, a
comprehensive model of the mechanism of appetite
regulation by PYY3-36 will need to bring together
these disparate and occasionally contradictory
observations.

Controversy also extends to the robustness of the
suppression of caloric intake seen with both acute and
chronic peripheral administration of PYY3-36. Some
groups have had difficulty in replicating the initial
findings of Batterham et al. (Tschop et al. 2004). The
reasons for this are unclear, but seem to be confined to
rodents. Stress is known to reduce food intake in
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rodents through effects in the ARC (Halatchev et al.
2004), and differences in acclimatization to the
experimental procedure may account for the lack of
efficacy of PYY3-36 in some studies. The effect in
primates appears to be more robust, and arguably
provides a better model for appetite regulation in
humans.

(iv) Role in humans
That PYY3-36 performs a significant role in the control
of appetite in humans is supported by a number of
observations. In disease states characterized by weight-
loss, such as inflammatory bowel disease, tropical sprue
and cardiac cachexia, PYY3-36 levels are elevated
(Adrian et al. 1986; El Salhy et al. 2002; Le Roux et al.
2005). Gastrointestinal surgery currently constitutes
the most effective treatment for obesity, and the
mechanism by which surgery effects weight loss is
thought to involve a loss of appetite (Atkinson & Brent
1982). This appetite loss may be secondary to changes
in the signals of energy balance released by the gut
(Hanusch-Enserer & Roden 2005). In particular,
gastric bypass surgery has been shown to result in an
exaggerated postprandial PYY3-36 response, which
may contribute to the durability of postoperative weight
loss (Alvarez et al. 2002; Korner et al. 2005).
Conversely, in obese humans, fasting plasma concen-
trations of PYY3-36 are reduced (Batterham et al.
2003a) and overweight subjects have a relative
deficiency of postprandial PYY3-36 release associated
with reduced satiety.

Intravenous infusion of PYY3-36 at a rate of
0.8 pmol kgK1 minK1 into lean humans increased
mean plasma PYY3-36 levels from 8.3 to 43.5 pM,
and mimicked postprandial PYY3-36 concentrations
(Batterham et al. 2002). Plasma PYY3-36 returned to
baseline concentrations within 30 minutes of the end of
the infusion. Despite this, at a free-choice buffet meal
2 hours after the end of the infusion, there was a
significant reduction in calorie intake of approximately
36%, with no effect on fluid intake or on gastric
emptying as assessed by paracetamol absorption
(Batterham et al. 2002).

Despite lower basal levels of PYY3-36 in obese
humans, obesity does not appear to be associated with
resistance to the effects of PYY3-36. Infusion of PYY3-
36 into a group of obese volunteers resulted in a
comparable reduction in calorie intake when compared
with lean controls (Batterham et al. 2003a). This
preservation of the effects of PYY3-36 in the obese, in
the context of apparent abnormal postprandial release
of the hormone, raises the possibility that PYY3-36
may be involved in the pathogenesis of obesity, and is
therefore an attractive therapeutic target. Both Merck &
Co. and Amylin Pharmaceuticals are currently in various
stages of development of PYY3-36-based therapies for
obesity.

(c) Pancreatic polypeptide

PP is principally released by a population of cells
located at the periphery of the pancreatic islets,
although some is also synthesized in the exocrine
pancreas and distal gut (Larsson et al. 1975; Adrian
et al. 1976; Ekblad & Sundler 2002). In contrast to



1194 O. Chaudhri and others Gut hormones regulating appetite
other gut hormones, the presence of PP in the CNS is a
matter of debate. Early reports of widespread PP-like
immunoreactivity have now largely been ascribed to
cross-reaction of the antibodies used with NPY
(DiMaggio et al. 1985). Some researchers have
reported the presence of PP immunoreactivity in
extracts of porcine hypothalamus, pineal gland, sub-
stantia nigra, hippocampus and pituitary gland (Inui
et al. 1985), but other groups have failed to demon-
strate the presence of PP mRNA in the brains of
rodents (Ekblad & Sundler 2002), and the matter
remains unresolved.

PP secretion into the circulation is subject to an
underlying circadian rhythm, with levels in fasting
individuals increasing gradually during the day to peak
at approximately 21.00 hours, before falling and reach-
ing a nadir at 02.00 hours (Track et al. 1980). However,
food intake is the main stimulus to PP secretion, and
feeding promotes release of the hormone into the
blood. The biphasic manner of this release becomes
more marked over the course of the day and the
percentage contribution of the first phase of PP release
increases with each subsequent meal (Track et al.
1980). Postprandial PP release is proportional to the
caloric intake and plasma levels remain elevated for up
to 6 hours after feeding (Adrian et al. 1976).

Both basal and postprandial PP release is subject to
control by the vagus nerve. Evidence of vagal
involvement takes the form of elimination of the
circadian rhythm of PP secretion and a marked
reduction in postprandial release by propantheline, a
drug with antimuscarinic actions (Track et al. 1980).
Truncal vagotomy and atropine, another antimuscari-
nic agent, have also been shown to reduce meal-
induced PP release in dogs (Niebel et al. 1987), and
humans (Konturek et al. 1987; Meguro et al. 1995). PP
secretion is also controlled by other factors, including
the gut hormones ghrelin, motilin and secretin, all of
which stimulate PP release, and somatostatin, which
potently inhibits (Funakoshi et al. 1989; Gomez et al.
1997; Mochiki et al. 1997; Arosio et al. 2003).

