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In this inaugural paper, we shall provide an overview of the endo-
thelial surface layer or glycocalyx in several roles: as a transport
barrier, as a porous hydrodynamic interface in the motion of red and
white cells in microvessels, and as a mechanotransducer of fluid
shearing stresses to the actin cortical cytoskeleton of the endothelial
cell. These functions will be examined from a new perspective, the
quasiperiodic ultrastructural model proposed in Squire et al. [Squire,
J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. (2001) J. Struct.
Biol. 136, 239–255] for the 3D organization of the endothelial surface
layer and its linkage to the submembranous scaffold. We shall show
that the core proteins in the bush-like structures comprising the
matrix have a flexural rigidity, EI, that is sufficiently stiff to serve as
a molecular filter for plasma proteins and as an exquisitely designed
transducer of fluid shearing stresses. However, EI is inadequate to
prevent the buckling of these protein structures during the intermit-
tent motion of red cells or the penetration of white cell microvilli. In
these cellular interactions, the viscous draining resistance of the
matrix is essential for preventing adhesive molecular interactions
between proteins in the endothelial membrane and circulating cel-
lular components.

A lthough the endothelial surface glycocalyx was first identi-
fied by special electron microscopic staining techniques

nearly 40 years ago (1), it is only relatively recently that this
surface layer has been observed in vivo (2) and the importance
of its multifaceted physiological functions recognized. Key
among these functions are its role as a molecular sieve in
determining the oncotic forces that are established across mi-
crovessel endothelium (3–6), its role as a hydrodynamic exclu-
sion layer preventing the interaction of proteins in the red cell
and endothelial cell membranes (7–9), its function in modulating
leukocyte attachment and rolling (10) and as a transducer of
mechanical forces to the intracellular cytoskeleton in the initi-
ation of intracellular signaling, as proposed herein.

It is widely recognized that fluid shearing forces acting on
endothelial cells (ECs) have a profound effect on EC morphology,
structure, and function (11, 12). It is now also clear from theoretical
considerations (7, 9, 13, 14) that the shear stress at the edge of the
endothelial surface layer is greatly attenuated by the extracellular
matrix of proteoglycans and glycoproteins in the glycocalyx, with the
result that fluid velocities, except near the edge of the layer, are
vanishingly small. Thus, the shear stress due to the fluid flow acting
on the apical membrane of the EC itself is negligible. This para-
doxical prediction has raised a fundamental question as to how
hydrodynamic and mechanical forces, more generally, are trans-
mitted across the structural components of the glycocalyx. How do
these components deform under the action of these forces, and how
are these forces and deformations communicated to the underlying
cortical cytoskeleton (CC)?

Little was known about the specific proteins or generalized
structure of the glycocalyx until recently (15–17). The state of
knowledge before 2000 is summarized in ref. 18. In vivo experiments
demonstrated that hyaluronan and chondroitin sulfate play an
important role in the assembly of the layer and its sieving properties
(17). Using computed autocorrelation functions and Fourier trans-

forms of electron microscopic images obtained from both new (15)
and previous (19) studies of frog mesenteric capillaries, Squire et al.
(15) were able to identify for the first time the quasiperiodic
substructure of the glycocalyx and the anchoring foci that appear to
emanate from the underlying CC. The computer-enhanced images
showed that the glycocalyx is a 3D fibrous meshwork with a
characteristic spacing of 20 nm in all directions and that the effective
diameter of the periodic scattering centers was 10–12 nm. Using a
freeze-fracture replica from a rare section where the fracture plane
passed parallel and close to the endothelial surface, they also
showed that anchoring foci formed a hexagonal array with an
intercluster spacing of typically 100 nm in frog lung capillary. This
latter observation was consistent with the spacing of bush-like
structures seen on the plasmalemma of the fenestrated renal
capillaries of the rat by using a new fluorocarbon oxygen fixation
technique, which preserved the portion of the glycocalyx close to the
EC surface (20).

On the basis of the foregoing observations, Squire et al. (15)
proposed a model for the structural organization of the endothelial
surface layer (ESL) and its relationship to the EC CC. The model
provides a new view of the organization of the matrix that forms the
molecular sieve for the filtering of plasma proteins. The possible
existence of an ordered structure was first proposed by Michel (21)
to explain why there is a sharp break in the solute permeability
curve for molecules the size of albumin. These ideas will be used in
the present paper to formulate a mathematical model for analyzing
the transduction of mechanical forces and bending moment
across the ESL. We first address a basic question: What is the
bending rigidity EI of the core proteins comprising the glycocalyx
that enables them to resist the randomizing forces of Brownian
motion and deformation by fluid shear stresses? To answer this
question, we shall examine the time-dependent recovery of the
surface layer after it has been crushed by the passage of a white
blood cell (WBC).§ Theoretical models are then developed to
explore the deformability of the matrix in both red and white cell
interactions and in response to fluid shearing forces. The forces and
torques exerted on the structural elements of the ESL by these
mechanical loads are then used to predict the stresses transmitted
to the CC.

A unique feature of the present analysis is the attempt to
couple the dynamic response of the surface layer to mechanical
loading to the stresses and deformations induced in the under-
lying CC. This CC has previously been explored in other contexts
involving the movement of plasma proteins in the plane of the
membrane using single-particle tracking and optical traps (23,
24). These studies, summarized in ref. 24, have led to a ‘‘fence’’
model construct in which one observes microdomains as small as
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0.01 mm2 restricting the movement of proteins due to the
interaction of their cytoplasmic tails with the underlying cy-
toskeletal scaffold.

