
Phil. Trans. R. Soc. B (2006) 361, 1399–1415

doi:10.1098/rstb.2006.1872
Arrhenius curves of hydrogen transfers:
tunnel effects, isotope effects and effects

of pre-equilibria

Published online 13 July 2006
Hans-Heinrich Limbach1,*, Juan Miguel Lopez1 and Amnon Kohen2
One con
catalysis

*Autho
1Institut für Chemie und Biochemie der Freien Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
2Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA

In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are
available in a large temperature range are reviewed. The curves are discussed in terms of the one-
dimensional Bell–Limbach tunnelling model. The main parameters of this model are the barrier
heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential
factor and minimum energy for tunnelling to occur. The model allows one to compare different
reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first
type of reactions is concerned with reactions where the geometries of the reacting molecules are well
established and the kinetic data of the isotopic reactions are available in a large temperature range.
Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical
structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds
exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors
of the order of kT/hy1013 sK1 corresponding to vanishing activation entropies in terms of transition
state theory. This result is important for the second type of reactions discussed in this paper, referring
mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria
with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate
at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples
from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in
diaryltriazene, 2-(2 0-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case
of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-
dependent KIEs are interpreted in terms of a transition between two regimes with different
temperature-independent KIEs.
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1. INTRODUCTION
The mechanism of H-transfer from carbon to other

heavy atoms in enzymes has become an important

phenomenon of current interest (Basran et al. 2006;

Kohen 2006). Large kinetic hydrogen/deuterium (H/D)

isotope effects of the order of 10–100 at room

temperature and concave curvatures of Arrhenius

curves indicate tunnelling of hydrogen nuclei through

the reaction barrier. Traditionally, kinetic isotope

effects (KIEs) have been described theoretically in

terms of a combination of isotope fractionation and

transition state theory (TST; Bigeleisen 1949, 1955).

In this theory, KIEs arise mainly from zero-point

energy (ZPE) changes between the initial and the

transition state (TS). The contribution of tunnelling to

H-transfer reactions has been described by Bell (1973,

1980). His one-dimensional ‘Bell tunnelling model’

has been very successfully applied to explain kinetic

H/D isotope effects using adaptable parameters. As

kinetic data obtained for liquid solutions mostly refer to
tribution of 16 to a Discussion Meeting Issue ‘Quantum
in enzymes—beyond the transition state theory paradigm’.
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only a small temperature range, often only the so-called
‘Bell tunnelling correction’ to the classical KIEs has
been used, which is easily mistaken for the ‘full’ Bell
tunnelling model. A two-dimensional empirical tunnel-
ling model has been developed in the 1970s by
Dogonadze, Kuznetsov & Ulstrup (Bruniche-Olsen
et al. 1979; German et al. 1980; Kuznetsov & Ulstrup
1999, 2006) and modified recently (Knapp et al. 2002)
for use in enzyme reactions. Siebrand et al. (1984a,b)
have proposed a golden rule treatment of H-transfer
between the eigenstates of the reactants and products,
where low-frequency vibrations play an important role
that modifies the heavy atom distances. Limbach et al.
(2004b) have modified the Bell tunnelling model for
use in a variety of cases, including multiple H-transfer
reactions, and have pointed out how this model
performs reduction from two dimensions to one
dimension. A number of quantum-mechanical theories
have been proposed, which allow one to calculate
isotopic Arrhenius curves from first principles, where
tunnelling is included. These theories generally start
with an ab initio calculation of the reaction surface and
use either quantum or statistical rate theories in order
to calculate rate constants and KIEs. Among these are
the ‘variational TST’ (Truhlar 2006), the ‘instanton’
q 2006 The Royal Society
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Figure 1. Correlation of the hydrogen-bond length q2Zr1Cr2
with the proton transfer coordinate q1Z(1/2)(r1Kr2). The
solid line represents the correlation for equilibrium distances
calculated with b1Zb2Z0.404 Å and ro

1Z ro
2Z0:992 A. The

dotted line represents the empirical correction for zero-point
vibrations. Open symbols represent the geometries of various
NHN-hydrogen bonded systems obtained from neutron
structures (open triangles) and solid state NMR data (open
squares). Filled squares represent NDN hydrogen bonded
systems studied by solid state NMR. Adapted from Limbach
et al. (2004b).

Table 1. Shortest possible heavy atom distances of symmetric
H-bonds predicted by the valence bond order model.
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approach (Smedarchina et al. 2005), a Redfield-
relaxation-type theory (Brackhagen et al. 1998), the
‘protein-promoting vibration’ (Antoniou & Schwartz
2001), and quantum mechanics/molecular mechanics
(QM/MM) simulations (Olsson et al. 2003, 2004;
Hatcher et al. 2004). Unfortunately, these methods are
generally not available for the experimentalist at the stage
when he needs to simulate his Arrhenius curves. For this
stage, empirical tunnelling models are important. In
addition, these approaches do not address or reproduce
convex Arrhenius curves, while the methods discussed in
thispaper can reproduce and rationalize both the concave
and convex Arrhenius plots.

Thus, as there is no unique theory of H-transfer to
date, the experimental study of condensed matter
model H-transfer systems is important. The scope of
this contribution is, therefore, to provide an overview of
H-transfer model systems, where the rate constants and
kinetic H/D isotope effects are known in a large
temperature range. The Arrhenius curves of these
model reactions were recalculated using the empirical
Bell–Limbach tunnelling model, which is described
and justified in §2. Then, ‘simple’ H-transfers,
consisting only of an intrinsic H-transfer step, are
discussed. Finally, ‘complex’ processes are reviewed,
where pre-equilibria affect the Arrhenius curves. An
overview of multiple H-transfer reactions, which have
been studied in our laboratory (Klein et al. 2004), will
be published elsewhere.
ro (Å) b (Å) q2min (Å)