More recent studies in which human PP was infused
into healthy subjects have suggested that PP may exert
an inhibitory effect on gastric emptying, as well as
delaying the postprandial rise in insulin (Schmidt et al.
2005). A delay in gastric emptying is also seen in mice
injected IP with murine PP (Asakawa et al. 2003). The
early infusion studies in humans used bovine PP rather
than native human peptide. Of the PP-fold proteins, PP
shows the least conservation across species (Lundell
et al. 1995). It is thought to be the most recently
evolved of the family and to have arisen by duplication
of the PYY gene (Hort et al. 1995). PP differs across
species mainly in its N-terminus, which seems to be
crucial for receptor recognition (Gingerich et al. 1991).
While a species difference is one possible explanation
for the discrepancy in the effects of PP on the stomach,
bovine PP differs from the human protein by only two
amino acids and demonstrates an affinity for the human
Y4 receptor that is similar to human PP (Gehlert et al.
1996).

The function served by PP in signalling energy status
is no less controversial. Genetically obese ob/ob mice
lack PP cells in the pancreas, and replacement therapy
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with twice daily IP injections of bovine PP was found to
reduce feeding and body weight gain (Malaisse-Lagae
et al. 1977). Asakawa and co-workers have built upon
this finding and have recently published work in which
the effects of PP on energy balance in wild-type and
genetically obese mice were extensively described.
Synthetic murine PP injected IP into fasted mice
significantly reduced feeding within 20 minutes of
administration (the earliest timepoint studied) and
this effect was apparent in cumulative feeding data over
the 24 hours following injection (Asakawa et al. 2003).
Repeated administration of PP over six days to ob/ob
mice resulted in a significant reduction in body weight
gain and an improvement in blood glucose and lipid
profiles.

In humans, abnormal patterns of PP secretion have
been found in patients with Prader–Willi syndrome, a
disease entity characterized by hyperphagia and obesity
(Zipf et al. 1981). The situation in non-syndromic
obese patients is less clear. Some authors have reported
an impairment of PP response (Lassmann et al. 1980;
Glaser et al. 1988), whereas others report similar levels
of circulating PP in obese subjects with stable body
weight (Jorde & Burhol 1984;Meryn et al. 1986;Wisen
et al. 1992). In anorexic individuals, there is evidence
that PP responses are exaggerated (Uhe et al. 1992;
Fujimoto et al. 1997). After gastric surgery, levels of PP
in the circulation appear reduced (Amland et al. 1984;
Meryn et al. 1986), though interestingly, levels seem to
be increased after jejunoileal bypass, and may contrib-
ute to the weight loss associated with this latter
operation (Jorde & Burhol 1982).

The effects of exogenous PP on appetite are less
equivocal. When infused into subjects with Prader–
Willi syndrome, PP induced a reduction in appetite and
food intake (Berntson et al. 1993). Similarly, infusion
intravenously into lean humans resulted in a decrease
in appetite that persisted and was reflected in reduced
food intake recorded in food diaries 24 hours after the
infusion (Batterham et al. 2003b). It is this prolonged
action of PP on food intake that makes it an attractive
candidate for the development of an antiobesity
therapy. This notion is supported by the observation
that mice chronically over-expressing PP to supraphy-
siological levels are lean with reduced food intake
(Asakawa et al. 2003), suggesting that chronic exposure
to high levels of PP does not result in the development
of resistance to the anorectic actions of the hormone.

As with PYY3-36, the mechanism through which PP
effects its anorectic actions comprises a number of
integrated elements. Some authors have suggested that
the delay in gastric emptying seen with peripheral PP
administration might underlie the inhibition of appetite
(Katsuura et al. 2002), although others have demon-
strated an appetite effect independent of changes in
gastric motility (Batterham et al. 2003b). PP also
increases oxygen consumption when administered IP
to mice, supporting a role for increased energy
expenditure in the mediation of weight loss by PP
(Asakawa et al. 2003).

Vagal signalling appears to be necessary for the
PP-mediated inhibition of feeding as this effect is
abolished in vagotomized mice (Asakawa et al. 2003).
In addition, changes in expression of a number of genes
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in the hypothalamus point to the involvement of CNS
appetite circuits. IP injection of PP into fasted mice was
shown to reduce mRNA expression in the hypo-
thalamus of the orexigenic neuropeptides NPY and
orexin by approximately 60%. Conversely, expression
of mRNA of the anorectic urocortin was increased by
132%. A similar pattern of mRNA expression, though
attenuated and not statistically significant when
compared to control mice, was seen following IP
injection of PP into non-fasted mice (Asakawa et al.
2003).

The interplay between these two sites of action is
unclear. PP injected intracerebroventricularly (ICV)
acts to increase food intake (Asakawa et al. 1999). As
with PYY, this apparent non-concordance between the
actions of CNS- and peripherally administered PP may
be due to differential receptor activation and distri-
bution. PP does not readily cross the blood–brain
barrier (Banks et al. 1995), and thus may act
preferentially in those areas of the hypothalamus that
are more easily accessible due to a deficient blood–
brain barrier. Alternatively, PP may act on the vagus
nerve and thus modify the activity of hypothalamic
circuits via projections from vagal nuclei in the
brainstem. The area postrema in the brainstem also
has an incomplete blood–brain barrier and demon-
strates high binding of 125I-labelled PP in vivo,
providing another level at which PP may directly act
(Whitcomb et al. 1990).

Although it binds to all members of the Y receptor
family, PP exhibits greatest affinity for the Y4 receptor
subtype. Y4 receptor mRNA has been localized to
areas of the hypothalamus, including the ARC
(Parker & Herzog 1999). Receptor mRNA is also
expressed widely in key appetite-regulating areas of the
brainstem, including the area postrema (Larsen &
Kristensen 1997).