Structural Model. Fig. 1A is a modified sketch of the structural
model proposed in ref. 15 for the organization of the core
proteins in the proteoglycan clusters that comprise the glycocalyx
and their linkage to the underlying CC. This composite structure
is deduced from the appearance of bush-like structures that
appear to emanate from foci in the cell membrane (20) and
current models of the CC (24). Also shown are transcellular actin
stress fibers linked by �-actinin tethering the cortical shell to
focal adhesion sites of integrins on the basal aspect of the cell and
other tethering filaments associated with actin filament bundles
in close proximity to the junctional complexes (11, 12). There is
a bidirectional grid with 20-nm periodicity of scattering centers
aligned along the axes of the core proteins. There is also a
100-nm periodicity associated with the separation of each cluster
and the observed hexagonal organization of the membrane
bound foci. Fig. 1B is an en face view of our idealized model that
assumes both a hexagonal arrangement of the core proteins in
each cluster and a hexagonal arrangement of the actin filaments
in the underlying CC. We assume that each of the membrane foci
is connected by short linker molecules at the intersections of the
hexagonal actin lattice that forms the cortical network. On the
basis of the length of the cytoplasmic tails and the typical forces
exerted by optical tweezers in dragging membrane proteins
across domain boundaries, these linkages are both short and
relatively rigid (24).

Transport Model. We first consider the transport aspects of the
new structural model for the ESL. In earlier studies (25), the
authors assumed a model for transport across microvessel en-
dothelium that involved a single nearly continuous tight junction
(TJ) strand with periodic discontinuities of length 2d and spacing
2D in series with surface glycocalyx that permitted the passage
of water and small solutes but greatly restricted the passage of

plasma proteins, in particular albumin (7-nm diameter, Fig. 2A).
The dimensions in this diagram correspond to the detailed
measurements of the TJ ultrastructure in frog mesentery capil-
lary (26). In the past, the molecular sieve associated with the ESL
was assumed to be a fiber matrix composed of glycoproteins with
extended glycan (GAG) side chains of typically 0.6-nm radius
and 7- to 8-nm gap spacing associated with the disaccharide
repeat along the core protein. This repeat distance was assumed
in ref. 25 and subsequent studies by the authors (5, 6) to provide
the dimensions of the molecular sieve for albumin. It is typical
of the 2D appearance of GAG side chains along chondroitan
sulfate proteoglycans when observed on carbon filters (27).

The foregoing model for the sieving structure of the glycocalyx
led Michel (3) and Weinbaum (4) to propose that Starling forces
should be applied locally across just the endothelial glycocalyx
rather than across the entire endothelial layer between plasma
and tissue, as had been universally done in the past. This new
hypothesis is quantitatively examined in ref. 5, where it is shown
that the converging flow through the orifice-like breaks in the TJ
strand will prevent back diffusion from the tissue space with the
result that the protein concentration in the tissue can differ
greatly from that behind the glycocalyx layer when the Peclet
number at the breaks is �1. Strong evidence in support of this
hypothesis is provided by the theory and experiments in ref. 6,
in which the tissue is backloaded so there is no effective oncotic
pressure difference between plasma and tissue. The experiments
clearly demonstrate that at high flow rates, the proteins on the
lumen side of the TJ strand are washed out, and nearly the full
oncotic pressure is felt across the ESL although the tissue oncotic
pressure is isotonic with respect to plasma.

The model proposed in ref. 15 provides an alternative picture
for the sieving structure. Proteoglycans with extended GAG side
chains are replaced by fibers with periodic molecular structures
of 10- to 12-nm diameter distributed at 20-nm intervals along the
core protein. These particles could either be aggregated GAGs
that take on a spherical appearance or plasma proteins that are
attracted by negative charge repeats. Squire et al. (15) show that
for an ordered square lattice, the fractional area of the pores
available for the transport of albumin is reduced to nearly zero

Fig. 1. (A) Sketch of ESL (not to scale) showing core protein arrangement and
spacing of scattering centers along core proteins and their relationship to
actin CC as proposed in ref. 15. (B) En face view of idealized model for core
protein clusters and cluster foci and their relationship to hexagonal actin
lattice in CC.

Fig. 2. (A) Model geometry taken from ref. 5. (B) Pressure distribution
behind ESL and fore and aft of TJ strand in mathematical model for flow
through cleft of frog mesentery capillary.
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when the effective fiber radius of the core protein is 6 nm, the
observed radius of the scattering centers. According to fiber
matrix theory (28), the reflection coefficient of the matrix,
� � (1��)2, where, the partition coefficient � is given as � �
1�Vf (1 � a�rf)2. Here a is the molecular radius, rf the fiber
radius, and Vf the fiber volume fraction. For the hexagonal fiber
array shown in Fig. 1B, Vf � 2�rf

2��3(2rf � �)2 where � is the
fiber gap. For a � 3.5 nm (albumin), rf � 6 nm, and � � 8 nm,
� � 0.67. In contrast, if rf � 0.6 nm and � � 8 nm, values typical
of the extended glycosaminoglycan fiber array, � � 0.52. Because
the measured value of � is typically �0.8 (29), the structural
model proposed in ref. 15 provides better agreement than a
model based on extended GAG sidechains. Similar results for a
square fiber array are presented in ref. 15. These predictions
underestimate �, because albumin is an ellipsoidal and not a
spherical molecule, and the negatively charged arginine groups
on the albumin molecule will interact with the negative charge
on the molecular filaments of the glycocalyx (30).

A more stringent test of the ultrastructural model for the ESL
proposed in ref. 15 is the relative contribution of the ESL to the
total hydraulic resistance of the endothelial layer in the calcu-
lation of the filtration coefficient Lp. The model sketched in Fig.
2A has provided reasonable predictions for the solute perme-
ability data for most solutes up to the size of albumin using an
ESL comprised of extended GAG side chains with rf � 0.6 nm
and � � 7–8 nm (5). However, the model cannot explain the
doubling of Lp observed in ref. 31 for frog mesentery microves-
sels when the ESL is removed after pronase treatment. The
model in ref. 5 predicts the measured Lp of 2.0 � 10�7 cm�s�1�
cmH2O (1 cmH2O � 98 Pa) for junction breaks 2d � 150 nm in
length, spaced every 2D � 2,640 nm if the fiber layer thickness,
Lf, is 150 nm, a value consistent with the electron microscopic
observations in ref. 15 and 19. However, Lp increases only to
2.3 � 10�7 cm�s�1�cmH2O, or �15%, when the ESL is removed
if the surface layer consists of extended GAG sidechains. The
hydraulic resistance of the ESL is far too small to account for the
measured doubling in Lp when it is removed.

