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The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g.,
sarA and agr). One of these determinants, protein A (spa), is activated by sarS, which encodes a 250-residue
DNA-binding protein. Genetic analysis indicated that the agr locus likely mediates spa repression by suppress-
ing the transcription of sarS. Contrary to SarA and SarR, which require homodimer formation for proper
function, SarS is unusual within the SarA protein family in that it contains two homologous halves, with each
half sharing sequence similarity to SarA and SarR. Here we report the 2.2 Å resolution X-ray crystal structure
of the SarS protein. SarS has folds similar to those of SarR and, quite plausibly, the native SarA structure. Two
typical winged-helix DNA-binding domains are connected by a well-ordered loop. The interactions between the
two domains are extensive and conserved. The putative DNA-binding surface is highly positively charged. In
contrast, negatively charged patches are located opposite to the DNA-binding surface. Furthermore, sequence
alignment and structural comparison revealed that MarR has folds similar to those of SarR and SarS.
Members of the MarR protein family have previously been implicated in the negative regulation of an efflux
pump involved in multiple antibiotic resistance in many gram-negative species. We propose that MarR also
belongs to the winged-helix protein family and has a similar mode of DNA binding as SarR and SarS and
possibly the entire SarA protein family member. Based on the structural differences of SarR, SarS, and MarR,
we further classified these winged-helix proteins to three subfamilies, SarA, SarS, and MarR. Finally, a
possible transcription regulation mechanism is proposed.

Staphylococcus aureus is a versatile bacterium capable of
causing a wide spectrum of pathology in humans, ranging from
superficial abscesses to pneumonia, endocarditis, and sepsis (3,
4). This versatility may be attributable to the impressive array
of extracellular and cell wall-associated virulence determinants
coordinately expressed during the infectious process (32).
Many of these virulence factors can be generally classified into
two groups. Secreted proteins such as hemolysins, enterotox-
ins, lipase, and proteolytic enzymes are responsible for inva-
sion and tissue damage. Cell surface-associated proteins such
as protein A, fibronectin-binding proteins, and collagen-bind-
ing protein mediate adhesion to host tissues (25). The coordi-
nate expression of many virulence determinants in S. aureus
has been shown to be regulated by global regulatory elements
such as sarA and agr (9, 22). These regulatory elements, in turn,
control the transcription of a wide variety of unlinked genes,
many of which have been implicated in pathogenesis.

The global regulatory locus agr encodes a two-component,
quorum-sensing system that is involved in the generation of
two divergent transcripts, RNA II and RNA III, from two
distinct promoters, P2 and P3, respectively. RNA III, initiated
from the P3 promoter, is the regulatory molecule of the agr
response and is hence responsible for the up-regulation in
extracellular protein production and the down-regulation of

cell wall-associated protein synthesis during the postexponen-
tial growth phase (19, 30). The RNA II molecule, driven by the
P2 promoter, encodes a four-gene operon, agrBDCA. Addi-
tionally, AgrD, in conjunction with AgrB, participates in the
generation of an octapeptide with quorum-sensing function
(20, 27). This autoinducing peptide can stimulate the transcrip-
tion of the agr regulatory molecule RNA III, which ultimately
interacts with target genes to modulate transcription and pos-
sibly translation (28, 30).

Contrasting to agr, the sarA locus up-regulates the synthesis
of selected extracellular and cell wall proteins. The sarA locus
also represses the transcription of the protein A gene (8). The
sarA locus is composed of three overlapping transcripts, sarA
P1, sarA P3, and sarA P2. Each of these transcripts encodes the
major 372-bp sarA gene, yielding the 14.5-kDa SarA protein
(3). DNA footprinting studies revealed that the SarA protein
binds to promoters of several target genes (13), including agr,
hla, spa, and fnbA, implicating SarA as a regulatory molecule
that can modulate target gene transcription via both agr-de-
pendent and agr-independent pathways (7, 13, 14).