OHO 0.95 0.37 2.41
NHN 0.99 0.404 2.53
CHC 1.1 w0.4 w2.75
2. H-BOND GEOMETRIES AND TUNNEL MODEL
In the past, it has been shown that the neutron
diffraction data of hydrogen bonds A–H/B indicate
a correlation between the two hydrogen bond distances
r1hrA–H and r2hrH/B (Steiner 1995, 1998). One can
associate the so-called valence bond orders or bond
valences to these distances, which correspond to the
‘exponential distances’:

p1 Z expfKðr1Kro
1Þ=b1g;

p2 Z expfKðr2Kro
2Þ=b2g; with p1 Cp2 Z 1; ð2:1Þ

where ro
1 and ro

2 represent the equilibrium distances in
the free hypothetical diatomic units AH and BH, and b1

and b2 the bond decay parameters. A typical geometric
hydrogen-bond correlation is depicted in figure 1 for
NHN-hydrogen bonded systems (Limbach et al.
2004b). Here, instead of a plot of r1 versus r2, a plot
of q2Zr1Cr2 versus q1Z(1/2)(r1Kr2) is shown. For a
linear H-bond, q1 represents the distance of H from the
H-bond centre and q2 represents the distance between
the two heavy atoms of the hydrogen bond. However,
the hydrogen-bond angle does not enter the correl-
ation, which is, therefore, valid for both linear as well as
nonlinear hydrogen bonds. When H is transferred from
one heavy atom to the other, q1 increases from negative
to positive values and q2 goes through a minimum,
which is located at q1Z0 for hydrogen-bonded systems
of the AHA-type and near 0 for the AHB-type. The
parameters of equation (2.1) are determined by
comparison with experimental neutron structures in
the Cambridge Structural Data Bank. This correlation
means that, in approximation, both proton transfer and
Phil. Trans. R. Soc. B (2006)
hydrogen-bonding coordinates can be combined into a
single coordinate. The shortest possible heavy atom
distance is given by (Steiner 1998)

q2min Z 2ðroKb lnð1=2ÞÞ; ð2:2Þ

which leads to the values of symmetric hydrogen bonds
listed in table 1.

The solid correlation line in figure 1 is calculated
using the parameters of table 1, whereas the dotted line
includes an empirical correction for zero-point
vibrations of the hydrogen atoms in the bridge.
Owing to the higher ZPE of H compared to D, the
widths of the zero-point vibrational wave functions are
also larger. This increases the heavy atom distance
q2min, when compared to the equilibrium values of
table 1 (Limbach et al. 2005a).

How do the H-bond geometries change during a
typical H-transfer process? It is clear that at the
minimum value of the heavy atom coordinate q2, only
a single geometry is allowed, which is consistent with a
single-well potential for the H-motion. In contrast, at
other geometries, the correlation curve indicates the
possibility of double-well situations, where the barrier
height Ed increases with increasing value of the heavy
atom coordinate q2.

This situation is schematically illustrated in figure 2a
in the case of degenerate H-transfers. One-dimensional
cuts V(q1) at different values of q2 through a
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Figure 3. (a) One-dimensional cuts V(q1) through a two-
dimensional potential energy surface of a non-degenerate
H-transfer at different values of q2. (b) Reduction of the two-
dimensional double-well potential problem to a one-dimen-
sional Bell model.
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Figure 2. (a) One-dimensional cuts V(q1) through a two-
dimensional potential energy surface of a degenerate
H-transfer at different values of q2. (b) Reduction of the two-
dimensional double-well potential problem to a one-dimen-
sional Bell model. Adapted from Gerritzen & Limbach (1984).
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two-dimensional potential surface of a degenerate
H-transfer are displayed. The barrier height Ed of the
double well, describing the H-transfer, decreases when
q2 is decreased, and eventually a single-well configu-
ration is reached. There are only a small number of AH
vibrational states below the barrier available; here, only
the vibrational ground states are depicted.

Such a two-dimensional model can be reduced to a
one-dimensional model by setting Ed equal to constant
as indicated in figure 2b, and by assuming a continuous
distribution of configurations with different values of q2.
Such a situation can be achieved by the excitation of low-
frequency H-bond vibrations or phonons. The situation
of figure 2b can be practically replaced by an inverted
parabola as a barrier, with a continuous distribution of
vibrational levels on both sides of the barrier.

A similar argument holds for non-degenerate
H-transfers as illustrated schematically in figure 3.
Here, we note that the asymmetry of the potential
Phil. Trans. R. Soc. B (2006)
curve, i.e. the difference in the energy between the two
wells, will disappear in the region of the strongest
H-bond compression.

A detailed discussion of the origin of kinetic H/D
isotope effects is beyond the scope of this paper.
However, we note two sources that have been discussed
in §1, i.e. (i) ZPE changes of H in the TS as compared to
the initial state; and (ii) tunnel effects leading to KIEs
because of different tunnelling masses for H and D.

The expected changes in the ZPEs of the H-transfer
for a degenerate reaction are illustrated schematically in
figure 4. The antisymmetric stretch in the initial state
exhibits different ZPEs for H and D as the force
constants are large. This vibration becomes imaginary
in the TS, which is assumed to be located in the
minimum of q2 and the associated ZPE is lost. There is
ZPE in the bending vibration, but little ZPE in the
symmetric stretch in the TS. This leads to a substantial
difference in the effective barriers of the H- and
D-transfers. Tunnelling pathways can occur at larger
values of q2, which is expected to remain constant
during the tunnelling process. Then, the tunnelling
mass is 1 for H and 2 for D.

In contrast, if the transfer is non-degenerate, then a
situation may occur as indicated in figure 5. At the TS,
there is remaining ZPE in the antisymmetric stretch.
This will lead to a decrease in the difference of the
effective barriers for H and D. Tunnelling pathways may
no longer involve only changes of q1, but a substantial
heavy atom motion. This means that the effective
tunnelling masses will be increased by an additional
mass Dm as illustrated schematically in figure 5.

The simplest tunnel model that allows one to
calculate Arrhenius curves of H-transfer reactions is
the Bell tunnelling model (Bell 1973), which has been
modified in our laboratory (Gerritzen & Limbach
1984). The model has been reviewed recently by
Limbach & Klein et al. (2004a).