These calculations have been repeated for the new model for
the ESL proposed in ref. 15, namely a hexagonally ordered
matrix with much larger core protein fibers of effective radius
rf � 6 nm, � � 8 nm, and Lf � 150 nm. One finds that an Lp of
2.0 � 10�7 cm�s�1�cmH2O is achieved for control conditions
when the orifice spacing 2D is reduced to 2,025 nm. The solution
for the pressure distribution just behind the surface layer, x � 0,
and just in front and behind the TJ strand, x � 200 	 nm, is
shown in Fig. 2B. One notes that the pressure at the orifice break
is nearly uniform and has a value 4.2 cmH2O when the lumen
pressure is 15 cmH2O. If the glycocalyx is removed, the pressure
at the break would increase to 7.5 cmH2O. Because the flow
across the endothelial layer is proportional to the difference in
pressure between the orifice and the cleft exit, where the
hydraulic pressure is assumed to be zero, the predicted value of
Lp increases to 3.6 � 10�7 cm�s�1�cmH2O when the glycocalyx
is removed. A doubling of Lp would be achieved if Lf is 200 nm.
The proposed new structure in Fig. 1 provides a much improved
description of the hydraulic resistance of the ESL as well as a
better prediction for �.

Hydrodynamic Forces and Torques. We next describe an idealized
mathematical model to predict the forces and bending moments
acting on the vertical filaments (core proteins) of the bush-like
structures comprising the ESL. These filaments, when observed
en face, are assumed to form a hexagonal array as depicted in Fig.
1B. The basic model closely parallels the hydrodynamic model
developed in ref. 32 for determining the forces and bending
moments acting on the brush border microvilli in the proximal
tubule, where transverse sections show that the microvilli form
a highly ordered hexagonal array. In ref. 32, the forces and

bending moments on the microvilli are used to explore a new
mechanosenory hypothesis to explain the afferent mechanism in
‘‘glomerulotubular balance.’’ In the present application, we
consider a capillary of circular cross section of radius Ro in which
filaments of uniform length Lf protrude radially into the interior
of the vessel. Effective medium theory (Brinkman equation),

�p
�z

�
�

R
�

�R �R
�U
�R� �

�

KP
U, [1]

is used to describe the flow in the wall layer (7, 13, 33, 34). Here
KP is the Darcy permeability of the ESL, and � is the plasma
viscosity. Outside the wall layer, one has a classical unidirec-
tional viscous flow with a Poiseuille profile.

Following the approach in ref. 32, we determine the Darcy
permeability KP by using the solutions in ref. 34 for the local 2D
Stokes flow past a hexagonal array of circular cylinders. An
approximate expression for the relationship between KP�rf

2 and
the fiber volume fraction, c � 2�rf

2��3(2rf � �)2, is

KP

rf
2 �

ln
c�1/2� � 0.745 	 c � c2�4
4c

. [2]

Eq. 2 is valid for c � 0.4. One can define a periodic unit for the
hexagonal fiber array and derive a simple expression for the local
drag force per unit fiber length F(R) acting on each vertical fiber
(32). This local expression for the drag is

F
R� �
��U
R�

c
rf

2

KP
, [3]

where U(R) is the local average velocity for the flow past the fiber
obtained from the solution of Eq. 1 in the ESL. One finds that
for rf � 6 nm, � � 8 nm, and Lf � 150 nm, the slip velocity U
at the outer edge of the ESL is only 3 �m�s when the shear stress
at the edge of this layer is 10 dyn�cm2. This is only 0.2% of the
centerline velocity of 1.4 mm�s in a 5-�m-diameter capillary at
this shear stress. Deeper within the matrix layer, the velocity
decays to a nearly uniform value of only 6 nm�s (0.2% of the edge
velocity). This slow uniform flow is driven by the axial pressure
gradient in the capillary. Thus, the shear stress on the membrane
is negligible. The fluid shear force acting on the edge of the
matrix layer is converted in the ESL to a drag force that acts on
the tips of the core proteins that extend through the layer. This
model assumes that the deformation of the ESL can be neglected
in solving Eq. 1 for U(R).

If the local drag F(R) in Eq. 3 is integrated from the tip of the
core protein, one finds that 90% of the total drag, 4.4 � 10�4 pN,
arises from the flow in a tip interaction layer that lies within 25
nm of the edge of the ESL when Lf � 150 nm, and the shear stress
at the outer edge of the ESL is 10 dyn�cm2. Using this drag
distribution, one can show that 96% of the total bending
moment, 0.061 pN�nm, arises from the flow in this tip interaction
layer. For Lf � 400 nm, the ESL thickness in hamster cremaster
(2), the total drag is 7.0 � 10�4 pN, and the bending moment 0.23
pN�nm. These predictions for the drag and bending moment
scale linearly with the shear stress.

Flexural Rigidity EI of Vertical Fibers. The key parameter in deter-
mining how the core proteins transmit hydrodynamic and me-
chanical forces across the ESL is their bending rigidity EI. In ref.
8, the bending rigidity of the fibers is neglected, and the
structural rigidity of the layer is attributed to a weak colloidal
osmotic pressure that resists the normal component of the
tension imposed by the fluid shearing stress. Detailed solutions
in ref. 6 for the protein concentration distribution across the ESL
show there is a sharp drop in concentration across the ESL even
in the presence of back loading of the tissue. Thus, the oncotic
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pressure in the plasma should be significantly greater and not less
than in the ESL. This would appear to negate the possibility that
an oncotic pressure provides for the structural rigidity of the
surface layer.

