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The human and mouse genomic sequences provide evidence for a
larger number of rearrangements than previously thought and
reveal extensive reuse of breakpoints from the same short fragile
regions. Breakpoint clustering in regions implicated in cancer and
infertility have been reported in previous studies; we report here
on breakpoint clustering in chromosome evolution. This clustering
reveals limitations of the widely accepted random breakage theory
that has remained unchallenged since the mid-1980s. The genome
rearrangement analysis of the human and mouse genomes implies
the existence of a large number of very short ‘‘hidden’’ synteny
blocks that were invisible in the comparative mapping data and
ignored in the random breakage model. These blocks are defined
by closely located breakpoints and are often hard to detect. Our
results suggest a model of chromosome evolution that postulates
that mammalian genomes are mosaics of fragile regions with high
propensity for rearrangements and solid regions with low propen-
sity for rearrangements.

In a landmark paper, Nadeau and Taylor (1) introduced the
notion of conserved segments (i.e., segments with preserved

gene orders without disruption by rearrangements) and esti-
mated that there are �180 conserved segments in human and
mouse. In the same paper they provided convincing arguments
in favor of the random breakage model of genomic evolution
postulated by Ohno (2). The model assumes a random (i.e.,
uniform and independent) distribution of chromosome rear-
rangement breakpoints and is supported by the observation that
the lengths of synteny blocks shared by human and mouse are
well fitted by the predicted distribution imposed by the random
breakage model. Since the model was first introduced, it has
been analyzed by Nadeau and others (1, 3–6), and it has become
widely accepted. It was further supported by studies of signifi-
cantly larger datasets that confirmed that newly discovered
synteny blocks still fit the predicted exponential distribution very
well (7–11). These studies, with progressively increasing levels of
resolution, made the random breakage model the de facto theory
of chromosome evolution.

The arguments in favor of the random breakage model usually
proceed as follows. One first constructs the distribution of
lengths of conserved segments and fits the resulting histogram
with the theoretical distribution predicted by the random break-
age model. An important implication of this model is that the
segment lengths approximate an exponential distribution with
density function f(x) � 1�L e�x/L, where L is the average length
of all segments. Nadeau and Taylor (1) did not have information
about all segments because most of them were still undiscovered
in 1984. However, they were able to estimate L (and therefore
the number of still undiscovered segments) from the small set of
already discovered segments. The relatively small departure
from an exponential distribution was attributed to missing
information about some conserved segments. Of course, there
was always a danger that newly discovered segments would shift
this estimate and even deviate from the exponential distribution
predicted by the model. However, this did not happen in the past,
and the random breakage model was reinforced in a number of
influential studies in the last decade (7, 9, 12, 13). Sankoff et al.
(14, 15) analyzed the accuracy of the random breakage model

and further reinforced it despite some deviations, particularly for
relatively short conserved segments. These deviations are often
attributed to mapping errors, statistical noise, or other evolu-
tionary processes like frequent short inversions (16). As a result,
the Nadeau–Taylor predictions are viewed as among the most
significant results in ‘‘. . . the history and development of the
mouse as a research tool’’ (17).

The Nadeau and Taylor (1) result laid the foundation of the
statistical approach to studies of chromosomal history that was
further advanced by Nadeau and Sankoff (3, 4) and others. The
statistical approach is not concerned with the details of rear-
rangement history. Sankoff and colleagues (18, 19) pioneered a
combinatorial approach to studies of genome rearrangements
that attempts to infer the rearrangement scenario explaining the
differences between genomic organizations. They also raised the
problem of integrating the statistical and combinatorial ap-
proaches, something that never was done in the past (20). In this
article, we demonstrate that such combined analysis reveals
limitations of the random breakage model and leads to a fragile
breakage model.