In some species, including humans, though not in
rats, PP also binds with moderately high affinity to Y5
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receptors. In Y5 knockout mice, the orexigenic actions
of CNS-injected human and bovine PP are blunted
(Kanatani et al. 2000), suggesting involvement of the
Y5 receptor in the stimulation of food intake by CNS
PP. It has therefore been proposed that Y4 receptors
accessible to circulating PP may be responsible for the
mediation of the hormone’s anorectic actions, whereas
other receptors, such as Y5 receptors, might mediate
the antagonistic effects of CNS-administered PP. Y4
receptors have, however, also been noted on orexin
neurons in the lateral hypothalamic area (LHA).
Injection of PP into the LHA stimulates feeding
behaviour in rats, though to a lesser extent than
injection of NPY. PP does, however, induce c-fos
expression in LHA orexin neurons (Campbell et al.
2003). The integration of these observations into a
unified model that explains the disparate actions of
CNS and peripherally injected PP will require further
data.
6. PRODUCTS OF PREPROGLUCAGON
CLEAVAGE
Preproglucagon is a 160-amino acid prohormone with
a 20-amino acid signal sequence at the N-terminal end
(Kieffer & Habener 1999). It is synthesized in the
a-cells of the pancreatic islets, the L-cells of the
intestinal mucosa and within the CNS. Preproglucagon
undergoes differential cleavage by prohormone con-
vertase 1 and 2, resulting in the tissue-specific
production of a number of biologically active fragments
(figure 2; Kieffer & Habener 1999). In the intestine and
CNS, the products glucagon-like peptides-1 and -2
(GLP-1 and -2) and oxyntomodulin (OXM) have been
implicated in the regulation of appetite, and will be
considered in turn below. The actions of pancreatic
glucagon on appetite are reviewed elsewhere in this
issue. Briefly, peripheral administration induced sati-
ety. Specifically, glucagon appears to affect the
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processes related to meal termination and acts
synergistically with other intermediaries, most notably
CCK. Glicentin administered into rats ICV or directly
into the PVN does not affect food intake (Dakin et al.
2001).
(a) Glucagon-like peptide-1

GLP-1 is cleaved from preproglucagon within the
intestine, where it is co-localized in the endocrine
L-cells of the distal gut with OXM and PYY (Eissele
et al. 1992; Wettergren et al. 1997). It is highly
conserved across a number of species, implying an
important physiological role.

Like PYY, GLP-1 exists in a number of forms in
the circulation. GLP-1 is cleaved from preproglucagon
as a 36- or 37-amino acid molecule, depending on
whether the C-terminal glycine is present. Neither
GLP-11-36amide nor GLP-11-37 demonstrated signi-
ficant biological activity. GLP-11-36amide promotes
insulin release from isolated rat pancreatic cells only
at supraphysiological levels (Schmidt et al. 1985). It
was with the realization that further N-terminal
truncation is required for biological activity that
the effects of GLP-1 were recognized (Mojsov et al.
1986). Both peptide isoforms are equipotent in
those biological activities thus far examined, although
GLP-17-36amide is present in the circulation in greater
quantities (Orskov et al. 1994b).
(i) General physiology
The action of GLP-17-36amide that has attracted most
attention, both from a physiological and a therapeutic
viewpoint, is its potent incretin effect (Holst 2005).
The peptide mediates glucose-dependent insulinotro-
pic effects in a number of species, including man (Holst
et al. 1987; Kreymann et al. 1987; Mojsov et al. 1987).
It also inhibits gastric acid secretion and gastric
emptying, as well as suppressing glucagon release and
promoting an increase in pancreatic b-cell mass
(Tolessa et al. 1998; Edvell & Lindstrom 1999;
Naslund et al. 1999b). GLP-17-36amide also exerts
effects in the cardiovascular system. In animals, these
appear to be stimulatory and to involve CNS and
adrenal mechanisms (Edwards et al. 1997; Yamamoto
et al. 2002). In humans, the situation is less clear, and in
fact GLP-17-36amide infusion may improve outcomes
post-myocardial infarction in some circumstances
(Nikolaidis et al. 2004).

Consistent with its role as an incretin, GLP-17-36amide

is released into the circulation in response to a meal in
proportion to the calories ingested (Ghatei et al. 1983;
Kreymann et al. 1987;Orskov et al. 1994a). Although the
majority of L-cells are located in the distal gut, the
presence of nutrients in the proximal small intestine
stimulates GLP-17-36amide release independently of the
presence of nutrients within the ileum and colon
(Roberge & Brubaker 1991). This effect is abolished by
vagotomy, implying the influence of neural inputs on
GLP-17-36amide release (Rocca & Brubaker 1999). The
similarity of thismechanism to that governing the release
of PYY3-36 has led to the proposal of GLP-17-36amide as
another candidate mediator of the ‘ileal brake’
phenomenon.
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(ii) Role in energy balance
Lately, however, increasing research has been directed
at dissecting out the role of GLP-17-36amide in the
regulation of energy balance. In common with other
gut peptides, GLP-17-36amide also functions within the
CNS as a neurotransmitter. It is present within the
dorsovagal complex, the thalamus and the pituitary.
GLP-1-immunoreactive neurons are also found in key
areas of the hypothalamus involved in appetite-
regulation, including the PVN and the DMH (Krey-
mann et al. 1989; Larsen et al. 1997a).