In this study, we propose an alternate hypothesis, namely that
the core proteins have a finite bending rigidity sufficient to
withstand the bending moments created by the drag forces on
their tips in the fiber interaction layer. Three observations
strongly support this hypothesis. First, it is hard to explain how
the glycocalyx could maintain its periodic structure in the
presence of thermal fluctuations due to Brownian motion were
it not for a significant bending rigidity of the core proteins.
Second, the molecular sieving properties of the glycocalyx
described in the section on transport cannot be explained by
slender highly flexible GAG sidechains but are consistent with
a more rigid molecular structure associated with the core
proteins. Third, the in vivo measurements (2) for Lf and the fluid
gap between the edge of the surface layer and the red cell
membrane indicate little or no deformation of the ESL occurs
for red cell velocities �20 �m�s.

There are, to our knowledge, no direct measurements of EI for
the core proteins of proteoglycans equivalent to the studies that
have been performed for F-actin, collagen fibrils, and microtubules
(35–37). Therefore, we have developed an indirect approach for
estimating EI. Vink and Duling (2) observed that the ESL could be
substantially compressed by either the passage of a WBC or the
arrest of motion of a red cell. To quantify this effect and determine
the time-dependent recovery of the ESL, Vink et al.§ measured the
gap between the endothelial and red cell membranes of red cells
that passed in the wake of the WBC. By measuring the time lag
between the passage of the red cell and WBC, one could measure
the time-dependent restoration of this gap. Because the fluid space
between the outer edge of the compressed ESL and the red cell did
not noticeably change, most of the change in displacement of the
red cell membrane from the endothelial surface could be attributed
to the change in thickness of the ESL. The recovery curve for the
displacement of the red cell can be approximately described by a
single exponential with a characteristic time of 0.38 s. We shall
determine EI by constructing an approximate viscoelastic model for
this recovery.

We assume that the roots of each bush-like cluster in Fig. 1 are
firmly anchored by short linker molecules into the underlying CC
(24). Thus, each vertical filament can be modeled as a cantilever
beam, whose initial loading due to the passage of the WBC is
modeled by a horizontal force P applied at the tip of the
deforming core protein. The energy stored in elastic deforma-
tion of the core proteins will be expended in the viscous
dissipation of the recoiling fibers. The local drag on the fibers is
proportional to the local instantaneous velocity of the fiber
relative to the fluid motion. However, our previous solutions
show that the fluid trapped in the glycocalyx is nearly stagnant
except for a thin tip interaction layer, which we shall neglect.
Thus, the local expression for the force on the fiber per unit
length is from Eq. 3 given by F � (��U�c)rf

2�KP, where U(x, t)
is now the instantaneous local fiber velocity, and KP, given by Eq.
2, describes the hydrodynamic interaction between fibers. If
y(x, t) is the local deflection of the fiber, then U � �y��t. For
small deflections, the viscoelastic recoil of the fiber is given by

EI
�4y
�x4 � �

�

c
�rf

2

KP

�y
�t

. [4]

In solving Eq. 4, we neglect the time-dependent changes in KP as
the glycocalyx expands and nonlinear effects of large deforma-
tion. Because the final phase of the recoil is described by the long
time mode for the fiber recovery and not the rapid initial phase
of large deformation, Eq. 4 should provide a reasonable lowest-
order approximation for the recovery time.

Eq. 4 can be cast in dimensionless form by introducing the
dimensionless coordinates X � x�L and Y � y�y(L, 0). Here L
is the length of the core protein, and y(L,0) � PL3�(3EI) is the
initial tip deflection for an initial load P applied at x � L. We
draw a distinction between L and the ESL thickness, Lf, because
below we will consider large changes in Lf in which L is
unchanged. The dimensionless time T is given by T � t�
, where

 � kL4�EI and k � (��c)(�rf

2�Lp) are the coefficient of the
velocity term in Eq. 4. We wish to solve the dimensionless form
of Eq. 4, YXXXX � �YT, subject to the dimensionless boundary
and initial conditions:

Y
0, T� �
�Y
0, T�

�X
�

�2Y
1, T�

�X2 �
�3Y
1, T�

�X3 � 0,

[5 a, b, c, d]

Y
X, 0� �
3
2

X2 �
1
2

X3 . [5e]

The initial condition Eq. 5e is the quasisteady shape of a cantilever
beam subject to a concentrated transverse load P at its end.

The solution of the boundary value problem defined by Eqs.
4 and 5 is not straightforward, and we briefly summarize the
solution procedure. The viscous loading term on the right-hand
side of Eq. 4 is first expressed in an infinite series of the form

�
�Y
�T

� a2 X 2 	 a3 X 3 	 a4 X 4 	 a5 X 5 	 . . . , [6]

where the ai(T), i � 2, 3, 4 . . . are unknown time-dependent
functions. The form of Eq. 6 is dictated by the initial deformed
shape of the fiber, Eq. 5e. When the latter series is substituted
into Eq. 4, integrated term by term, and the first two boundary
conditions (Eq. 5 a and b) applied, one finds that all of the ai(T)
can be expressed in terms of just two unknown functions of time
f2(T) and f3(T) that arise from the integration of Eq. 4. The
solution for Y(X,T) takes the form

Y � f2 �
X2

2
	 f3 �

X3

6
� f
2 �

X6

720
� f
3 �

X7

5040

	 f �2 �
X10

5040 � 720
	 f �3 �

X11

5040 � 7920
	 . . . [7]

One notes that the series solution, Eq. 7, is rapidly convergent.
Because the terms in X10 and X11 involve inertia and the latter
is very small in a viscous-dominated flow, the series solution, Eq.
7, has been truncated at X7. Application of boundary conditions
Eq. 5 c and d leads to a coupled set of differential equations for
f2(T) and f3(T) that must satisfy initial condition Eq. 5e. The
solution of this initial value problem leads to lengthy expressions
containing two exponentials, one e�T/0.0044 and the other
e�T/0.0789. The first describes the early time decay of the initial
profile described by Eq. 5e and the second, the longer time decay
of the fundamental mode. The details of the complete solution
can be found in Appendix A, which is published as supporting
information on the PNAS web site, www.pnas.org.