The probability of a particle passing through or
crossing a barrier is given by Bell (1973, 1980)

GðW ÞZ
1

1CDðW ÞK1
; ð2:3Þ

where W represents the energy of the particle and
D(W ) the transmission coefficient given according to the
Wentzel–Kramers–Brillouin approximation by

DðW ÞZ exp K
2

Z

ða0
Ka0

pi dx

 !

Z exp K
2

Z

ða0
Ka0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV ðxÞKW Þ

p
dx

 !
; ð2:4Þ

where pi represents the momentum; m, the mass of the
particle moving in the x-direction; V(x), the potential
energy experienced by the particle; a 0, the position of
the particle when it enters or leaves the barrier region;
V(0)ZEd, the energy of the barrier, i.e. the ‘barrier
height’; and 2a, the width of the barrier at the lowest
energy, where tunnelling can occur. Classically,
G(W)Z0 for W!Ed and G(W )Z1 for WOEd, but
quantum-mechanically G(W )O0 for W%Ed and
G(W )!1 for WREd. We assume that the barrier
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region can be approximated by an inverted barrier,
i.e. the potential is given by

V ðxÞZEd 1K
x2

a2

� �
; W ZEd 1K

a0
2

a2

 !
: ð2:5Þ

It has been shown by Bell (1973, p. 275) that

DðW ÞZ exp K
2pðEdKW Þ

hnt

� �
; nt Z

1

pa

ffiffiffiffiffiffiffi
Ed

2m

r
; ð2:6Þ

where nt represents the ‘tunnel frequency’. The fraction
of particles in the energy interval dW is given by the
Boltzmann law

dN

N
Z

expðKW =kT ÞdWÐN
0 expðKW =kT ÞdW

Z
1

kT
expðKW =kT ÞdW :

ð2:7Þ

The classical integrated reaction probability is then
given by

DN

N

� �
class

Z
1

kT

ðN
Ed

expKW =kTð ÞdW Z exp KEd=kT
� �

;

ð2:8Þ
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the quantum-mechanical integrated reaction prob-
ability by

DN

N

� �
QM

Z
1

kT

ðN
0
GðW ÞexpðKW =kT ÞdW ; ð2:9Þ

and the ratio of both quantities by

Qt Z

DN

N

� �
QM

DN

N

� �
class

Z
1
kT

ÐN
0 GðW ÞexpðKW =kT ÞdW

expðKEd=kT Þ

Z

ðN
0

GðW Þ

kT
expððEdKW Þ=kT ÞdW : ð2:10Þ

Using an Arrhenius-type law for the classical tempera-
ture dependence, it follows that

kZ kclassQt

ZA expðKEd=kT Þ

ðN
0

GðW Þ

kT
expððEdKW Þ=kT ÞdW :

ð2:11Þ
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Replacing the Boltzmann constant by the gas constant,
and introducing a superscript as label for the isotope
LZH, D, it follows that

kLZAL expðKEL
d =RT Þ

ðN
0

GLðW Þ

RT
expððEL

d KW Þ=RT ÞdW :

ð2:12Þ

At very high temperatures, the integral becomes unity
and one obtains the classical expression

kLZAL expðKEL
d =RT Þ: ð2:13Þ

From equation (2.12), one obtains the following
expression for the ‘primary’ kinetic H/D isotope effect
as a function of temperature:

PZ
kH

kD
Z

AHQHexpðKEH
d =RT Þ

ADQDexpðKED
d =RT Þ

; ð2:14Þ

where QL is the ‘tunnel correction’ (Bell 1973). The
energy difference D3ZED

d KEH
d describing the losses of

ZPE between the reactant and the TS can be calculated
using Bigeleisen theory (Bigeleisen 1949, 1955).

In the low temperature regime for WZ0, it follows
from equation (2.6) that

Gð0ÞyDð0ÞZ exp K
2p2a

ffiffiffiffiffiffiffiffiffiffiffiffi
2mEd

p

h

� �
: ð2:15Þ

Therefore,

kL
o ZALDLð0ÞZAL exp K

2p2aL

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mLEL

d

q� �
:

ð2:16Þ

We assume that the width of the barrier for the
D-transfer can be calculated from equation (2.5),
resulting in

2aD Z 2aH

ffiffiffiffiffiffiffi
ED

d

EH
d

s
: ð2:17Þ

With mHZ1 and mDZ2; the low-temperature rate
constant kH

o is then determined mainly by aH for a given
value of EH

d . The low-temperature and temperature-
independent KIEs kH

o =k
D
o are, therefore, determined by

ED
d , which is experimentally obtained at high tempera-

tures. In other words, kH
o =k

D
o and the high-temperature

KIEs cannot be varied independently of each other,
which is not in agreement with the experimental data.
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This effect can be associated with heavy atom
tunnelling during the H-transfer. The tunnelling mass
increases and the low-temperature H/D isotope effect
decreases.

In order to take the heavy atom tunnelling into
account, we use the expansion (Gerritzen & Limbach
1984)

ða
ffiffiffiffi
m

p
ÞL Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

a2
kmk

r !L

Z ðaLÞ2mL C
X
k

a2
kmk

 !1=2

Z aL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL CDm

p
; ð2:18Þ

with

DmZ
X
k

ak

aL

� �2
mk;

where L ZH;D and kZ heavy atoms: ð2:19Þ

The heavy atom contribution generally reduces the value
of kH

o =k
D
o . For example, if both oxygen atoms are

displaced each by 2aOZ0.05 Å during H-tunnelling in
an OHO-hydrogen bond over 2aHZ0.5 Å, then it
follows that DmZ0.32, and the total tunnelling mass is
1.32 instead of 1.

Equation (2.12) is visualized in figure 6. A Boltzmann
distribution of particles, where the populations are
symbolized by arrows of different length, hits the barrier
from the left side. The arrows on the right side represent
the particles that tunnelled through the barrier. As the
tunnelling mass of H is smaller than D, at a given
temperature, the energy for the maximum number of H
tunnelling through the barrier is smaller than for D.