The draft human and mouse sequences reveal many previously
undiscovered synteny blocks and put the random breakage
model to a new test. We (21) identified 281 synteny blocks shared
by human and mouse of size at least 1 Mb (Tables 1 and 2, which
are published as supporting information on the PNAS web site,
www.pnas.org). Although the number of synteny blocks is higher
than the Nadeau–Taylor predictions, the lengths of the blocks
still fit the exponential distribution (Fig. 1 Left), another argu-
ment in favor of the random breakage model. However, a
different type of evidence derived from genome rearrangements
studies reveals an unexpectedly large number of closely located
breakpoints that cannot be explained by the random breakage
model. This analysis implies that in addition to the segments
shown in Fig. 1 Left, another 190 ‘‘short’’ synteny blocks, typically
�1 Mb in length, exist. These blocks were never discovered in the
comparative mapping studies, and moreover, most of them are
hard to find even with available human and mouse sequences. If
the breakpoints are located very close to each other (e.g., within
a few nucleotides or even at the same position), the correspond-
ing very short blocks may be undetectable by alignment analysis.
Moreover, some short blocks may be deleted in the course of
evolution. However, the rearrangement analysis confirms the
existence of such breakpoints, even in the absence of statistically
significant sequence alignments. The existence of these short
blocks immediately implies that an exponential distribution is
not a good fit to reality, thus pointing to limitations of the
random breakage model (Fig. 1 Center). In other words, the
rearrangement analysis of human and mouse genomes reveals
clumps of closely located breakpoints that cannot be explained
by the random breakage model.

The surprisingly large number of breakpoint clumps is an
argument in favor of a different model of chromosome evolution
that we call the fragile breakage model. This model postulates
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that the breakpoints occur mainly within relatively short fragile
regions (hot spots of rearrangements). The existence of some
fragile regions at the population level was supported by previous
studies of cancer and infertility (22, 23), but the extent of this
phenomenon in molecular evolution became clear only after the
human and mouse DNA sequences became available. Although
many clinical rearrangement breakpoints form clusters (24, 25),
there were no previous reports of evolutionary breakpoint
clustering, and the relationships between the cytogenetic pro-
cesses and evolution remain unclear. Moreover, previous evo-
lutionary studies implicitly (and wrongly) assumed that there
exists a single rearrangement site between any two consecutive
conserved segments shared by human and mouse, and therefore
overlooked potential breakpoint clustering. Our understanding
of fragility is still incomplete; in particular, there are reports of
correlations between some common fragile sites and evolution-
ary breakpoints (26) and lack of correlation for other ones (27).
A recent study (28) of some breakpoints on chromosome 19 and
corresponding repeats suggested that clinical and evolutionary
rearrangements may be driven by similar forces. Our study opens
the possibility of correlating the detailed cancer breakpoint maps
recently generated by Volik et al. (29) with breakpoint reuse
affecting evolutionary fragile sites, despite the vastly different
time scales.

If one assumes that the fragile regions are uniformly distrib-
uted through the genome then the fragile and random breakage
models lead to identical estimates for the number of long
segments (e.g., segments �1–2 Mb). In some sense, the random
breakage model can be viewed as an excellent null hypothesis for
a certain level of resolution and genome heterogeneities. How-
ever, the random breakage and fragile breakage models generate
very different predictions when it comes to short segments that
were below the granularity level of comparative mapping studies.

Synteny Blocks
The genomic sequences provide evidence that the human and
mouse genomes are significantly more rearranged than previ-
ously thought. A large proportion of previously identified con-
served segments turned out not to be really conserved, because
there is evidence of multiple microrearrangements in many of
them (10). These microrearrangements were not visible in the
comparative genetic maps that were used for defining �180
conserved segments in the past. The draft human and mouse
genomic sequences reveal a few thousand conserved segments;
many of them may be caused by microrearrangements whereas
others may be artifacts of assembly errors. We therefore devel-
oped the GRIMM-Synteny algorithm (21) to detect synteny
blocks, i.e., fragments that can be converted into conserved

segments by microrearrangements. The blocks generated by
GRIMM-Synteny are similar to the blocks generated in ref. 30
and are based on the same versions of the draft human and
mouse genomic sequences. GRIMM-Synteny detected Nb � 281
synteny blocks shared by human and mouse of size at least 1 Mb
in human, and Nb � Nc � 281 � 23 � 258 breakpoint regions,
i.e., regions between consecutive synteny blocks, where Nc is the
number of chromosomes. Many of these synteny blocks were
previously viewed as ‘‘conserved segments’’ by Nadeau and
Taylor (1), because microrearrangements within these blocks
were beyond the resolution of comparative human–mouse maps.
Because of insufficient sequencing data, we ignore the break-
point regions at the ends of the chromosomes. Our estimates
need to be revisited when more sequencing data from chromo-
some ends become available. We do not exclude the possibility
that chromosome ends may host multiple rearrangement hot
spots.