It is the long time decay that we wish to match with the
exponential describing the time-dependent restoration of the
ESL in Vink et al.§ This is done by setting 0.0789
 � � s, where
� � 0.38 is the exponential fit to the experimental recovery curve
in Vink et al.§ From the definition of 
 and k

EI �
0.0789

�

�

c
�rf

2

KP
L4 . [8]

For � � 0.38, rf � 6 nm, � � 8 nm, and L � 0.4 �m, c � 0.326,
KP � 3.157 nm2, and EI � 700 pN�nm2. In comparison, the
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measured values of EI for an actin filament vary between 15 �
103 pN�nm2 (36) and 73 � 103 pN�nm2 (37). One observes that
EI for an actin filament is at least 21-fold greater than the core
proteins. Thus, if the core proteins are anchored into the CC
through a transmembrane protein complex, as sketched in Fig.
1, this supporting structure will be much stiffer than the core
proteins in the ESL, justifying our use of a cantilever beam model
in solving Eq. 4.

Deformation of Core Proteins Due to Fluid Shear. The hydrodynamic
loading on the core proteins given by Eq. 3 can be used to predict
their deformation when subject to fluid shear. Following the
analysis described in ref. 32, one can split the total loading into
two contributions, a concentrated load P applied at x � L, due
to the fluid drag associated with the tip interaction layer, and a
uniformly distributed load q associated with the much slower
pressure-driven flow in the interior of the ESL. One obtains the
following simple expression for the shape of the fiber, using
classical beam theory,

y
x� �
1

EI �P
6


�x3 	 3Lx2� 	
q

24

x4 � 4Lx3 	 6L2x2��. [9]

Eq. 9 has been plotted in Fig. 3 for fibers ranging in length from
150 nm, the ESL thickness observed in ref. 15 for frog mesentery
capillary, to 400 nm, the thickness of the excluded fluorescent
dextran layers observed in ref. 2 for hamster cremaster. Results
are shown for a fluid shear stress of 10 dyn�cm2 at the edge of
the ESL and a bending rigidity EI � 700 pN�nm2. The tip
deflection of the longest fiber is only 17.9 nm. Thus, all deflec-
tions are well within the limits of small deflection theory. The
important conclusion is that the fibers have sufficient flexural
rigidity to resist bending at fluid shear stresses in the physio-
logical range and, as observed in refs. 2 and 16, there is no
observable deformation of the ESL due to fluid shear. The
structural integrity of the glycocalyx can be maintained without
the need for oncotic swelling forces (14) or electrochemical
hydration resulting from distributed negative charge on extended
GAG sidechains (30).

Deformation Due to Red Cell Motion. One of the striking observa-
tions in ref. 2 is that when the red cell motion is arrested, the cell
expands to fill nearly the entire capillary lumen. At very low
velocities, �20 �m�s, the red cell membrane slowly lifts off the wall
and, at velocities �20 �m�s, the cell ‘‘pops out’’ of the layer and
glides above the glycocalyx with a fluid gap that increases nearly
linearly with increasing speed as observed in figure 3 of ref. 2. The
‘‘pop-out’’ behavior while the cell is still in the ESL has been
examined in refs. 7 and 8. In ref. 7, it is shown that the compression
of the layer is closely akin to snowboarding on fresh snow powder.
The fluid is trapped within the fibers of the compressed matrix and
is unable to fully escape on the time scale of the cell passage, with
the result that lubrication pressures far greater than predicted by

classical lubrication theory can be generated. The analysis in ref. 8
considers a deformable cell whose membrane is subject to fluid
shear and bending deformation. The latter analysis provides intu-
itive insight into the shape changes that occur for an axisymmetric
cell during lift off from the capillary wall. Neither Feng and
Weinbaum (7) nor Secomb et al. (8) consider the viscoelastic
deformation of the ESL.

We first develop a simple model for the deformation of the
ESL when the red cell is gliding above its outer edge at velocities
�20 �m�s. The observations in ref. 2 show a nearly uniform fluid
gap 
 between the outer edge of the ESL and the red cell
membrane that increases initially with increasing velocity and
then asymptotes to a nearly uniform gap. This suggests a simple
2D model for the fluid motion in the confined region, a parallel
channel f low with two layers, a Brinkman layer (Eq. 1 written in
x, y coordinates) of thickness Lf on the bottom to describe the
ESL and a clear plasma layer of thickness 
 on top. At the
interface between the regions, one requires that the average
velocity have a discontinuity to take account of the solid fraction
of the matrix. Similarly, there is a discontinuity in the average
fluid shear stress. Using Eq. 2, one first obtains closed-form
solutions for the velocity field across the ESL, providing analytic
expressions for the hydrodynamic loading F(y) in the beam
equation for the deflection of the core proteins as described
previously when the red cell was not present.

The results of the above model have been plotted in Fig. 4 by
using the same parameter values for the ESL as used in Fig. 3.
The novel feature of this solution is that the increase in the fluid
gap 
 as a function of the red cell velocity URBC has been
estimated by using the measured data in figure 3 of ref. 2. This
allows us to circumvent the much more difficult problem of
developing a model for finding the change in red cell shape as a
function of its velocity and capillary diameter when our primary
interest is the forces and bending moments on the vertical fibers
and their deformation. Fig. 4 shows our predictions for the
change in fiber shape as a function of increasing red cell velocity
from 20 to 210 �m�sec for red cells traveling in a 5-�m-diameter
hamster cremaster capillary where Lf is 0.4 �m. One observes
that the magnitude of the tip deflection at 210 �m�s is about
one-half that shown in Fig. 3 for a shear stress of 10 dyn�cm2 but
decreases rapidly as the red cell velocity and fluid gap 
 decrease.