Further evidence for the involvement of GLP-
17-36amide in signalling energy status to CNS appetite
circuits includes the distribution of the GLP-17-36amide

receptor. The GLP-1 receptor was originally cloned by
selective screening of a rat pancreatic cDNA library,
and the human homologue was subsequently isolated
(Thorens 1992; Dillon et al. 1993). It is a G-protein-
coupled, seven-transmembrane domain protein and
binding of GLP-17-36amide results in an increase in
intracellular cyclic AMP (Gallwitz et al. 1993). Binding
studies and reverse transcriptase polymerase chain
reaction (RT-PCR) data for receptor mRNA have
confirmed the presence of GLP-1 receptors in a
number of areas of the brain important in appetite
control. These include the ARC, the PVN and the
supraoptic nucleus (SON) of the hypothalamus and the
area postrema of the brainstem (Wei & Mojsov 1995;
Shughrue et al. 1996).

Finally, the peptide exendin-4 has proved a useful
tool in determining the mechanisms by which the
actions of GLP-17-36amide on appetite are mediated.
This is a 39-amino acid peptide extracted from the saliva
of the Gila monster, Heloderma suspectum. It is
structurally related to GLP-1 and is a potent agonist
at GLP-1 receptors, whereas the truncated form,
exendin9-39, acts as a competitive antagonist (Thorens
et al. 1993). Recently, evidence has been accumulating
that some of the actions of GLP-17-36amide in some
organs, notably adipose, muscle and liver tissue, may be
mediated by an alternativeGLP-1 receptor.The activity
of GLP-1 at its receptor in these tissues is associated
with a decrease in intracellular cAMP, in contrast to its
actions at its recognized receptor. This putative
alternative receptor also appears to be stimulated by
both full-length exendin-4 and exendin9-39, again
contrasting with the antagonistic effects of exendin9-39
at the establishedGLP-1 receptor (Montrose-Rafizadeh
et al. 1997; Yang et al. 1998). The role played by this
novel receptor in the appetite-regulating actions of
GLP-17-36amide remains to be clarified.

Both CNS-injected and peripherally administered
GLP-17-36amide inhibit food intake in a number of
species. In both instances, the site of action appears to
be the brainstem–hypothalamus axis.

Turton et al. administered GLP-17-36amide via the
ICV route to rats and demonstrated a significant
inhibition of food intake. This effect was associated
with induction of c-fos in the PVN and the central
nucleus of the amygdala. Both the feeding effect and
the induction of c-fos were inhibited by the presence of
exendin9-39. Significantly, exendin9-39 alone had no
effect in fasted rats, but powerfully increased feeding
in satiated rats, implying the involvement of central
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GLP-17-36amide signalling in the physiological
regulation of appetite (Turton et al. 1996). Further-
more, repeated ICV injection of GLP-17-36amide into
rats over six days resulted in a significantly reduced
body weight when compared with saline-injected
animals (Meeran et al. 1999). Again, injection of
exendin9-39 resulted in the opposite effect, suggesting
underlying physiological GLP-17-36amide signalling in
the regulation of feeding behaviour in rats.

Other groups have subsequently confirmed this
finding, and reported activation of c-fos by GLP-
17-36amide in other areas of the brain. These include
the NTS and the area postrema in the brainstem, and
the SON in the hypothalamus (van Dijk et al. 1996;
Rowland et al. 1997; Larsen et al. 1997b). ICV-
administered GLP-17-36amide has also been reported
to weakly induce c-fos within the ARC (van Dijk et al.
1996; Larsen et al. 1997b), although with such a high
density of GLP-1 receptors localized in the ARC, it is
perhaps surprising that the effect is not more
pronounced.

(iii) Appetite regulation versus visceral illness
Mice lacking the GLP-1 receptor, while glucose
intolerant, exhibit normal food intake and body weight
(Scrocchi et al. 1996). Compensatory upregulation of
alternative satiety pathways or alternative GLP-1
receptor types may underlie this observation, but
coupled with the observation that ICV-injected
GLP-17-36amide may induce the phenomenon of con-
ditioned taste aversion (CTA), this has led some
investigators to question the physiological importance
of GLP-17-36amide-induced anorexia.

In particular, the pattern of c-fos activation seen with
ICV GLP-17-36amide resembles that seen with admin-
istration of the toxin lithium chloride, a potent inducer
of a visceral illness response in rodents (Kinzig et al.
2002; Lachey et al. 2005). Moreover, ICV adminis-
tration of the GLP-1 receptor antagonist exendin9-39 to
rats is able to attenuate the effects of IP lithium
chloride, suggesting that CNS GLP-1 is important in
the visceral illness actions of lithium chloride (Seeley
et al. 2000), although exendin9-39 also binds to the
receptors of other peptides, such as glucose-dependent
insulinotropic polypeptide (Wheeler et al. 1995).
Interestingly, the actions of lithium chloride are
preserved in GLP-1 receptor null mice. In addition,
ICV GLP-17-36amide does not induce CTA in these
knockout mice, whereas it does in their wild-type
counterparts (Lachey et al. 2005). Species differences
may account for the ability of lithium chloride to
induce CTA inmice lacking the GLP-1 receptor, or it is
possible that other minor pathways take on greater
prominence in the absence of GLP-1 signalling.