Errors in draft human and mouse genomic sequences raise the
question of whether imperfections of the sequence assemblies
affect our estimate of breakpoint reuse. Although the draft
genomic sequences indeed contain many errors, these errors are
local rather than global. For example, the draft human sequence
may include some misassembled bacterial artificial chromo-
somes, resulting in the appearance of microrearrangements with
spans �200 kb. Such local errors typically result in microrear-
rangements that are sequencing artifacts rather than real evo-
lutionary events. We identified 3,170 microrearrangements be-
tween draft human and mouse sequences and it is expected that
only a portion of them correspond to real evolutionary rear-
rangements whereas the rest are caused by assembly errors (21).
However, there is little doubt that large synteny blocks (e.g.,
blocks �1 Mb) are placed correctly because their arrangement
is consistent with existing genetic and physical maps (30). Our
breakpoint analysis is based only on the arrangement of such
large synteny blocks and therefore the existing local assembly
errors do not affect our conclusions.

These large synteny blocks were rigorously derived from the
same 558,678 small-scale orthologous landmarks as in ref. 30 and
are largely consistent with other recent studies of human–mouse
synteny blocks (21). See ref. 30 for discussion of the quality of
these 558,678 small-scale orthologous landmarks. We empha-
size that even if smaller synteny blocks (e.g., �1 Mb in length)
and breakpoint regions are corrupted because of assembly
errors, it does not affect our conclusions; information about
short synteny blocks is not used in establishing the breakpoint
reuse phenomenon.

We emphasize that in contrast to previous approaches to
analyzing gene orders, our approach takes into account similar-

Fig. 1. (Left) Histogram of synteny block lengths in human for Nb � 281 synteny blocks of length at least 1 Mb, fitted by an exponential distribution with mean
block length L � GbNb � 9.6 Mb, where Gb � 2,707 Mb is the overall length of syntenic blocks. The bin size is 2.5 Mb. (Center) The same histogram superimposed
with the 190 hidden synteny blocks revealed by genome rearrangement analysis, under the assumption that all hidden blocks are short, i.e., �1 Mb in length.
(Right) Histogram of breakpoint region lengths in the human genome (bin size is 100 kb). Most breakpoint regions are very short, with 109 of 258 regions being
�100 kb. However, there is a small number of long breakpoint regions: 17 regions are between 1 and 2.5 Mb, and 15 are �2.5 Mb (shown by a single bar at the
right end). Chromosome ends can also host breakpoints, but are not included.
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ities in both coding and noncoding sequences. This allows us to
bypass the problem of unreliable gene annotations and take into
account overwhelming evidence that similarities are well pre-
served in noncoding regions as well. Although most synteny
blocks contain a large number of annotated genes (see Tables 1
and 2), some blocks contain very few genes and would be hard
to find with the traditional gene order approaches. In particular,
there is a synteny block with just one annotated human gene, and
another with just one annotated mouse gene. We emphasize that
these findings refer to annotated genes and more accurate gene
predictions may prove that these synteny blocks contain more
genes. We also found a number of genes residing within break-
point regions and even some genes spanning entire breakpoint
regions. Such ‘‘spanning genes’’ are likely examples of the genes
that were disrupted by rearrangements in the course of evolu-
tion. Gene disruption in clinical rearrangements was discovered
in the past; for example, the Abelson gene on chromosome 9 and
the BCR gene on chromosome 22 are both disrupted and fused
together in many leukemia patients (31). Our finding indicates
that similar gene disruption effects happen in the course of
evolution, contrary to the existing point of view that evolutionary
genome rearrangements are neutral speciation events.