ESL Deformation Due to Red Cell Arrest. One would like to know the
maximum pressure that the ESL can withstand without its fibers
buckling when the red cell comes to rest. One would also like to
compare this pressure with the fluid pressure generated in
draining the fluid trapped in the matrix between the red cell and
EC membranes. A simplified model will be developed for
estimating the latter pressure.

The governing equation for the bending of a curved beam

Fig. 3. Model predictions for lateral deflection of core proteins of different
lengths L for a fluid shear stress of 10 dyn�cm2 at ESL edge. EI � 700 pN�nm2.

Fig. 4. Model predictions for lateral deflection of core proteins beneath red
cells moving at different velocities URBC. Spacing 
 between ESL edge and red
cell taken from measurements in ref. 2.
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whose initial shape is given by a curve yo(x) subject to a
compressive force P acting at its end is

EI
d2
y � yo�

dx2 � P

 � y�, [10]

where 
 is the unknown tip deflection after the load P is applied.
A simple parametric description of the initial shape of the fibers
in Fig. 1 A is yo(x) � 
osin(�x), where � � ��2Lf, and 
o is the
initial tip deflection. The solution of Eq. 10 that satisfies the
boundary conditions y(0) � 0 and y
(0) � 
o� is

y
x� � 
 � 
 cos
kx� 	

o�k

k2 � �2 sin
kx� �

o�2

k2 � �2 sin
�x�,

[11]

where k � �P�EI. If we now require that y(L) � 
 in Eq. 11,
then the unknown tip deflection is given by


 �

o�

k2 � �2

k sin
kL� � � sin
�L�

cos
kL�
. [12]

The tip deflection given by Eq. 12 is plotted in Fig. 5A for the
case where L � 0.4 �m and EI � 700 pN�nm2. The critical load
for the buckling of a straight fiber using small deflection theory
is Pcr � �2EI. For the foregoing values of L and EI,
Pcr � 0.0108 pN. Elastica theory (38) for large deformations
must be used to determine the displacement for this critical load,
because small incremental loads above Pcr will cause large
deflections. This result using elastica theory is given by the
uppermost curve in Fig. 5A. One observes that fibers that are
initially not straight will support compressive loads far smaller
than Pcr. Returning to Fig. 1B, one observes that on average 27
core proteins terminate in each cluster foci, taking into account
shared proteins at hexagonal cluster boundaries. Surrounding
each central core protein there are six core proteins in the first
hexagon, 12 in the second hexagon, and 18 in the outer border
hexagon, 12 of which are shared by two clusters and six of which
are shared by three clusters. The maximum compressive force
that could be supported by each bush-like structure is �0.3 pN
if each fiber could support the critical load. However, most of the

fibers are either initially bent or loaded off axis, with the result
that they carry a load far less than the critical load. For fibers that
are initially bent, there is no critical load.

Using the results in Fig. 5A, one can construct a simple model
to estimate the increase in normal force that would be exerted
by each 27-fiber cluster if the ESL was subject to a uniform
compression by a planar surface. One assumes that each fiber
extends to the edge of the ESL during the compression, and the
vertical displacement of each fiber is the same. The tip deflection

 in Eq. 12 is adjusted to satisfy this constraint, and the deformed
shape of the fiber is given by Eq. 11. The downward (vertical)
displacement of the fiber is determined by requiring that the
initial fiber length L be conserved. To simplify the model for a
fiber cluster, we assume that the fibers are arranged in three
concentric circles rather than hexagons about the central core
protein. The initial tip deflections are 20, 40, and 60 nm in each
circle. The increase in normal force as a function of the
downward displacement of a fiber in each of the three concentric
circles is plotted in Fig. 5B. These results are shown for vertical
deflections up to 100 nm, because Eqs. 11 and 12 are limited by
the assumptions of small deflection theory. However, the curve
for the central core protein is given by elastica theory for large
deflections, and this result provides a useful upper bound. The
right-hand ordinate in Fig. 5B provides the summation of the
normal forces exerted by all 27 fibers in cluster foci. For a
downward displacement of 100 nm, the compressive force on a
cluster would be 0.15 pN or �1/2 of the maximum compressive
force of 0.3 pN cited earlier. Because the en face area of each
cluster is 9.4 � 103 nm2, the resisting pressure of the fibers for
this deflection is 160 dyn�cm2.

We would like to compare this elastic restoring force with the
excess pore pressure created by the draining of the fluid from the
ESL when the motion of a red cell is arrested. The latter is
estimated by considering the stationary red cell as a cylindrical
pellet of constant radius that uniformly expands under an
applied pressure PC to crush the glycocalyx. To simplify the
model, we have neglected the deformation of the red cell
membrane due to the fluid drainage, membrane elastic proper-
ties, and the initial stress-free configuration of the cell in its
biconvex shape. These membrane-related considerations lead to
complex shapes for the red cell membrane described in ref. 39 for
a compressed red cell or in ref. 8 for a moving axisymmetric cell.
The motion of the fluid in the glycocalyx satisfies Darcy’s law and
continuity. The thin fiber interaction layers near the endothelial
and red cell membranes are neglected. The flow in the layer is
treated as a time-dependent flow in a compressible porous
medium whose velocity varies as a function of time and distance
from the leading or trailing edge of the pellet. We wish to capture
the large-amplitude deformation of the ESL and the changes in
KP that result from this deformation. The change in KP as a
function of Lf is modeled by using the solutions in ref. 34 for the
slow flow through a face centered periodic array of spheres
whose solid fraction c changes as a function of Lf. For the large
deformations considered in this application, where the fibers are
crushed, the fluid resistance of the compacted matrix is better
represented by the spherical particles on the core proteins as
opposed to cylindrical fibers.