Besides the SarA protein, a series of SarA homologs have
been discovered within the S. aureus genome (11). Functional
characterization of some of these proteins has led to the dis-
covery of a complicated transcription regulation network (4,
11, 32). Structural elucidations of some family members at
atomic resolution have been carried out. Novel structural fea-
tures that are involved in DNA binding and a possible activa-
tion or repression mechanism of this transcription factor family
have been revealed. We recently reported the dimeric SarR
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structure in the absence of DNA (24). Our data indicated that
SarR belongs to the typical winged-helix DNA-binding protein
family. In particular, SarR contains two atypical winged-helix
motifs that recognize its target DNA not only through “helix-
turn-helix major groove interaction” but also via the “wing-
minor groove interaction” (24). We proposed that the two
conserved acidic patches on the convex side of the SarR struc-
ture are possible activation motifs, while the concave surface,
containing a tract of basic residues, is likely to be the DNA-
binding domain (24). Moreover, we recently proposed that
SarR, SarA, and SarS may have similar folds, contrary to the
reported SarA structure that has a completely different topol-
ogy from SarR and might represent a non-native-state struc-
ture of the SarA protein, as proposed by Schumacher et al.
(35). Notably, the recently reported monomeric structure of
MarR, despite its low sequence similarity to SarR, still has
similar topological folds as the SarR protein. Nevertheless, the
proposed mode of DNA binding of MarR is different from that
of SarR (1).

SarS, originally described by Tegmark and colleagues and
Cheung et al. (12, 36), is an activator for the expression of
protein A (spa), a major surface protein presenting in over
90% of S. aureus strains. SarS is repressed by agr and sarA (12,
36). In particular, the repression of protein A (spa) by agr is
mediated by the repression of sarS (12). In contrast to the
smaller SarA or SarR, SarS encodes a 250-residue protein that
contains two homologous halves, each of which is similar to
SarA and other related homologs (12, 36). To address the
similarities and differences in transcription regulation carried
out by these divergent SarA family members, we determined
the structure of the SarS protein at 2.2 Å resolution.

MATERIALS AND METHODS

Protein expression, purification, and crystallization. The intact 750-bp sarS
gene was amplified by PCR using chromosomal DNA from S. aureus strain
RN6390 as the template and primers containing flanking restriction sites (XhoI
and BamHI) to facilitate cloning into an expression vector (pET14b) (Novagen).
The recombinant plasmid containing the sarS gene was transformed to Esche-
richia coli BL21(DE3)(pLysS). Enhanced expression of a SarS-His6 fusion was
induced by adding isopropyl-1-thio-�-D-galactopyranoside to an 8-liter growing
culture (37°C) at an optical density at 650 nm of 0.7. After 4 h of additional
growth, cells were harvested, resuspended in buffer (50 mM Tris-HCl [pH 8.0],
500 mM NaCl, 5% glycerol), and subjected to cell lysis through a continuous-flow
French press. After a 20,000 � g centrifugation step, the soluble fraction was
loaded onto a 10-ml nickel resin affinity column and the SarS-His6 fusion protein
was eluted with 250 mM imidazole. Thrombin was added to the SarS-His6

solution for overnight His6-tag cleavage. The solution containing thrombin-
cleaved SarS was desalted and loaded onto a MonoS (Pharmacia) ion-exchange
column. After elution with an NaCl gradient (0.1 to 0.5 M), the fraction con-
taining the protein was found to be homogeneous as determined by a Coomassie-
stained sodium dodecyl sulfate-polyacrylamide gel. The concentration of the

purified protein was determined with a Bio-Rad protein assay solution (Bio-Rad
Laboratories, Richmond, Calif.), using bovine serum albumin as the standard.
The SarS protein (15 mg/ml) was crystallized by vapor diffusion against a solution
of 5 mM �-mercaptoethanol, 100 mM HEPES (pH 7.5), 3.5 to 4.0 M NaCl. For
cryo-crystallography, crystals were soaked in steps of increasing glycerol concen-
tration (5% each step every 30 min) and finally into 20% glycerol before flash-
freezing.