Fig. 1 Left presents a histogram of the lengths of these 281
synteny blocks (in human) fitted by an exponential distribution.
However, the empirical distribution in Fig. 1 Left does not
include the lengths of short synteny blocks (i.e., blocks �1 Mb),
which are hard to detect even with available human and mouse
sequences. Nadeau and Taylor (1) bypassed this problem by
declaring such short blocks as still undiscovered and even
estimated the number of such blocks via the predicted curve (4).
Our key insight is that although most of these blocks are still
undiscovered, the number of such blocks can be reliably esti-
mated with genome rearrangement analysis. Each such short
block creates an impression of breakpoint reuse because the
breakpoints f lanking short synteny blocks are hard to separate.
The genome rearrangement analysis implies that there is a very
large number Nr (Nr is at least 190) of such breakpoint reuses
(and, therefore, short synteny blocks), thus adding an extra bar
to the empirical distribution of block length (Fig. 1 Center).

This new distribution cannot be fitted with the exponential
one, thus providing a solid argument against the random break-
age model. Most breakpoint regions are short (�1 Mb) with very
few exceptions like a 23.2-Mb breakpoint region in human and
a 6.7-Mb breakpoint region in mouse (the distribution of break-
point region lengths in human is shown in Fig. 1 Right). However,
the average size of breakpoint regions is only 668 kb in human
and 458 kb in mouse, and each of them contains on average 1.9
breakpoints (rather than a single breakpoint as was implicitly
assumed in the previous studies). The overall size of the break-
point regions equals 172.5 Mb in human (5.7% of the genome
length) and 119 Mb in mouse (4.7% of the genome length).
Intuitively, the random breakage model contradicts the fact that
5.7% of the genome is populated by such a large number of
closely located breakpoints (1.9 breakpoints per breakpoint
region on average if the chromosome ends are excluded). The
190 breakpoint reuses revealed by rearrangement analysis and
the 258 breakpoint regions revealed by GRIMM-Synteny imply
an estimate of n � Nb � Nc � Nr � 281 � 23 � 190 � 448 for
the overall number of breakpoints.† We assume that these
breakpoints are located in breakpoint regions and we ignore
chromosome ends (see above). One can estimate the expected
number of clumps [e.g., pairs of consecutive points that are
within a ‘‘small’’ distance w from each other) in the positions of

n uniformly distributed points in the interval‡ [0,1] as (n � 1)(1 �
(1 � w)n] (34). If we are interested in the number of clumps of
n breakpoints within a distance of 0.668 Mb (average size of
breakpoint regions in human) in the genome of total length§ G �
2,983 Mb, then w � 0.668�2,983, and the number of clumps is
�43. This is in sharp contrast with the estimate of Nr � 190
breakpoint reuses, a strong argument against the random break-
age model.¶

We emphasize that this insight has only become possible with
human and mouse genomic sequences available. It turned out
that most breakpoint regions are rather short, thus implying that
still undiscovered synteny blocks (residing within breakpoint
regions) are short and making it impossible to fit the empirical
distribution by the exponential one.

Genome Rearrangements and Breakpoint Reuse
The evidence for existence of 190 closely located breakpoints is
provided by genome rearrangement analysis. Every genome
rearrangement study involves solving a combinatorial puzzle to
find a series of genome rearrangements to transform one
genome into another. For multichromosomal genomes, the most
common rearrangements are inversions (also known as rever-
sals), translocations, fusions, and fissions, and the number of
such rearrangements in a most parsimonious scenario is known
as the genomic distance. Following Nadeau and Taylor (1), we
assume that transpositions are rare and therefore can be ignored.
Finding the genomic distance is a difficult combinatorial prob-
lem. In the very first computational studies of genome rear-
rangements, Watterson et al. (35) and Nadeau and Taylor (1)
introduced the notion of a breakpoint (disruption of gene order)
and noticed some correlations between the genomic distance
and the number of breakpoints. The shortcoming of early
genome rearrangement studies is that they considered break-
points independently without revealing combinatorial depen-
dencies between related breakpoints. The simplest example of
related breakpoints are two breakpoints formed by a single
inversion or translocation. Hannenhalli and Pevzner (36, 37) and
Tesler (38) developed a polynomial-time algorithm for the
genomic distance problem. We used a fast implementation of the
Hannenhalli–Pevzner algorithm (39) to analyze the human–
mouse rearrangement scenario (available via the GRIMM web
server at www-cse.ucsd.edu�groups�bioinformatics�GRIMM).
Our analysis implies that at least 245 rearrangements of 281
synteny blocks occurred because the divergence of human and
mouse. This result, combined with formulas to compute the
number of breakpoint reuses, implies that any human–mouse
rearrangement scenario requires at least 190 breakpoint reuses.