As has been proposed by Gerritzen & Limbach
(1984), equation (2.12) needs to be modified in a
minor way for application in multiple proton transfer
reactions. The most important change is to replace the
lower integration limit of 0 in equation (2.11) by a
minimum energy Em for tunnelling to occur, as
illustrated in figure 6, i.e.

kLZAL expðKEL
d =RT Þ

ðN
Em

GLðW Þ

RT
expððEL

d KW Þ=RT ÞdW :

ð2:20Þ

This modification is necessary, for example, when the
reaction pathway involves an intermediate. Tunnelling
can then take place only at an energy which
corresponds to the energy of the intermediate. Then,



log k (s–1)

103

T
(K–1)

14

12

10

8

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 6 7 8 9 10 11

Ed  +Em

log A

log ko
H

log ko
D

1. pre-exponential factor  log A=12.6
2. barrier height Ed

H

3. barrier height Ed
D or DeDH = Ed

D–Ed
H

4. minimum energy Em for tunnelling
5. barrier width 2aH

6. tunnelling mass mH=1+∆m, mD = 2+∆m

Em

Ed
H+Em

D

~

Figure 7. Arrhenius curves of H- and D-transfer calculated according to the Bell–Limbach tunnelling model, illustrating the
parameters of the model.

1404 H.-H. Limbach and others Arrhenius curves of hydrogen transfers
one can identify Em with the energy Ei of this

intermediate. However, Em may also represent or

include an energy Er necessary for a heavy atom

rearrangement preceding the tunnelling process. In

this interpretation, it also represents the ‘work term’ in

the Marcus theory of electron transfer (Marcus 1966).

A set of Arrhenius curves, calculated using equation

(2.20), then depend on the following parameters:

(i) A single pre-exponential factorA in sK1 is used for

all isotopic reactions, i.e. a possible mass depen-

dence is neglected within the margin of error. If

solvent reorganization and pre-equilibria are

absent, A is expected to be about 1013 sK1.

According to TST, pre-exponential factors are

given by kT/hZ1012.6 sK1 for TZ298 K.

(ii) EmZDHCErCEi represents the minimum

energy for tunnelling to occur as described earlier

and is assumed to be isotope-independent. We

note that a similar effect on the Arrhenius curves

may be obtained by using more complex barrier

shapes (Basran et al. 2001). Several terms may

contribute to Em. Er represents a reorganization

energy arising from heavy atom motions preced-

ing the H-transfer. Ei represents an energy gap or

energy asymmetry between the initial state and

the final state. DH represents the reaction

enthalpy of any pre-equilibrium of H-transfer

discussed earlier. DH is most often assumed to be

isotope-independent, and leads, therefore, to

temperature-independent KIEs as has been

discussed in both enzymatic and non-enzymatic

systems (Kwart 1982; Gerritzen et al. 1984;

Braun et al. 1994; Limbach & Klein et al. 2004a;

Kohen 2006). Such non-zero enthalpy has been

used in many cases as the main evidence for

systems that can only be rationalized by ‘Marcus-

like’ models (Kohen & Klinman 1999; Basran

et al. 2006).
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(iii) EH
d is the barrier height for the H-transfer step of

interest. Therefore, the sum EmCEH
d represents

the total barrier height for the H-transfer.

(iv) 2aH is the barrier width of the inverted parabola

used to describe the barrier of the H-transfer at

energy Em. This parameter indicates the tunnel

distance of H. 2aD is not much different and is

given by equation (2.17).

(v) D3ZED
d KEH

d represents the increase in the

barrier height when H is replaced by D.

(vi) The tunnelling masses are given by mL
effZ

mLCDm, LZH, D with mHZ1 and mDZ2.

Dm corresponds to the contribution of heavy atom

displacements during the tunnelling process as

defined in equation (2.19).

In order to illustrate the formalism, we have plotted

typical Arrhenius curves of H- and D-transfer reactions

using arbitrary parameters in figure 7. From the slopes

of the two curves, at high temperature quantities EmC
EH

d and EmCED
d can be obtained. Different slopes lead

to temperature-dependent kinetic H/D isotope effects

in this temperature range. At low temperature, parallel

Arrhenius curves are expected, exhibiting a slope given

by Em. By extrapolation of the low-temperature

branches to high temperatures, the values of kH
o and

kD
o are obtained. According to equation (2.16), they

provide information about the barrier width, 2aH, and

the heavy atom tunnelling extra mass, Dm.

All the parameters of the Arrhenius curves discussed

in the following sections are listed in table 2. In the

cases of complex H-transfers, which involve pre-

equilibria, the reaction enthalpies (DH ) and reaction

entropies (DS ) of the pre-equilibria are also included.

A unique parameter set can, however, be obtained only

if the kinetic data of the H- and D-reactions are

available in both the low- as well as the high-

temperature regime. This is not always the case.
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Scheme 1. The tautomerism of unsubstituted porphyrin.
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3. ELEMENTARY SINGLE H-TRANSFERS
In this section, we will discuss the Arrhenius curves of
three single H-transfers where the rate constants
observed refer to a well-defined elementary reaction
step.

As a first example, we discuss the tautomerism of
unsubstituted porphyrin (scheme 1). This molecule
forms two degenerate trans-tautomers A and D, which
interconvert by two successive non-degenerate single
proton transfer steps via the degenerate cis-intermedi-
ates B and C. It has been shown (Limbach et al. 1982)
using formal kinetics that the observed rate constants of
the overall process are given by

kHH Z kH; kHD Z
2kD

1CkD=kH

� �
; kDD Z kD; ð3:1Þ

where the rate constant kLL refers to the degenerate
double hydron transfer from A to D, and the rate
constant kL to the uphill single hydron transfer rate
constants from A to B or C. Experimentally, the
rate constants kHH, kHD and kDD were measured by
nuclear magnetic resonance (NMR) in the liquid and
the solid state (Braun et al. 1994). The values of kHH

and kDD were reported by Butenhoff & Moore (1988).
Later, the values of kHT and kTT could also be
measured by dynamic NMR spectroscopy (Braun
et al. 1996a). In these papers, the validity of equation
(3.1) was checked, which experimentally proved the
stepwise transfer. Thus, the rate constant kL, LZH, D
and T could be measured. In a subsequent paper, the
corresponding rate constants of the mono-deproton-
ated porphyrin anion were also measured for liquid
solution and a solid phosphazene matrix (Braun et al.
1996b). Again, no dependence of the rate constants on
the environment was observed.