When the data on energy intake and those on CTA
are taken together, it is clear that GLP-17-36amide

injected ICV causes anorexia, but that the mechanisms
underlying this, and the importance in a physiological
setting, are the subject of contention. One model by
which some of the divergent data may be reconciled is
to invoke a role for GLP-17-36amide in both the
regulation of energy balance, and in the mediation of
a visceral illness response, as distinct functions of the
peptide. Injection of GLP-17-36amide into the fourth and
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lateral ventricles gave rise to anorexia, but lateral
ventricular administration also induced CTA. Direct
injection into the central nucleus of the amygdala did
not reduce food intake, but did induce CTA,
suggesting that responses to GLP-1 in the PVN and
brainstem are involved in the mediation of the peptide’s
anorectic effects, whereas CTA results from activation
of amygdala GLP-1 receptors (Moran et al. 2005). An
alternative model proposes that satiety and nausea are
mediated by the same pathway, and that with low levels
of stimulation, satiety predominates. Nausea results at
high levels of stimulation of the pathway.

Peripheral administration of GLP-17-36amide or
GLP-1 receptor agonists such as exendin-4 into
rodents also reduces feeding and induces c-fos
expression in the brainstem and PVN, but not in the
ARC (Tang-Christensen et al. 2001; Baggio et al.
2004; Dakin et al. 2004; Abbott et al. 2005a). The
anorectic actions of IP GLP-17-36amide are not
attenuated by injection directly into the ARC of the
receptor antagonist exendin9-39 (Dakin et al. 2004).
Furthermore, the observation that the effect of IP
GLP-17-36amide on feeding is reduced by vagotomy or
ablation of brainstem–hypothalamic connections
(Abbott et al. 2005a) raises interesting questions
regarding the pathways through which GLP-17-36amide

acts to reduce food intake.
CNS-produced GLP-17-36amide may act on appetite

circuits within the brain, or GLP-17-36amide released
into the circulation postprandially may gain access to
important areas of the hypothalamus and brainstem,
and thus induce a feeling of satiety. These two scenarios
are not mutually exclusive. An integrative model may
best account for the importance of the vagus nerve and
brainstem–hypothalamic connections, the effects of
GLP-17-36amide injected directly into specific hypo-
thalamic nuclei such as the PVN and the pattern of c-fos
induction seen on CNS and peripheral administration
of the peptide. Circulating GLP-17-36amide acting on
the vagus, or entering the brainstem through the
deficient blood–brain barrier at the area postrema
(Orskov et al. 1996) may in turn influence neuronal
activity in important hypothalamic nuclei. GLP-
17-36amide may itself be involved as a neurotransmitter
in this process at the level of the hypothalamus or
brainstem. Injection of a retrograde tracer confirmed
that GLP-containing neurons project from the NTS to
the PVN (Larsen et al. 1997a). Different circuits,
involving the amygdala, may mediate GLP-17-36amide-
induced nausea.

(iv) Role in humans
In humans, some authors have suggested that circulat-
ing GLP-17-36amide levels are reduced in obesity, and
normalize with weight loss (Verdich et al. 2001b). Other
investigators, however, have failed to reproduce these
findings (Feinle et al. 2002; Vilsboll et al. 2003).

The food intake data from human studies are
concordant with the animal studies. GLP-17-36amide

dose-dependently decreases appetite and caloric intake
in lean and obese humans and patients with diabetes
(Gutzwiller et al. 1999a,b; Naslund et al. 1999a).
Exendin-4 also reduced food intake when given to
healthy volunteers (Edwards et al. 2001). In a recent
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meta-analysis, it was concluded that infusion of GLP-
17-36amide reduces both appetite and food intake, the
latter by an average of 11.7% acutely. The magnitude
of this reduction is similar in lean and obese men.
Furthermore, this was achieved without adverse effects
on subject well-being, such as nausea (Verdich et al.
2001a).

(v) Clinical potential
This preservation of the anorectic effect of GLP-
17-36amide in the obese has led to interest in the
therapeutic potential of the hormone. Prandial subcu-
taneous injections of GLP-17-36amide given to obese but
otherwise healthy subjects for 5 days resulted in a
weight loss of 0.55 kg (Naslund et al. 2004).

One barrier to the use of native GLP-17-36amide in a
clinical setting is its short half-life. GLP-17-36amide is a
substrate for DPP-IV, although unlike PYY, the
enzyme inactivates GLP-17-36amide. The half-life of a
bolus of GLP-17-36amide administered intravenously to
rats is approximately 2 minutes, and this is extended to
10 minutes in DPP-IV-deficient rats (Kieffer et al.
1995). Although DDP-IV is not the sole route by which
GLP-17-36amide is degraded, any therapeutic appli-
cation of GLP-17-36amide would need to overcome this
obstacle (Deacon 2004; Holst 2005). Two main
strategies have been employed. Some pharmaceutical
companies have developed potent long-acting GLP-1
receptor agonists, such as exendin-4 (exenatide,
Amylin Pharmaceuticals), or albumin-based forms of
GLP-1, such as liraglutide (NovoNordisk), that are
resistant to the actions of DPP-IV. The other strategy
comprises the use of DDP-IV inhibitors, such as that
currently under development by Novartis. Of these,
exenatide has recently been granted approval by the
Federal Food and Drug Administration for use as an
adjunctive therapy in poorly controlled type 2 diabetic
patients, and all are at various stages of clinical testing
for use specifically as therapies for obesity.

With the use of such gut hormone-based treat-
ments, however, unforeseen side effects may arise.
DPP-IV, for instance, plays a role in immune
regulation (in which context it is known as CD26;
Gorrell et al. 2001). Given its effects on b-cell
proliferation, changes in plasma levels of GLP-1
following gastric bypass surgery have also been
tentatively linked to the development of nesidioblas-
tosis as a possible long-term postoperative compli-
cation (Service et al. 2005). Long-term safety data on
GLP-17-36amide-based treatments is awaited.