Structure determination and refinement. Native crystals diffracted to 2.8 Å
with an in-house Rigaku R-axis IV system. Two heavy atom derivatives were
prepared by adding 1 mM HgCl or 10 mM trimethyl lead acetate in 100 mM
HEPES (pH 7.5), 4.0 M NaCl crystal soaking solutions for 24 h. Both derivative
crystals diffracted to 3.0 Å at an in-house X-ray facility. A 2.8 Å native data set
and derivative data sets were collected in the laboratory on a Rigaku R-axis IV
system. Another 2.2 Å resolution native data set was collected at BM-19 of SBC
at Advanced Photon Resource of Argonne National Laboratory. Data processing
was performed with DENZO and SCALEPACK (31). The space group of the
crystal was P6 (1)22 or P6 (5)22 with cell dimensions of a � 84.887 Å, b � 84.887
Å, c � 195.743 Å, � � 90°, � � 90°, and � � 120° and with one SarS molecule
in the asymmetry unit. The initial phases were obtained by multiple isomorphous
replacement (MIR) using the program SOLVE (37) and the electron density
modification program SOLOMON (14a), with the three data sets collected at
home (one native set, two derivative sets) at 3.0 Å (Table 1 and Table 2). Both
space groups were tested during the initial phase calculation. The final space
group resolved by the output map from final solvent flattening was P6 (5)22. The
quality of the output map was good with all main chains connected, secondary
structure resolved, and some of the ordered side chains revealed (Fig. 1a and b).
Map interpretation and model building were performed using the program O
(21) aided by the SarR model (24) and residues with big side chains. Model
refinement was performed with the Crystallography & NMR system (5) using the
2.2 Å resolution native data set collected at 19-BM of SBC with root mean square
distance (RMSD) bonds � 0.008 and RMSD angle � 1.58 (Table 1). The final
model contains the complete SarS (residues 1 to 250) and 121 water molecules
(Fig. 1c and d). Stereochemical values are all within or better than the expected
ranges for a 2.2 Å structure, as determined using PROCHECK (23).

Data deposition. The atomic coordinates and reflections have been deposited
in the Protein Data Bank as 1P4X.

RESULTS

Overall structure of the SarS protein. The structure of the
SarS protein reported here has a similar topology to the

TABLE 1. Experimental data on crystal structure determinationa

Data set Resolution
(Å) Rmerge (%) No. of unique

reflections
Total

observations
Completeness

(%)
Phasing
power

No. of
sites �I�/�Isigma�

Native 2.2 8.1 (50.0) 22,016 576,575 99.4 (98.2) 44 (2.0)
HgCl2 3.0 10.0 (39.8) 8,706 59,020 97.2 (93.0) 0.50 3 25 (1.9)
Trimethyl-Pb 3.0 9.6 (40.3) 8,619 55,739 96.0 (64.5) 0.67 3 23 (2.3)

a Rmerge � 	|Ij 
�I�|/	Ij, with Bijvoct pairs treated as equivalent for native and as different for derivatives. Total observations, the number of full and partial
observations measured with non-negative intensity to the indicated resolution. Completeness, the percentage of possible unique reflections measured with I/�(I) � 0
to the indicated resolution. Phasing power � �FH�/Erms. No. of reflections, the number of reflections used in refinement for each resolution bin. R factor � 	|FO

 FC|/	FO for all amplitudes with F/�(F) � 0 measured in the indicated resolution bin; the free R factor is calculated with 5% of the data in each bin. Numbers in
parentheses are values in the highest resolution shell. There are 121 water molecules in the current model.

TABLE 2. Crystal structure refinement data

Parameter Value

Mean figure of merit................................................................... 0.25a

Refinement resolution ................................................................ 20–2.2 Å
No. of reflections......................................................................... 21,142
R factor ......................................................................................... 24.50%
Free R factor................................................................................ 28.20%
Ramachandran plot

Residues in most-favored regions ......................................... 89.7%
Residues in additional allowed regions ................................ 9.5%
Residues in generously allowed regions............................... 0.8%

a For 8,681 phased reflections.
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dimeric SarR structure. Overall, there are five alpha-helices
and three beta-strands in each SarS homologous domain, des-
ignated S1 and S2, respectively (Fig. 1). There are three coil
regions, which are located at the N terminus, C terminus, and
the gap region connecting S1 and S2. Briefly, �1, �2, �5, and
�1� are primary helices that form the main interaction inter-
face to bring two domains together by extensive hydrophobic
contacts. The interaction between the two domains is further
strengthened by the linker that connects S1 and S2, which
makes the relative movement between the two domains diffi-
cult. There are in total 19 residues involved in the interactions,
including residues Ile15, Tyr18, Met19, Phe22, and Val22 from
�1, residues Ile34, Phe37, and Ile38 from �2, residues Phe111,
Ile114, Ile115, and Phe118 from �5, residues Met128, Ile129,
and Pro130 from the linker region, and residues Phe136,
Leu137, Leu139, and Met140 from �1� (Fig. 2a).