All the rate constants measured for both the systems
are depicted in the Arrhenius diagrams in figure 8. For
the parent compound porphyrin, an Arrhenius curve
pattern as discussed in figure 7 is observed. Noteworthy
is the same slope Em of the Arrhenius curves of the H-
and D-transfer leading to temperature-independent
isotope effects at low temperatures. As illustrated
Phil. Trans. R. Soc. B (2006)
schematically in figure 9, Em will be caused by the
asymmetry of the reaction to a greater part. It is clear
that not only the energy of the cis-intermediate is
required for tunnelling to occur, but also some
reorganization energy of the ring skeleton might be
necessary. We also note that the low-temperature kinetic
H/D isotope effect is smaller than that predicted from
the relatively large barrier difference of H and D
evaluated at high temperatures. In order to match this,
a relatively high value ofDm for heavy atom contribution
had to be used to reduce the low-temperature isotope
effect. We note that Smedarchina et al. (1998) have
reproduced the Arrhenius curves of all isotopic
reactions of porphyrin using the same theory.

In contrast, this was not necessary in the case of the
porphyrin anion, where the transfer is degenerate and
the low-temperature KIEs are substantially larger than
in the parent compound. Therefore, we assign a much
smaller value of Em to the reorganization of the
porphyrin skeleton preceding the transfer. When
compared to the parent compound, larger values for
both the tunnelling distance as well as for the
differences of the barrier heights of the isotopic
reactions are obtained. These findings can be associ-
ated with the lack of reaction asymmetry in the anion as
discussed in §2.

The porphyrin analogue 1,8-dihydro-5,7,12,
14-tetramethyldibenzo(b,i)-15N4-(1,4,8,11)-tetraaza-
cyclotetra-deca-4,6,11,13-tetraene (TTAA) (figure 10)
is subject to a related stepwise tautomerism in the
crystalline state (Langer et al. 2001), which was studied
by solid-state NMR and NMR relaxometry (Hoelger
et al. 1994) in the microsecond time-scale. Here, we
discuss only the transfer step illustrated in figure 10.
Evidence was found that the transfer is near-degenerate.
Concave Arrhenius curves for the H- and D-reactions
were observed in a large temperature range, exhibiting
surprisingly small kinetic H/D isotope effects, which
were explained in terms of a relatively large heavy atom
contribution to tunnelling and a small barrier width.
The latter could arise from the substantially stronger
H-bond in TTAA compared to the porphyrin.

In figure 11a, we have plotted the values of the
correlated hydrogen-bond coordinates of porphyrin,
TTAA (table 2), as well as the calculated values of the
TSs of porphyrin (Maity et al. 2000) and of its anion
(Vangberg & Ghosh 1997). We note that all geometries
are located on the NHN-hydrogen bond correlation
curve of figure 1, especially the coordinates of the TSs
of porphyrin and its anion, exhibiting values of 2.60
and 2.66 Å. This means that hydrogen-bond com-
pression of porphyrin is the most important heavy atom
motion, which enables the tautomerism; the TS
structures correspond to the expected strongest
possible NHN-hydrogen bonds, whereas the initial
states do not show any sign of hydrogen-bonding.

The question arises of how the intrinsic barrier of the
symmetric H-transfer depends on the hydrogen-bond
geometries. In figure 11b we have therefore plotted the
experimental values of EdCEm for the porphyrin anion
and TTAA as a function of q1 (table 2). We included
the values of zero as a reference for the TSs calculated
for porphyrin (Maity et al. 2000) and the anion
(Vangberg & Ghosh 1997). The dotted line seems to
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represent the observed data well and was calculated
using

Ed Z 60!ðq2Kq2minÞ ðkJ molK1Þ; q2min Z 2:60 Å:

ð3:2Þ

We do not expect this relation to be of general use, as
electronic effects are not taken into account. However,
it would be interesting to know in the future how well
the geometries of initial and TSs can be described in
terms of the bond-valence concept.
Figure 9. Potential curves (schematically) of the tautomerism
of porphyrin and its mono-deprotonated anion. Adapted
from Braun et al. (1996b).
4. COMPLEX H-TRANSFERS
In many H-transfer reactions in solution, with the
exception of intramolecular reactions as in porphyrins,
the reaction centres first have to form a reactive
complex from non-reactive configurations. In this
section, we will study the question how Arrhenius
curves are affected by pre-equilibria, and then discuss
various experimentally published cases.

(a) The effects of a fast pre-equilibrium on the

observed rates of H-transfer

We treat the following reaction:

NR%
K

R $$%
k

P; ð4:1Þ

where NR stands for non-reactive reactants, R for
reactive reactants and P for the products. This model is
intentionally very simple and for complex systems such
as enzymes, NR and R represent two ensembles of non-
reactive and reactive states. This model and its ability to
explain curved Arrhenius plots are in accordance with
Phil. Trans. R. Soc. B (2006)
the more general Tolman’s interpretation of the
activation energy (Truhlar & Kohen 2001). The
following description is simplified by assuming that
the pre-equilibrium is fast, and the isotope-sensitive
H-transfer converting the reactive forms into products
constitutes the rate-limiting step. This assumption can
be omitted with minor effect on the structure of the
following equations. Practically, the important prop-
erty of K is that isotopically it is not sensitive, while k is
sensitive. The equilibrium constant of the pre-equilib-
rium (K ) is given by