The results of the model for the fluid drainage are shown in
Fig. 6. The time scale for the drainage is determined by the
observation that the gap between the red and EC membranes
nearly vanishes in 0.5 s. We assume that the expansion pressure
PC exerted by the spectrin CC of the red cell and its internal
hydrostatic pressure are constant over the draining process, and
the elastic restoring force of the glycocalyx is neglected. Two
solutions for the time-dependent collapse of the glycocalyx are
shown, one for a constant Darcy permeability KP and a second
for a time-varying decrease in KP, where Lf is a function of c as
described above. The details for both solutions can be found in

Fig. 5. (A) Predictions of Eq. 12 for lateral tip deflection due to buckling of
core proteins subject to a normal load P applied at their ends. 
o is the initial
unloaded tip displacement from vertical shown in Fig. 1B. Curve for 
o � 0 is
‘‘elastica’’ theory prediction for large deflections (38). (B) Results in A con-
verted to normal displacement of ESL. Right ordinate is the compressive force
for 27-fiber model for core protein cluster in Fig. 1B.
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Appendix B, which is published as supporting information on the
PNAS web site. For constant KP, the characteristic time is given
by �W2�12PCKP, where W is the pellet length. For the initial
array c � 0.13, whereas for maximum compaction c � 0.74. For
constant KP, an applied pressure of 2,420 dyn�cm2 is required to
fully drain the ESL in 0.5 s. If this same pressure is applied in the
variable KP model, the total draining time is extended to 25 s.
This applied pressure is 20 times the elastic buckling pressure of
the core proteins in Fig. 5B, which justifies the neglect of the
elastic restoring force in the fluid draining model.

Discussion
Collectively, the models presented herein have provided a view
of the viscoelastic behavior of the ESL and its response to fluid
shear and cellular motion or arrest. We will discuss the impli-
cations of these models for transport, f luid shear, red and white
cell motion, and mechanotransduction, in that order.

Transport. Heretofore, the molecular sieving structure of the
matrix had been widely assumed to be associated with extended
GAG side chains periodically arranged along the core proteins
of proteoglycans (5, 25, 28). These extended fibers were thought
to be sialic acid side chains with typically 0.6-nm radius with a
solid fraction c between 1% and 2% (15, 29). Because the
structure of the proteoglycans was largely deduced from their 2D
appearance when splayed out on carbon filters (27), it was never
clear how the fibers formed a 3D lattice. It was assumed that in
their extended state, the protein monomers had a bottle-brush
appearance. The new structural model proposed in ref. 15 and
quantitatively examined herein is a much denser and stiffer
structure. The c of the 12-nm diameter scattering centers, which
are assumed to be either aggregated GAG or attached proteins,
is 0.13 for the hexagonal lattice in Fig. 1B, which does not even
include the core protein backbone.

The structural model depicted in Fig. 1 is an appealing
alternative in that it provides a reasonable 3D organization of the
matrix consistent with the latest ultrastructural studies (15, 20)
and yields improved quantitative predictions for both � and Lp.
The hexagonal fiber arrangement in Fig. 1B yields a somewhat
better fit to the experimental data for � than the square fiber
array in ref. 15. The model for Lp in Fig. 2 is able to explain the
2-fold increase in Lp in frog mesentery capillary when the
glycocalyx is enzymatically removed by pronase digestion (31).
This prediction, although satisfying, is not conclusive in that
proteases are nonspecific enzymes whose effect on TJ structure
has not been quantified. However, the electron microscopic
studies performed in ref. 31 show a nearly complete fragmen-
tation and removal of the ESL and no obvious changes in the TJs.

Bending Rigidity. An important prediction of this study is the
bending stiffness of the core proteins in the bush-like clusters
that decorate the endothelial surface. The value of EI, 700
pN�nm2, predicted by our model for the restoration of the ESL
after the passage of a WBC, is at least 20 times less than the
measured EI for actin filaments (36, 37) but sufficiently stiff to
resist large deformations of the ESL due to fluid shear stresses
in the physiological range. The tip deflections predicted for a
shear stress of 20 dyn�cm2 in small arterioles would be twice
those shown in Fig. 3 or �35 nm for a fiber of 400-nm length. The
much larger value of EI for the actin filaments in the underlying
CC indicates that the CC provides a firm support for the short
linker molecules that attach the transmembrane proteins at the
base of each bush-like cluster to the submembrane scaffold. We
propose that it is these root-like connections that firmly anchor
the fiber clusters.

Red Cells. Because red cells are continuously flowing through our
capillary beds with an intermittency that causes their velocity to
vary widely, one would intuitively expect that their motion does
not cause frequent disruptive interactions with the ESL. The
predicted structural properties of the core proteins appear to be
finely attuned to this motion. Fig. 4 shows that the passage of red
cells over a wide range of velocities from 20 to �200 �m�s causes
only minor deformations of the core proteins. At velocities �20
�m�s, the observations in ref. 2 and the theoretical models (7,
8) predict that the red cell will enter the ESL. This will occur
when the flow in a capillary is temporarily arrested by the
passage of a red cell through a tightly fitting arteriolar sphincter
at the entrance to a microvessel. Much larger repulsive forces are
required here to prevent adhesive interactions between proteins
in the red and EC membranes. The stiffness of the core proteins,
although adequate to resist the penetration of red cells during
their normal motion, is insufficient to prevent their buckling
when red cell motion is arrested. Our model predicts that the
buckling pressure for a core protein cluster is �100 pN�cm2

when Lf � 400 nm and increases as 1�Lf
2. The added resistance

to the collapse of the glycocalyx arises from the time-dependent
draining of the fluid in the compressed ESL. Our simplified
model for the draining of this layer predicts that the pressure
generated by the draining of the fluid trapped in the ESL is at
least 20 times greater than the elastic restoring forces exerted by
the core proteins in Fig. 5. It is this pressure and not the elastic
response of the matrix that prevents the red cell from rapidly
entering the matrix when its motion is arrested.