One possible means by which the side effects of any
therapy could be ameliorated might be to combine
lower doses of two or more gut hormones in order to
achieve the desired reduction in food intake. It is likely
that physiologically, interactions between different gut
hormones are just as important as the actions of the
hormones themselves. Certainly, the co-localization of
GLP-17-36amide and PYY3-36 in the L-cells and their
co-secretion in response to a meal argues in favour of a
synergistic interaction. Indeed, co-administration of
exendin-4 and PYY3-36 results in a larger reduction in
food intake than either peptide alone at the same dose
(Talsania et al. 2005). Theoretically, the side effect
profile of such a therapeutic strategy in man would be
Phil. Trans. R. Soc. B (2006)
superior to the use of higher doses of individual gut
hormone-based treatments.

(b) Glucagon-like peptide-2

Like GLP-17-36amide, GLP-2 is synthesized by the
action of prohormone convertase 1 on preproglucagon
in the CNS and intestinal L-cells (Damholt et al. 1999).
It is released into the circulation in a biphasic manner
following nutrient ingestion. Fat and carbohydrates are
potent stimulators of GLP-2 release (Xiao et al. 1999).
In common with other hormones secreted by L-cells in
the distal gut, the early phase release appears to be
mediated by a neuroendocrine reflex involving the
vagus, whereas the later peak is likely a result of the
action of intestinal nutrients directly on L-cells (Dube &
Brubaker 2004).

GLP-2 acts via its own distinct seven-trans-
membrane domain receptor and increases intracellular
cAMP levels (Munroe et al. 1999). This is distributed
widely in the periphery and CNS. Through a
combination of Northern blot, RT-PCR and immuno-
cytochemical techniques, GLP-2 receptor mRNA has
been detected in rat stomach, duodenum, jejunum,
ileum and colon and in the hypothalamus, brainstem
and lung (Yusta et al. 2000).

From the perspective of energy balance, GLP-2
injected ICV into rats does inhibit food intake
(Tang-Christensen et al. 2000). Peripherally adminis-
tered GLP-2, however, does not appear to affect energy
intake in rodents, nor does it affect appetite and feeding
in humans (Scott et al. 1998; Schmidt et al. 2003).

As with GLP-17-36amide, circulating GLP-2 is rapidly
rendered inactive by the actions of DDP-IV (Xiao et al.
1999). This leaves open the possibility that DDP-IV
inhibitors developed for their actions onGLP-17-36amide

may also prolong the plasma half-life of GLP-2,
resulting in unwanted GLP-2-mediated side effects on
the bowel such as uncontrolled cell growth.

(c) Oxyntomodulin

The expression pattern of OXM (formerly known as
enteroglucagon) mirrors that of the other preprogluca-
gon-derived hormones discussed above. It is released
into the blood following ingestion of food in proportion
to the calories ingested (Ghatei et al. 1983; Le Quellec
et al. 1992). Physiologically, it acts to reduce gastric
motility and secretion in rodents and man (Dubrasquet
et al. 1982; Schjoldager et al. 1988, 1989; Dakin et al.
2004). In addition, OXM has been found to exert an
incretin effect (Schjoldager et al. 1988; Wynne et al.
2005b), though the magnitude of the rise in insulin is
smaller than that seen with GLP-17-36amide and some
investigators have failed to detect any increase in
postprandial insulin following administration of
exogenous OXM (Cohen et al. 2003).

That OXM may be involved in appetite control is
suggested not only by its distribution and secretion
pattern, but also by observations of elevated plasma
levels in illness characterized by weight loss, such as
tropical sprue (Besterman et al. 1979). Additionally,
OXM levels rise after gastric bypass surgery, paralleling
the rise in levels of appetite-suppressing gut hormones
such as GLP-17-36amide and PYY3-36 (Holst et al.
1979; Sarson et al. 1981).



Gut hormones regulating appetite O. Chaudhri and others 1199
More direct evidence takes the form of experimental
data. Injection of OXM ICVor into the PVN of fasted
rats caused a reduction in food intake compared to
controls (Dakin et al. 2001). The effect was also seen in
non-fasted rats injected at the start of the dark phase,
and OXM was of a comparable potency in reducing
food intake to GLP-17-36amide in its effects on feeding.
IP injection of OXM was also found to reduce food
intake in rats (Dakin et al. 2002). While some
researchers have not found IP injection of OXM to
lessen feeding in mice (Baggio et al. 2004), the findings
have since been replicated in humans (Cohen et al.
2003). Intravenous infusion of OXM into lean
volunteers resulted in a reduction of energy intake at
a buffet meal of 19.3%, and 12 hour cumulative energy
intake was also reduced by 11.3% (Cohen et al. 2003).
Volunteers reported no nausea or adverse effects on
meal palatability with infusion of OXM. Part of the
mechanism by which OXM reduces appetite may
involve suppression of the orexigenic hormone ghrelin
(Cohen et al. 2003).

As well as short term effects on feeding, repeated
administration of exogenous OXM results in a
sustained reduction in caloric intake and weight loss
in both rodents and humans. Repeated ICV injection of
OXM into rats over 7 days resulted in a significantly
lower body weight compared to both saline-injected
controls and pair-fed saline injected controls. This
suggests that the reduction in weight gain was brought
about not only by a reduction in food intake, but also by
an enhancement of energy expenditure (Dakin et al.
2002). Supporting this model, core temperature was
noted to be higher in rats injected with OXM, and
deposits of white and brown adipose tissue were found
to be reduced. Similarly, repeated pre-prandial subcu-
taneous injection of OXM in obese human subjects
resulted in a 2.3 kg reduction in body weight over the
course of four weeks, compared with 0.5 kg in the
saline-treated controls (pZ0.0106; Wynne et al.
2005b).