K Z cR

�
cNR Z expðKDH=RT CDS=RÞ; ð4:2Þ

where DH and DS represent the enthalpy and entropy
of the pre-equilibrium. k represents the first-order or
pseudo-first-order rate constant of the rate-limiting
H-transfer which converts the reactants to the
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products. Please note that this H-transfer process (k)
includes all the isotopically sensitive steps that lead to
the formation of the tunnelling configuration and any
motion that is coupled to the H-transfer between the
donor and the acceptor. Since tunnelling per se occurs
only between degenerated energy levels, all the
asymmetric curves in the current model (e.g. figure 3)
require vibrational excitation (motion) prior to tunnel-
ling, and that motion is included in k. A model by
Klinman is presented in this issue (Klinman 2006),
where the terms ‘coarse tuning’ and ‘fine tuning’ are
coined to describe different stages of system pre-
arrangement toward tunnelling conformation. This
model is a good analogy to the one described here
despite the fact that in Klinman’s model, the fine
tuning is on a faster time-scale than the coarse one. In
the following, the rate expression for the observed rate
constants kobs is depicted.

With the total concentration CZcNRCcR it follows
that

cR Z
KC

1CK
: ð4:3Þ

Often, only the sum of the concentrations of NR and R
is measured, i.e. the kinetics cannot distinguish between
NR and R. As the interconversion between NR and R is
assumed to be fast, the observed first-order or pseudo-
first-order rate constant is then given by

kobs ZK
1

C

dcR

dt
Z

kcR

C
Z

kK

1CK
: ð4:4Þ

In the case where K[1, it follows that

kobs Z k: ð4:5Þ

In contrast, if K/1, it follows that

kobs Z kK : ð4:6Þ
Phil. Trans. R. Soc. B (2006)
Let us assume an Arrhenius law for the main reaction
step of

kZA expðKEa=RT Þ; ð4:7Þ

with arbitrary parameters AZ1013 sK1 and EaZ
30 kJ molK1 represented by the dashed line in figure 12.
In figure 12awe discuss the case where the formation of
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the reactive state involves a negative enthalpy and

entropy as expected for a hydrogen-bond association

between the reaction partners AH and B. Thus, the

reacting state predominates at low temperatures, where

kobsZk. The true Arrhenius curve is then measured

exhibiting normal pre-exponential factors. At high

temperatures, however, the reactive state dissociates

and becomes non-reactive and kobsZkK. As K/1 in

this region, the observed Arrhenius curve is convex and

exhibits an unusually small pre-exponential factor. The

effective activation energy is given by EaKjDHj.

In figure 12b, we consider a case where the

formation of the reactive state involves positive entropy

and enthalpy. Such a case could happen if the reaction

partners AH and B are involved in strong interactions

with other species. For example, AH could be

hydrogen-bonded to any proton acceptor, or B to any

proton donor, which requires break up of this

interaction before the partners can react. The reacting

state predominates at high temperatures and the non-

reactive state at low temperatures. Only at high

temperatures is the true Arrhenius curve measured,

exhibiting a normal pre-exponential factor of about 13.

At low temperatures, the observed rate constants are

smaller than the intrinsic ones; the effective activation

energy is given by EaCjDHj. In addition, the observed

pre-exponential factor is unusually large.
Phil. Trans. R. Soc. B (2006)
(b) H-transfers with reactive complexes

dominating at low temperatures

Let us consider the case of degenerate base-catalysed
intra- and intermolecular proton transfer of a triazene
as a recent example, which has been discovered
(Männle & Limbach 1996) and studied (Limbach
et al. 2005b) using dynamic liquid-state NMR
(figure 13). In contrast to carboxylic acids and
amidines, triazenes cannot form cyclic dimers in
which a double proton transfer takes place. 1,3-
Bis(4-fluorophenyl)[1,3-15N2]triazene was studied
using 1H and 19F NMR in the presence and absence
of dimethylamine, trimethylamine and water, using
tetrahydrofuran-d8 and methylethylether-d8 as sol-
vents, down to 130 K. Surprisingly, both dimethyl-
amine and trimethylamine were able to pick up the
mobile proton of the triazene at one nitrogen atom and
carry it to the other nitrogen atom, resulting in an
intramolecular transfer process catalysed by a different
base molecule each time. Even more surprising is that
the intramolecular transfer (figure 13a) catalysed by
dimethylamine is faster than the superimposed inter-
molecular double proton transfer (figure 13b).

The kinetic H/D isotope effects are small, especially
in the catalysis by trimethylamine, indicating a major
heavy atom rearrangement and absence of tunnelling.
This is because of the high asymmetry of the H-transfer
from the triazene to the base. Semi-empirical para-
metric model 3 (PM3) and ab initio density functional
theory (DFT) calculations indicate a reaction pathway
via a hydrogen-bond switch of the protonated amine
representing the TS, where the imaginary frequency
required by the saddle point corresponds to a heavy
atom motion as was illustrated schematically in figure 4.
Tunnelling is absent because of the very high tunnelling
masses involved, corresponding to the mass of the base.

The Arrhenius curves of all processes are strongly
convex. This phenomenon is explained in terms of the
hydrogen-bond association of the triazene with the
added bases, preceding the proton transfer. At low
temperatures, all catalysts are in a hydrogen-bonded
reactive complex with the triazene, and the rate
constants observed are equal to the reacting complex.
However, at high temperatures, dissociation of the
complex occurs, and the temperature dependence of the
observed rate constants is also affected by the enthalpy
of the hydrogen-bond association according to the
intermolecular analogue of equation (4.4). As tunnel-
ling is not involved, we do not discuss the Arrhenius
curves in a more quantitative way here. Hence, we refer
the reader to the paper by Limbach et al. (2005b).