Interestingly, the helix-turn-helix motifs and the beta-hair-
pins in both S1 and S2 are surrounded by a very rigid environ-
ment consisting of a large number of hydrophobic residues,
including residues from �2, �3, �4, and �5, and residues from
three beta-strands. In S1, residues Leu39, Leu40, and Leu43
from �2, residue Leu51 from �1, residues Phe53, Ile56, Val57,
and Leu60 from �3, residues Tyr62, Leu67, Ile71, and Leu74
from �4, residues Tyr79 and Ile80 from �2, residues Ile94 and
Ile96 from �3, and residue Ile104 from �5 build up the huge
hydrophobic environment (Fig. 2b). This huge hydrophobic

core leads to a compact structure for the entire winged-helix
motif. For example, �3, �4, and the beta-hairpin (�2 and �3)
are well ordered compared to their flexible counterparts in
SarR. In SarR, the tip of the hairpin is completely disordered.
This is also in contrast to other winged-helix proteins, such as
CAP, which has quite a different conformation of the entire
winged-helix motif with or without DNA. However, we did not
have the DNA-protein complex structure yet, but it is reason-
able to predict that SarS may have subtle conformational
changes with DNA. It may be argued that the beta-hairpin in
S1 has crystal contact with the symmetry-related molecule, and
this could stabilize the beta-hairpin to some extent. However,
the corresponding part in S2 does not have the packing envi-
ronment and is well ordered, although we just see a slight
conformation difference.

This rigid feature remains true for the �5 helix (or w2) as
well, which is loosely attached to the left part of the molecule
in SarR but tightly associated in S1 and S2. Residues Phe22
and Val26 from �1, residues Val30, Met32, Ile34, and Phe37
from �2, residues Leu110, Phe111, Ile114, Ile115, and Phe118
from �5, and residue Phe136 from �1� form the hydrophobic
core (data not shown), which stabilizes helix �5.

Overall, the above special arrangement renders the entire
SarS structure a tightly packed domain, different from all other
winged-helix proteins, including SarR. This kind of special

FIG. 1. Overall structure of SarS. (a) The initial MIR map at the beta-hairpin region of S1 with the final SarS model, which is one of the most
flexible parts in the entire SarS structure. (b) The final 2Fo-Fc map with the final SarS model at the same region as in panel a. (c) Ribbon diagram
of the three-dimensional structure of the SarS protein. The first domain, S1, is shown in green. The second domain, S2, is yellow. (d) Orientation
of the panel, 180°. Two hydrophobic cores are labeled. All figures were prepared using RIBBONS (6), except for Fig. 1a and b, which were
prepared using BobScript (15).
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structure could underlie a specific transcription regulation
mechanism for the SarS protein and its subfamily.

The superposition of the two domains. As mentioned above,
the two halves of SarS (S1 and S2) are each similar to the SarR
structure. They are similar to each other, with an RMSD of 2.8
Å. Superimposition of S1 and S2 showed some differences
(Fig. 3). First, the relative orientations of �1 and �1� in their
corresponding domains are quite different. Second, �5 is much
longer than �5�. Otherwise, the two domains are extremely
similar. If only the helix-turn-helix and w1 (the beta-hairpin)
are considered (without �1 and �5), the RMSD is 1.6 Å.

Putative DNA-binding and activation surfaces. Like SarR,
SarS is a highly positively charged protein with a calculated pI
of 9.4 (12, 36). The positively charged residues are randomly
distributed in the primary sequence but accumulated on the
concave side of the structure consisting of the two winged-helix
motifs. The electrostatic potential on the surface of SarS, cal-
culated by the GRASP program (29), revealed a positively
charged track on this side. Thus, the concave side, similar to
SarR, is the most likely site for DNA binding (24) (Fig. 4a).

In contrast, a negatively charged surface track was noted on
the opposite side of the putative DNA-binding side. Similar to
SarR, which has acidic patches on its convex surface, we as-
sume the continuous negatively charged track might be the
activation motifs (24). Further characterization of these
patches is necessary to confirm our speculation (Fig. 4b).