Fig. 2 presents two different most parsimonious scenarios that
transform the order of the 11 synteny blocks on the mouse X
chromosome into the order on the human X chromosome.
Although the scenarios are very different, they both have three
breakpoint region reuses.

Our extension of the Hannenhalli–Pevzner theory implies that
any rearrangement scenario based on these 11 blocks has at least
three reuses of breakpoint regions (although we cannot unam-

†A more accurate estimate for the number of breakpoints would involve the number of
chromosomes in the common ancestor of human and mouse, which remains unknown. See
refs. 32 and 33 for the analysis of chromosomal organization in the mammalian ancestor.

‡Similarly to Nadeau and Taylor (1), we represent the genome as a single interval rather
than a set of intervals corresponding to chromosomes. We also estimate the number of
breakpoints in breakpoint regions as n � Nb � Nc � Nr although some of these breakpoints
may fall at the ends of chromosomes and, in this case, should not be counted. In addition,
the exact borders of the syntenic blocks are not well defined and may extend into the
breakpoint regions. However, these simplifications only slightly affect our analysis.

§G is the total length of the draft human sequence, comprised of the synteny blocks (2,707
Mb), breakpoint regions (172.5 Mb) and chromosome ends.

¶For expository purposes, this estimate uses the average breakpoint region length rather
than the distribution of breakpoint region lengths. The estimate needs to be revisited in
the (rather unlikely) case that the chromosome ends and a small number of long break-
point regions account for almost all breakpoint reuse events.
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biguously infer where these breakpoint reuses happened). This
indicates that there are at least three more ‘‘hidden’’ synteny
blocks in addition to our 11 ‘‘large’’ synteny blocks. Some of
these blocks may be detected by lowering the threshold for
synteny block detection, whereas others may escape such detec-
tion. Our analysis further reveals at least 190 breakpoint region
reuses over the whole genome on the evolutionary path from
mouse to human.

Identifying the exact position of hidden blocks is a difficult
problem. If the consecutive breakpoints are very close (e.g.,
within tens of nucleotides of each other) then the resulting very
short hidden synteny blocks will escape detection because the
similarity between them is insignificant at the genome scale. In
addition, even longer hidden blocks (e.g., tens of thousands of
nucleotides) may escape detection because these blocks may not
host genes and therefore the similarity between them may be
quickly dissolved by frequent mutation in noncoding regions.
Despite these difficulties we were able to point to some potential
hidden blocks. The black dot flanked by double yellow lines in
Fig. 2 Right shows the position of such a potential hidden block
on the human X chromosome. Backtracking the position of this
block to mouse implies that it resides between blocks 11 and 3
on the mouse X chromosome. There is indeed an area of
significant similarity (�350 bp) between the breakpoint regions
in human and mouse indicated by black dots in Fig. 2 Right. We
emphasize that it is not a repeat-induced similarity but rather a
significant alignment hit that does not extend to any other
regions.

Two similar segments in the breakpoint regions of mouse and
human form a potential hidden block if one of them can be
backtracked into the other within some most parsimonious
evolutionary scenario on the existing blocks, but these do not
merely lengthen an existing block. For technical details, see the
definition of (g, b)-splits in ref. 37.