Using optical methods, Al–Soufi et al. (1991)
followed the kinetics of the intramolecular H- and
D-transfer between the keto and the enol form of 2-(2 0-
hydroxy-4 0-methylphenyl) benzoxazole (MeBO) dis-
solved in alkanes. No dependence of the rate constants
on the solvent viscosity could be found. The Arrhenius
diagram obtained in a very wide temperature range is
depicted in figure 14. At low temperatures, the rare
regime of temperature-independent rate constants is
obtained, exhibiting a very large temperature-indepen-
dent kinetic H/D isotope effect of about 1400. At room
temperature, quite a large effect of about 14.5 is still
obtained.
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Figure 13. (a) Arrhenius diagrams of the intramolecular proton and deuteron transfer in 1,3-bis-(4-fluorophenyl)-
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represents the average inverse lifetimes of the base B between two exchange events. (b) Arrhenius diagrams of the intermolecular
proton and deuteron transfer of 1,3-bis-(4-fluorophenyl)-[1,3-15N2]triazene catalysed by dimethylamine. Adapted from
Limbach et al. (2005b).
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(1991). The solid lines were calculated using the parameters
listed in table 2.
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A puzzling result in figure 14 was that the

experimental pre-exponential factors were only about

109 sK1 instead of about 1013 sK1 as expected, as had

been pointed out by the authors of this study. We have

recalculated the Arrhenius curves using equation (4.4)

and the parameters listed in table 2 are plotted in

figure 14. Owing to the large body of data, all

parameters could be determined. The calculated

intrinsic Arrhenius curves are symbolized by the

dashed lines and calculated curves representing the

observed rate constants by the solid lines. For their

calculation, a pre-equilibrium is assumed where the

reactive forms of the molecule dominate at low

temperatures. In this region, the intrinsic Arrhenius

curves of the H- and the D-transfer symbolized by the

dashed lines coincide with the observed ones, as kobsZk.

However, at high temperature it is assumed that a non-

reactive form of the molecule dominates because of its

more positive entropy leading to kobsZkK. Thus, both

the observed rate constants and the observed pre-

exponential factors are smaller than expected.

We note that a very small minimum energy Em was

found for tunnelling to occur at low temperatures, which

refers to the reactive complex. This value could, there-

fore, be determined independently of DH and DS of the

pre-equilibrium. In other cases, as discussed later, only
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the sum of DHCEm can be determined. The barrier for

the transfer is similar to the one found for TTAA.

The difference in the barrier for H and D is

substantially large, of the order of the one found for
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Arrhenius curves of hydrogen transfers H.-H. Limbach and others 1411
porphyrin. In addition, a contribution for heavy atom

tunnelling is observed.

At present, we can only speculate about the

structure of the non-reactive form. At low tempera-

tures, the keto form may exhibit a zwitterionic aromatic

character, and at high temperature a less polar quinoid

structure. Both structures are normally limiting

structures. However, the zwitterionic structure is highly

solvated and will exhibit, therefore, a much more

negative entropy compared with the quinoid structure.

The entropy decrease is expected to be large especially

in the case of apolar, but polarizable solvents as has

been shown by Caldin et al. (1975). Another possibility

could be the formation of an enolic conformer

exhibiting a non-reactive intramolecular OHO- instead

of a reactive OHN-hydrogen bond. However, further

spectroscopic and kinetic measurements will be

necessary to clarify this problem.

Finally, let us discuss the well-established example

of the isomerization of 2,4,6-tri-tert-butylphenyl radical

to 3,5-di-tert-butylneophyl in apolar organic solvents

depicted in figure 15, which has been studied by

Brunton et al. (1978). Various barrier types were used

for Bell-type semi-classical tunnelling calculations. It

was shown that an inverted parabola could not give a

satisfactory fit. The pre-exponential factors found for

other barrier types were of the order of 8–12. As

depicted in figure 15, a solution to the problem can

again be obtained in terms of a pre-equilibrium, where

a reactive form again dominates at low temperature and

a non-reactive form at high temperature, as in the

preceding case of MeBO. In the case of the 2,4,6-tri-

tert-butylphenyl radical, one may interpret the reactive

form with a configuration where the C–H bonds of the

methyl groups are pointing in the direction of the

aromatic acceptor carbon atom. Such a configuration

could have a more negative entropy compared with the

non-reactive forms, with unfavourable transfer

geometries dominating at high temperatures. The

tunnel parameters used to calculate the Arrhenius

curves are included in table 1. No anomaly can be
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detected; the high barrier can be explained by the
limited capability to form CHC-hydrogen bonds.

(c) H-transfers with reacting complexes

dominating at high temperatures

Let us discuss some examples where non-reactive states
are present at low temperatures and reactive states at
high temperatures.

The first two examples are the H-transfers in
2-hydroxyphenoxyl radicals, which have been studied
using dynamic electron paramagnetic resonance (EPR)
spectroscopy. When 3,6-di-tert-butyl-2-hydroxyphe-
noxyl and its deuterated analogue are dissolved in
heptane, the Arrhenius diagram of figure 16a is obtained
(Bubnov et al. 1978). The KIE is about 10 at room
temperature. Setting the pre-exponential factor to 1012.6

(table 2), leads to the concave Arrhenius curve depicted
as solid lines. In contrast, figure 16b depicts the kinetic
data of the parent compound 2-hydroxyphenoxyl in
CCl4/CCl3F to which 0.11 mol lK1 dioxane had been
added to increase the solubility. Now, a KIE of about 56 is
obtained at room temperature. This large difference
between the two molecules was noted some time ago by
Limbach & Gerritzen (1982); in particular, that the
effective frequency factor of the D-transfer was substan-
tially smaller than that of the H- transfer. Two Arrhenius
curves of the H- and D-reactions are almost parallel.
Application of Bell–Limbach tunnelling leads to unu-
sually large pre-exponential factorsof1018 sK1. As shown
in figure 16b and the parameters in table 2, the use of
equation (4.4) improves the analysis, although the
interpretation is similar as before.