Comparison to SarR. To reveal the structural similarities
and differences between SarS and SarR, superimposition of
SarS on the SarR dimer was carried out. The RMSD of the
winged-helix motif was 2.7 Å (Fig. 5a). This is much bigger
than that of S1 and S2 (1.6 Å). The overall main chain RMSD
between SarS and SarR is 3.2 Å, which is close to that of S1 and

FIG. 2. The detailed hydrophobic cores of SarS. (a) The hydropho-
bic core 1, which brings S1 and S2 tightly together. (b) The hydropho-
bic core 2, which stabilizes the winged-helix motif.

FIG. 3. Comparison of the two SarS domains. S1 is shown in green,
and S2 is yellow.

FIG. 4. The electrostatic potential surface of SarS calculated by
GRASP (29), with charges of �1 for Lys and Arg, 
1 for Glu and Asp,
and zero for all other residues. The color bar from red to blue repre-
sents the potential from negative to positive, defined as in GRASP. (a)
The putative DNA-binding surface; (b) the possible activation motifs.
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S2 (2.8 Å), with a structural similarity Z-score of 9.1 from the
program Dali (18) (Fig. 5b). The major differences are in the
following regions. First, the SarS structure looks a little more
stretched than that of SarR. Second, the helix-turn-helix motifs
of SarS are not highly flexible, contrary to other winged-helix
proteins (e.g., SarR) in the absence of DNA. As we mentioned
above, SarS has a very compact structure, including the two
hairpins, which are well ordered in the initial MIR map. Third,
the lengths of the two helices, the so-called second wing (w2)
in the protein family, are different in both length and orienta-
tion between the two structures.

Comparison to MarR. The structure of MarR, the regula-
tory element that negatively controls an efflux pump involved
in multiple antibiotic resistance in E. coli, has been elucidated
(1). Although Alekshun et al. did not mention that MarR is a
winged-helix protein, it has a very similar topology to SarR and
SarS. Except for the helix at its C terminus, all other secondary
structures have corresponding counterparts in SarR or SarS.
When comparing the MarR monomer to S1, the RMSD is 3.2
Å, which is similar to those of S1 with S2 and SarS with SarR.
Interestingly, MarR also has a very long beta-hairpin, similar
to those of SarS and SarR, which is possibly involved in its
interaction with the minor groove of target DNA. If only the
winged-helix motif is considered, the RMSD between S1 and
MarR is 2.3 Å, which is smaller than that between SarS and
SarR (2.7 Å) and bigger than that between S1 and S2 (1.6 Å),
with a structural similarity Z-score of 9.3 (Fig. 6a). The simi-
larity of these two subdomains between SarS and MarR is
obvious. It is safe to say that MarR also belongs to the winged-

helix protein family. Therefore, we speculate that MarR has a
DNA-binding feature and mode of binding similar to those of
SarS or SarR, albeit different from the known modes of DNA
binding described for winged-helix proteins (16). Interestingly,
when the putative MarR functional dimer was superimposed
onto a single SarS molecule or a SarR homodimer, big dis-
crepancies with RMSDs of 8.2 Å were observed (Fig. 6b).
While MarR has two symmetric winged-helix motifs, the ar-
rangement of the two motifs is quite different from those of
SarS and SarR. The relative width of the putative DNA-bind-
ing surface in MarR (56 Å) is much narrower than that in SarS
(86 Å) or SarR (80 Å). This narrowness could be caused by
crystal packing, since the two motifs are relatively flexible in
the absence of DNA for most winged-helix family members.
Alternatively, it may also reflect the real DNA-binding state,
requiring a shorter DNA fragment to fit the structural feature.
Overall, the entire MarR structure looks more loosely packed
than SarR, and especially than SarS.

DISCUSSION

The subfamily classification. As discussed above, the ho-
modimers of SarR and MarR and the monomer of SarS have
very similar overall structures. The differences among them are
also obvious enough for additional classification into three
subfamilies. In the first subfamily, five helices and three short
beta-strands are needed to build up a global structural domain
for SarR, SarA, and possibly SarT, a repressor of �-hemolysin
expression (34). Two identical domains form the functional
homodimer. In the second subfamily (SarS, SarU, and SarY)

FIG. 5. Comparison of SarS with SarR. (a) The overlap of winged-
helix motifs from SarS and SarR. (b) The overlap of entire SarS over
SarR homodimer. SarS is shown in green, and SarR is blue.