We have developed an algorithm to find all such potential
hidden blocks, given our list of 281 synteny blocks and a separate
list of candidate regions. It identified 111 potential hidden blocks
between breakpoint regions in human and mouse (see Appendix,
which is published as supporting information on the PNAS web
site). Moreover, we found 81 orthologous gene pairs in the
breakpoint regions satisfying the potential hidden block require-

ments. We emphasize that most orthologous gene pairs falling
into breakpoint regions are not potential hidden blocks because
there is no rearrangement scenario in which they satisfy the
combinatorial constraints imposed by the backtracking proce-
dure illustrated in Fig. 2 Right. However, the question of which
of these 81 orthologous genes correspond to real hidden synteny
blocks remains open because the backtracking procedure as-
sumes that the evolutionary scenario is known. Although this is
not the case yet, sequencing other mammalian species will reveal
the likely rearrangement scenario and will point us to real hidden
synteny blocks.

Because every rearrangement creates at most two new break-
points, the genomic distance is at most half the number of the
breakpoints in the genome. If there is no breakpoint reuse then
the real evolutionary scenario is a most parsimonious one as
computed by the Hannenhalli–Pevzner algorithm (36). However,
the estimate of genomic distance in terms of breakpoints is
inaccurate because it assumes that the breakpoints are not
reused in evolution. In most genome rearrangement studies,
there is evidence of breakpoint reuse (at least at a certain level
of synteny block resolution), thus indicating that breakpoint
reuse is the rule rather than the exception. We emphasize that
by reusing breakpoints we do not mean multiple use of exactly
the same genomic position as an endpoint of rearrangements,
but rather the fact that the breakpoint regions host endpoints for
multiple rearrangement events. Therefore our estimate of 190
breakpoint reuse events in human–mouse evolution does not
imply that there were 190 reuses of exactly the same nucleotides
as rearrangement endpoints.

Fragile Breakage Model Versus Random Breakage Model
Below we describe our tests of the random breakage model and
introduce the alternative fragile breakage model. If positions of
n breakpoints in the genome are given by random variables ui in
[0, 1], the segment sizes are yi � ui � ui � 1. For the following
analysis, n � Nb � 1 � 280, because we ignore the chromosome
endpoints (see above) and, similarly to Nadeau and Taylor (1),
do not consider short blocks (�1 Mb). We also discard any other
genomic material not observed to be within the synteny blocks.
To test the random breakage model, we follow the approach
described in Churchill et al. (40) and use the Kolmogorov–

Fig. 2. Two different most parsimonious scenarios that transform the order of the 11 synteny blocks on the mouse X chromosome into the order on the human
X chromosome. The arrangement of synteny blocks in the ancestor is unspecified (and is assumed to coincide with one of intermediate arrangements) because
it cannot be inferred without availability of a third genome (33, 41). Breakpoint uses are shown as short vertical yellow lines, and breakpoint region reuses are
shown as double yellow lines. In the first scenario (Left) the breakpoint reuses are located in human in breakpoint regions (3,4), (4,5), and (5,6), whereas in the
second one (Right) they are located in (5,6), (6,7), and after block 11. In the second scenario, a potential hidden block is shown as a black dot; it restricts the set
of possible most parsimonious scenarios, and it separates two breakpoint uses that would have been a breakpoint region reuse. Our theory implies that any
rearrangement scenario based on these 11 blocks has at least three reuses of breakpoint regions (possibly including chromosome ends).
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Smirnov test, which measures the largest difference between the
empirical and theoretical distribution functions:

Dn � max� max
1�i�n� i

n
� ui�, max

1�i�n�ui �
i � 1

n ��.

The computed Kolmogorov–Smirnov statistic is D280 � 0.085,
which comes close to the estimate of 0.095 computed by Sankoff
et al. (14) based on comparative mapping data for 1,423 genes
and only 130 blocks. The probability (P value) that the Kolmog-
orov–Smirnov statistic D280 is �0.085 for the uniform distribu-
tion is 0.032. We also found that there is a reasonably good fit
between the largest synteny block of length 79.6 Mb and the
expected maximum fragment length L[� � ln(n � 1)] � 59.8 Mb,
where L is the mean fragment length and � � 0.5772 is Euler’s
constant.