A unique receptor for OXM has yet to be identified.
OXM does bind to the GLP-1 receptor, but with an
affinity that is approximately two orders of magnitude
lower than GLP-17-36amide (Fehmann et al. 1994).
However, there is evidence, both circumstantial and
more direct, that the effects of OXM may be mediated
via the GLP-1 receptor. In in vitro assays, OXM is able
to stimulate intracellular events in rat parietal cells
enriched with the GLP-1 receptor (Schepp et al. 1996).
The pattern of c-fos activation seen with peripheral
administration of OXM in mice mirrors closely that
seen with GLP-1 (Baggio et al. 2004). The anorectic
effects of OXM are lost in GLP-1 receptor null mice,
and are also inhibited by co-administration of the GLP-
1 receptor antagonist exendin9-39 (Dakin et al. 2001;
Baggio et al. 2004).

Some data, however, are discordant with this model.
Dakin et al. noted marked Fos-like immunoreactivity in
the ARC in response to IP injection of OXM in rats
(Dakin et al. 2004). While exendin9-39 injected directly
into the ARC inhibited the anorectic effects of IP
OXM, it had no effect on the actions of GLP-17-36amide

on feeding (Dakin et al. 2004). Although the GLP-1
receptor is known to be present in the ARC (see above),
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exendin9-39 exhibits a degree of non-specificity in its
receptor binding, as discussed previously. It is therefore
possible that OXM may act upon a novel receptor at
which it is also antagonized by exendin9-39.

Thus, although the physiological importance of its
actions on appetite and energy intake remains
uncertain, OXM offers another promising target in
the development of a therapy for obesity. In particular,
its less marked incretin effect compared to that
mediated by GLP-17-36amide may make it a more
attractive option in the treatment of non-diabetic
obese patients.
7. GHRELIN AND MOTILIN
The gut hormones ghrelin and motilin are structurally
related peptides released from distinct areas of the
gastrointestinal tract. Both have been found to exert an
orexigenic effect.
(a) Ghrelin

Ghrelin is the endogenous ligand for the previously
orphan growth hormone secretagogue (GHS) receptor
(Kojima et al. 1999). Briefly, the major source of
circulating ghrelin is the stomach, although mRNA is
also present elsewhere in the gastrointestinal tract
(Kojima et al. 1999; Date et al. 2000). Among
its actions, ghrelin stimulates growth hormone
secretion from the anterior pituitary, stimulates the
hypothalamo–pituitary–adrenal axis, mediates an
increase in gastric motility, induces a positive inotropic
effect on the heart and causes vasodilatation (Korbonits
et al. 2004; van der Lely et al. 2004).

It is a peripherally active appetite-stimulating gut
hormone. Levels rise during fasting, and fall upon
eating, which has led to the suggestion that ghrelin may
be involved in meal initiation (Cummings et al. 2001).
Plasma levels of ghrelin are inversely correlated with
body weight in humans and rise after weight loss
(Cummings et al. 2002). An increase in ghrelin levels
may explain why some individuals find weight loss
difficult to maintain and have a tendency to regain
weight after a period of dieting. The lower levels of
ghrelin seen in obesity may constitute a feedback
mechanism to reduce appetite (Tschop et al. 2001).
Systemic injection of ghrelin increases food intake in
rodents and man and chronic administration induces
obesity in rodents (Tschop et al. 2000; Wren et al.
2001a,b).

From a clinical perspective, preliminary work has
been carried out to investigate the effects of adminis-
tration of ghrelin in diseases characterized by cachexia.
Infusion of ghrelin into subjects with appetite loss due
to cancer (Neary et al. 2004) increased energy intake by
31% at a subsequent buffet meal. This compares with
an increase in energy intake of 28% when ghrelin was
administered to healthy human volunteers (Wren et al.
2001a). The patients with cancer had high baseline
plasma ghrelin levels, possibly as a reflection of negative
energy balance. The ability of exogenous ghrelin to
overcome the anorexia associated with cancer, to a
similar degree as that seen in healthy subjects, and
despite elevated endogenous ghrelin may make
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manipulation of GHS receptors a rewarding strategy in
the treatment of conditions associated with cachexia.

The intravenous route, it may be argued, is
impractical, but a recent study has built upon the
findings of the earlier work, and specifically considered
the effectiveness of subcutaneously injected ghrelin in
patients with chronic renal failure and mild to
moderate malnutrition (Wynne et al. 2005a). Results
were again encouraging, with energy intake more than
doubled acutely following injection and maintained for
24 hours after the intervention. In particular in these
patients with renal dysfunction, no acute adverse
cardiovascular effects were noted. Indeed, other
investigators have found that ghrelin may improve
cardiac function and exercise capacity in patients
suffering from chronic heart failure (Nagaya et al.
2004).

(b) Motilin

Released by cells in the upper part of the duodenum
(Usellini et al. 1984), circulating motilin levels peak
every 100 minutes in the fasted state and fall post-
prandially (Itoh 1997). Its main physiological role is
thought to be as a regulator of interdigestive gut
motility. It also stimulates gallbladder contraction and
enzyme secretion in the stomach and pancreas (Itoh
1997).

A number of authors have reported the presence of
motilin in the CNS, as evidenced by the presence of
motilin immunoreactivity in a number of brain areas in
a variety of species (O’Donohue et al. 1981; Beinfeld &
Bailey 1985). Other investigators, however, question
the accuracy of the detection methods (Nilaver et al.
1988).