The dashed lines in figure 16b indicate the intrinsic
Arrhenius curves of the transfer, whereas the solid lines
indicate the one including the pre-equilibrium. The
reduction in the rate constants compared to the di-tert-
butyl radical is explained by the formation of a
non-reactive species at low temperatures, which is
hydrogen-bonded to the added dioxane. Thus, for the
reaction to occur, first the intramolecular H-bonded
species has to be formed, which exhibits not only a
higher energy but also a more positive entropy.
A comparison of the Arrhenius curves in figure 16b
indicates that the desolvated intramolecular H-bonded
species is never dominant over the whole temperature
range, as the interaction with dioxane is stronger
because of the linear intermolecular H-bond, in
comparison with the weaker intramolecular H-bond.

The larger kinetic H/D isotope effects in the parent
radical can be explained in terms of its higher symmetry
compared with the di-tert-butyl radical. In the latter,
the methyl groups on both sides of the ring are not
ordered, leading to the effective asymmetric double-
well of the H-transfer potentials.

These examples show how subtle structural effects
can lead to very different H-transfer properties.

(d) H-transfer with different reacting complexes

at different temperatures

Finally, let us discuss the example of a thermophilic
alcohol dehydrogenase from Bacillus stearothermophilus
(bsADH) studied by Kohen et al. (1999). This enzyme
catalyses the abstraction of a hydride to NADC as
depicted in figure 17. The Arrhenius diagram is depicted
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in figure 17a; a sudden decrease in the apparent slope and
intercept of the Arrhenius curves is observed around
room temperature. The puzzling observation is that
the KIEs are temperature-independent in the high-
temperature regime, but temperature-dependent in the
low-temperature regime.

The solid lines in figure 17a were calculated
assuming the simple reaction network of scheme 2. It
is assumed that the enzyme adopts two different states 1
and 2 at equilibrium (K ), where 1 is less reactive than 2
(scheme 2). In the less-reactive state 1 dominating at
lower temperatures, the rate constant of H-transfer is
given by k1, but in the more reactive state dominating at
higher temperatures, it is given by k2. Assuming again
that the H-transfer is slower than the conversions
between the states, we obtain the following expression
by modification of equation (4.4):

kZ x1k1 Cx2k2 Z k1

1

1CK
Ck2

K

1CK
; ð4:8Þ

where x1 and x2 correspond to the mole fractions of
states 1 and 2 and K is again the equilibrium constant
of the formation of state 2 from state 1. According to
table 2, state 2 dominates at higher temperatures in
spite of its higher energy because of its very large
positive entropy: this could be a state where the protein
has become ideally flexible for proper activity, in
contrast to the low-temperature regime. This con-
clusion is in accordance with the fact that bsADH
evolved to function at approximately 65 8C and with
qualitative suggestions proposed in the past to rational-
ize the curved Arrhenius plot (Kohen & Klinman 1999,
2000; Kohen et al. 1999; Liang et al. 2004).

The tunnel parameters included in table 2 indicate a
groundstate tunnelling situation at high and low
temperatures, with temperature-independent KIEs.
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The apparent temperature dependence observed at

low temperatures is the result of the transition between

the two regimes, but does not arise from intrinsic
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temperature-dependent KIEs. We note that in both
states the pre-exponential factor of 1012.6 sK1

employed throughout this study was consistent with
the data. The minimum energy for tunnelling to occur
is larger in the high-temperature state 2, but the barrier
height and the barrier width are smaller compared with
the low-temperature state 1. Thus, there seems to be a
substantial change in the barrier parameters upon
flexibilization of the enzyme at higher temperatures.
5. CONCLUSIONS
In this paper, we have analysed the Arrhenius curves of
various H- and D-transfer reactions using the Bell–
Limbach tunnelling model. In this model, semi-classical
tunnelling calculations are performed using the par-
ameters that can be obtained empirically by fitting to the
experiment. A main parameter is the pre-exponential
factor that is found to be of the order ofkT/hy1012.6 sK1.
In the current model, deviations from this value indicate
the presence of a pre-equilibrium that is sometimes
also manifest in convex-shaped Arrhenius curves.
A minimum energy for tunnelling represents the slope
of the Arrhenius curves at low temperature in the regime
of temperature-independent KIEs. For degenerate
H-transfers, the difference in the effective barriers of the
H- and D-transfer are larger than the non-degenerate
transfers. Contributions from heavy atom tunnelling
to the tunnelling masses seem to be larger in the
non-degenerate cases. Both effects lead to larger KIEs
for the degenerate transfer processes compared with the
non-degenerate ones. These conclusions show that the
Bell–Limbach tunnel model is useful for the first
screening of experimental data. Especially, one becomes
conscious of the number and type of parameters that can
be obtained from these data. This model is not contra-
dictory to many of the models classified as Marcus-like
(for review of such models, see Kohen 2006 and
Klinman’s contribution to this in this issue). The two
concepts overlap at the fact that Dm (2.19) is part of the
tunnelling mass (meff). Even though the procedures are
very different, the ‘tunnelling’ of the heavy atoms, whose
motion is coupled to the H-tunnelling, is analogues to the
environmental dynamics that are promoting or at least
coupled to the H-tunnelling in Marcus-like models.
Thus, the Bell–Limbach model does not replace a more
physical description based on quantum-mechanical and
rate theories, but helps to prepare for their use, by
detecting, for example, a hidden pre-equilibrium. An
ideal treatment of experimental data is a ladder of
different theoretical treatments, where each treatment
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consists of an important step towards a better under-
standing of H-transfer reactions. The current model
treats deviations from classical Arrhenius plot in a similar
manner to Truhlar & Kohen (2001) by dividing the
reacting system into two populations, reactive (R) and
non-reactive (NR). The unique advantage of the model
presented here over many other more detailed and
sophisticated models is the way the temperature
dependency of the rate and isotope effect is addressed
and its ability to fit and rationalize nonlinear Arrhenius
plots. Finally, we note that in the case of thermophilic
dehydrogenase, a new kind of temperature-dependent
KIEs is proposed, consisting of a transition between two
regimes with different temperature-independent KIEs.
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