Ideally, these inferences should be based on complete data
about segment lengths. However, the information about short
segments may be hard to obtain even with available draft human
and mouse sequences. Churchill et al. (40) model the missing
data by assuming that if two breakpoint sites are within locking
distance a then the conserved segment remains undetected.
However, even this more flexible model is unable to explain the
very large number Nr � 190 of short unobserved segments that
are revealed by our genome rearrangement studies.

In summary, the tests of the random breakage model reveal its
inability to explain a large number of short synteny blocks found
by genome rearrangement analysis. At the same time, the
truncated exponential density function 1�L ex�a/L fits the exper-
imental data for synteny blocks longer than a � 1 Mb well. The
question therefore arises as to whether there exists a different
model of chromosomal rearrangements that (i) explains the fit
between the distribution of long synteny blocks and the trun-
cated exponential density function observed by Nadeau and
Taylor (1), and (ii) explains a large number of short blocks that
the Nadeau–Taylor statistics failed to explain. Below we describe
a natural fragile breakage model that explains both good fit of
long blocks and a large number of short blocks.

In the fragile breakage model, the genome consists of (short)
fragile and (long) solid regions with different propensities to
breakpoints. For expository purposes we assume that the prob-
ability of a breakpoint in a fragile region follows the Poisson
process, while the probability of a breakpoint in a solid region is
zero (extreme case). The overall size of fragile regions may be
very small, e.g., 5% of the genome, in sharp contrast to the
random breakage model. However, if fragile regions are distrib-
uted randomly in the genome, both the random breakage and the
fragile breakage models predict the same distribution of long
synteny blocks. This may be the reason for the prophetic

predictive power of the random breakage model in the past.
However, the random breakage model does not perform well in
a test with the sequencing data that has recently became
available, whereas the fragile breakage model easily explains the
large number of short blocks, thus reinforcing our belief that the
fragile breakage model may be a better approximation of reality
than the random breakage model. In addition, the fragile
breakage model allows one to estimate the number of still
unobserved fragile regions that may be revealed by sequencing
efforts in other mammalian species. Assume there are m fragile
regions in the genome and n � Nb � Nc � Nr � 448 random
breakages, of which Nb � Nc � 258 are observed. The probability
that a given fragile region is not affected by any breakage is (1 �
1�m)n. Therefore, the expected number of observed fragile
regions (i.e., fragile regions that are broken by breakages) is
m[1 � (1 � 1�m)n]. Solving m[1 � (1 � 1�m)448] � 258 gives m
�364. The estimate for the number of still undiscovered fragile
regions is m �(Nb � Nc) �106, most of which probably reside
within existing synteny blocks. This high estimate of the number
of still undiscovered fragile regions may explain the recently
observed phenomenon that the highly recombinogenic FRA3B
locus was never disrupted in the course of mouse–human
evolution (27).

Conclusion
The visionary insights of Nadeau and Taylor (1) and prophetic
accuracy of their estimates survived many comparative mapping
studies and (at a certain level of granularity) still remain in good
fit with available human and mouse genomic sequences. The
random breakage model proved to be an extremely valuable
evolutionary theory, particularly when contrasted against ran-
dom gene scrambling and other models that were considered in
the early 1980s. However, the available human and mouse
genomic sequences dramatically increased the level of resolution
at which we can analyze the genomes and reveal that, with a new
level of granularity, the random breakage model is unable to
explain the very large number of breakpoint clumps. Therefore,
a new more accurate model is needed for comparative studies of
the many mammalian genomes that are about to be sequenced.

We remark that our conclusions about breakpoint reuse are
based on the assumption (made in ref. 1) that transpositions are
relatively rare. Although inversions and translocations are be-
lieved to be more common than transpositions, we do not
entirely rule out the possibility that a significant fraction of
breakpoint reuses is caused by transpositions (because every
transposition can be modeled by three inversions that reuse three
breakpoints).

We are grateful to Richard Durbin, Michael Kamal, Uri Keich, Eric
Lander, and David Sankoff for helpful discussions and suggestions.
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