The characteristic f luid draining time for the ESL, �W 2�
(12PCKP), is a sensitive function of KP. The results in Fig. 6 show
that the draining time for large compressions is greatly extended
by the large decrease in KP that accompanies matrix compaction.
This can be thought of as an additional safety factor preventing
the adhesive interaction between proteins in the opposing mem-
branes when motion is nearly arrested, allowing red cells to pass
through constrained arterioles into capillaries without the flow
coming to a stop. With few exceptions, red cells enter capillaries
edge on and fold up on themselves much like a crepe. Their
bending stiffness in this configuration is much greater than the
axisymmetric configuration treated in ref. 8. In the latter study,
the authors showed that an oncotic pressure of only 40 dyn�cm2

would prevent the ESL from collapsing, less than the elastic
buckling pressures predicted in Fig. 5. The large increase in
pressure that can be generated by the folded cell in tightly fitting
capillaries is due to the small radius of curvature of its inner
plasmalemma in the folded edge on configuration.

An observation that has generated much controversy is the
large difference in Lf observed in frog mesentery, 150 nm (15),
and hamster cremaster capillaries, 400 nm (2). The present
analysis provides a plausible functional explanation for the
difference in Lf. If the core proteins are shorter, their ability to

Fig. 6. Model prediction for time-dependent drainage of fluid from ESL
after red cell arrest in a 5-�m-diameter capillary. A cell pressure of 2,420
dyn�cm2 is required to fully collapse the layer within 0.5 s at constant KP. This
time is extended to 25 s if the variation of KP with compression is considered.
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withstand buckling increases as L�2. Frog red cells, unlike
mammalian red cells, have nuclei and thus should be much
stiffer. On the basis of our analysis in Fig. 5, the effective
buckling pressure should increase by a factor of 7.1 when Lf
decreases from 400 to 150 nm. This increase in buckling pressure
could compensate for the larger decrease in fluid draining time
in the thinner ESL.

White Cells. In ref. 10, a model was developed to predict the
contact forces that are generated when a WBC with protruding
microvilli rolls on a planar surface in a gravitational field. It was
shown that, due to lubrication layer effects, this lumpy roll can
produce contact forces that are one to two orders of magnitude
greater than the net sedimentation force of the WBC, which is
�0.3 pN. For example, at wall shear stress of 10 dyn�cm2, the
normal contact force is 7 pN for 0.3-�m microvilli of equal
length, and that for a small population of longer 0.7-�m mi-
crovilli, this contact force could increase to 27 pN. Because the
diameter of the microvilli tips, �0.1 �m, is approximately the
same as each bush-like structure shown in Fig. 1B, and the elastic
buckling force of the 27 core proteins in each structure is only
of the order 0.1 pN, it is clear that the elastic properties of the
ESL are insufficient to withstand the penetration of the mi-
crovilli tips. However, it is shown in ref. 40 that the major
resistance to tip penetration arises from the viscous resistance of
the ESL. The microvillus tip is modeled in ref. 40 as a sphere of
0.1-�m diameter. This model is applied in ref. 10 to estimate the
penetration depth of the microvilli if the matrix fibers were
extended GAG side chains, where rf � 0.6 nm and � � 8 nm, as
discussed earlier. For a wall shear stress of 10 dyn�cm2, the
predicted penetration depth was only 1 nm for equal-length
microvilli and �20 nm for long microvilli of heterogeneous
length. The short penetration depth is due to the very short
microvillus tip contact times, which are �0.1 ms at the above
shear stress. Because the predicted KP for the structural model
in Fig. 1 is �1�3 that for the extended GAG model, the
predictions in ref. 10 for microvilli penetration are approxi-
mately a factor of three too large. A WBC can tip-toe across the
ESL much like a Jesus Christ lizard can run across water (41).
Tethered rolling in postcapillary venules is initiated by closely

fitting WBC whose microvilli tips are already in contact with the
capillary endothelium when they first enter the venules (42).

Mechanotransduction. Single-particle tracking (22, 43) and optical
traps (23, 24) have been used to probe the dimensions, 0.01–0.25
�m2, and the forces, 0.1–0.5 pN, required to deform the bound-
aries of the microdomains of the CC. The dimensions of the
hexagonal actin network proposed in ref. 15 and sketched in Fig.
1B are at the lower end of this microdomain size. Studies using
the gold-tagged transferrin receptor (TR) (24) have indicated
that a force of 0.5 pN is required to drag the TR across
microdomain boundaries, and that a smaller force of 0.1 pN will
cause the boundary to undergo a large deformation with a
measurable recoil when the particle is lost from the trap. The
elastic constant for this recoil is 3 � 10�3 pN�nm (24). In this
context, we note that the drag on a single core protein, 7.0 � 10�4

pN at a shear stress of 10 dyn�cm2, is far too small to produce
a significant deformation of the actin boundaries, but the entire
bush-like core protein structure in Fig. 1 experiences a drag force
of 1.9 � 10�2 pN, a force that would result in a 6-nm lateral
displacement of an actin boundary. However, more revealing is
the bending moment on the entire bush, 6.2 pN�nm. The long
lever arm provided by the core proteins leads to a mechanical
advantage that substantially amplifies the drag forces on the core
protein tips when they are transmitted to the CC. A simple
moment calculation applied to the actin network in Fig. 1B
reveals that a vertical shear force of 0.05 pN would be experi-
enced by the actin fibers, for a shear stress of 10 dyn�cm2. This
would correspond to an elastic recoil of 17 nm for a spring
constant of 3 � 10�3 pN�nm. It is clear from this calculation that
the mechanical advantage obtained by applying a small force at
the tips of the core proteins provides sufficient leverage to
deform the underlying CC. Our model predicts that, collectively
but not individually, the core proteins in the bush-like structures
in Fig. 1 A are ideally suited to act as mechanotranducers that
convert f luid shearing stresses at the edge of the ESL to
deformations of the CC. We suggest that this is the initial
activating step in intracellular signaling.
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