ICV injection of motilin into rodents has an
orexigenic effect (Rosenfeld & Garthwaite 1987;
Asakawa et al. 1998). IP injection of motilin at doses
of 5 and 10 mg kgK1 stimulated feeding in rats.
Interestingly, this effect was seen only in fasted, but
not fed, rats (Garthwaite 1985). Injection of
100 mg kgK1 IP, however, has been found to inhibit
feeding, without a detectable affect on behaviour
otherwise (Olson et al. 1980). It is possible that this
effect on feeding may be secondary to the hormone’s
primary actions on gut motility. The function of motilin
in the physiological regulation of food intake therefore
awaits better definition.
8. SOMATOSTATIN
Synthesis of this well-characterized hormone occurs in
many organ systems throughout the body, where it
fulfils myriad autocrine, paracrine, endocrine and
neurocrine functions. A detailed description of the
physiology of somatotrophin release inhibitory factor
(SRIF; somatostatin) is beyond the scope of this review.
However, within the alimentary tract, SRIF is syn-
thesized in the D-cells of the gut and endocrine
pancreas (Reichlin 1983). Its functions are broadly
antisecretory. SRIF inhibits release of other hormones
such as gastrin, CCK, secretin, motilin, vasoactive
intestinal polypeptide and OXM, it inhibits gastric acid
production, prolongs gastric emptying, reduces intes-
tinal motility and decreases splanchnic blood flow, and
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it inhibits release of insulin, glucagon and release of
exocrine pancreatic secretions (Reichlin 1983; Bell
et al. 1995).

Similarly, the effects of SRIF on feeding are
inhibitory, although it appears to reduce food intake
only in animals with a mild degree of hunger (Lotter
et al. 1981; Levine & Morley 1982). Feeding hydro-
lysed gluten to humans physiologically increases
somatostatin levels in the circulation, but this had no
effect on feeding or appetite (Morley et al. 1983). Thus
the physiological importance of this effect of SRIF is
unclear.

The mechanisms by which SRIF might act to reduce
appetite are largely unresearched. Vagotomy abolishes
the effect (Levine & Morley 1982). It may be that this
mild effect on food intake is brought about indirectly,
by reducing levels of ghrelin (Silva et al. 2005),
although desensitization to the inhibitory effects of
SRIF on circulating ghrelin may preclude any thera-
peutic application of this effect.
9. OTHER GASTROENTEROPANCREATIC
PEPTIDES
A number of other peptides also affect food intake. One
of these, amylin, is now available as an adjunctive
therapy for diabetic patients with poor glycaemic
control and is currently undergoing trials as a treatment
for obesity per se (pramlintide, Amylin Pharma-
ceuticals). It is co-secreted with insulin by pancreatic
b-cells and inhibits gastric secretion and emptying
(Ludvik et al. 1997). Both ICVand peripheral injection
of amylin inhibits food intake (Chance et al. 1991,
1993; Lutz et al. 1994; Rushing et al. 2000). This
appears to be independent of the vagus nerve (Lutz
et al. 1995).

Apolipoprotein A-IV (apoA-IV) is a 46kDa protein
synthesized by enterocytes in response to intake of
lipids, and secreted together with triglyceride-rich
lipoproteins (chylomicrons and very low density
lipoproteins; Fujimoto et al. 1992). Physiologically, as
well as functioning as a lipoprotein, it also inhibits
gastric secretions and intestinal motility (Okumura
et al. 1996; Glatzle et al. 2002). ApoA-IV is also present
in the CNS, and in particular in the ARC (Liu et al.
2003). Fasting causes a marked reduction in hypo-
thalamic expression of apoA-IV mRNA levels in the
hypothalamus (Liu et al. 2001).

Peripheral administration of apoA-IV reduces feed-
ing in rats without adversely affecting their behaviour
(Fujimoto et al. 1992). Furthermore, ICV injection of
apoA-IValso results in a decrease in food intake in rats,
and ICV injection of apoA-IV antisera into rats
promoted feeding during the light phase, when rats
do not normally exhibit feeding behaviour, suggesting a
role for tonic apoA-IV signalling in the hypothalamus
in the regulation of feeding (Fujimoto et al. 1993).
While these data are promising, much remains
unknown about the mechanisms by which apoA-IV
reduces food intake, about the physiological role of
apoA-IV in the short- and long-term regulation of
appetite, and about its interaction with more estab-
lished intestinal satiety signals. Whether it will prove to
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be the basis for a useful therapy for obesity remains to
be seen.

Leptin, the hormone product of the ob gene, is
mainly synthesized in white adipose tissue. Initial high
expectations regarding its role in energy balance have
been revised following recognition of the phenomenon
of leptin resistance in the obese state. Leptin is also
synthesized by cells in the gastric mucosa, however,
raising the possibility that it may yet play a role in meal
termination (Peters et al. 2005). Levels in the stomach,
however, are comparatively low, and the physiological
importance of gastric leptin remains uncertain.
10. CONCLUSIONS
In the century since the first gut hormones were
described, much has been discovered regarding their
physiological actions. As part of their function to
optimize the digestive process, it was perhaps inevitable
that they should also act to regulate appetite and food
intake. The prize being sought is an effective treatment
for one of the most pressing public health issues of the
new millennium, and while there is much that we still
do not understand, recent advances in our knowledge
of the integration of endocrine and neurological signals
as a means by which the periphery signals energy status
to the brain could soon bring that prize within our
grasp.

Owais Chaudhri is supported by the Wellcome Trust.
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