FIG. 6. Comparison of SarS and MarR. (a) The overlap of winged-
helix motifs from SarS and MarR. (b) The overlap of the entire SarS
over the MarR homodimer. SarS is shown in green, and SarR is yellow.
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(26), two heterologous but similar domains, connected by a
well-ordered linker, are harbored in each monomer. Each half
of the molecule has the exact topology of individual members
in the first subfamily. In the third subfamily, there is an addi-
tional helix at the C terminus, for example, the MarR mono-
mer. Besides the normal five helices and three beta-strands,
this additional helix also further strengthens the monomer-
monomer interaction. Interestingly, in searching the S. aureus
genome (www.ncbi.nlm.nih.gov/genomics), we came across two
MarR-like homologs (A. L. Cheung et al., unpublished data).
Structural elucidation of these two MarR-like proteins will
provide us with insightful information on the structure and
function relationship of this subfamily. It is possible that tran-
scriptional regulation of the three aforementioned groups
could be controlled by different association features, especially
when we consider the SarR homodimer to have the lowest
stability, MarR in the middle, and SarS as the most stable
functional unit.

The putative MarR DNA-binding mode. All three groups of
proteins belong to the winged-helix family. Although the orig-
inal prediction of the DNA-binding surface for MarR is at an
unusual surface (1), based on our structural alignment we
speculate that MarR should have a similar DNA-binding sur-
face as that of SarR or SarS. The helix-turn-helix should bind
to the major groove of DNA, and the beta-hairpin binds to the
minor groove of the bended double helix DNA. The latter
interaction is unique for these three groups of proteins and the
BmrR protein (17). Furthermore, this interaction should be
nearly symmetric.

Possible regulation mechanisms. As discussed in the litera-
ture (2, 8–14), members of the SarA protein family character-
ized so far have dual functions, acting as activators in one
transcription pathway and then as a repressor in another. How
these transcription factors carry out their specific and individ-
ual functions is still unknown. Recently, Arvidson and his col-
leagues proposed a universal transcription regulation theory:
all these subfamily members primarily act as a repressor, so the
repressor’s repressor actually functions as an activator, as de-
rived from the accumulating data on the regulation of hla by
the SarA protein (2). While this repressor hypothesis repre-
sents a very attractive transcription regulation mechanism, it
remains to be determined if this model can be applied to other
family members. Accordingly, additional in vitro transcription
assays on a putative activator, such as SarS on the spa pro-
moter, will be needed to verify this model. Regardless of the
repressive or activating roles, we do not have a clear idea of
how these transcription factors carry out their actual function.
As mentioned in the previous section, there are acidic patches
on the convex side of the SarR and SarS structures; these
patches possibly act as activation motifs to recruit RNA poly-
merase to the promoter region via direct electrostatic interac-
tion with a positively charged surface of the RNA polymerase
subunits, such as the C-terminal domains of the alpha-subunit.
Schumacher et al. proposed a bending and shrinking model
based on their complex structure of SarA with or without DNA
(35). We propose that the multiple bending points (at least
four bending points) of target DNA that result from binding by
the winged-helix protein might lead to the foreshortening of
DNA, resulting in activation (24).

Besides the above plausible regulation mechanisms, there is

an additional but very interesting DNA-binding feature of this
family, possibly providing a hint of a novel regulation mecha-
nism. Chien et al. and Rechtin et al. have previously reported
the existence of multiple binding sites on many target pro-
moter regions for corresponding family members, based on
accumulating protein-promoter DNA gel-retarding assays and
DNase I footprinting experiments (14, 33). For example, there
may be multiple binding sites on the agr promoter region for
the SarA protein (33). We also found that multiple SarS pro-
teins could bind to the spa promoter region (12). This binding
property has been reflected on the laddering protein-DNA
bands on gel-shift assays. These findings indicate that one
homodimer of SarA or SarR, or one SarS monomer, may not
be enough to activate or repress the corresponding gene tran-
scription. How many actual copies of SarA and SarR ho-
modimer or SarS monomers are required for their proper
function and how they are spatially arranged within the pro-
moter region are not clear. In inspecting the SarS packing
environment, we do find extensive interactions between two
neighboring SarS molecules. The beta-hairpin of one SarS
molecule interacts with that of the other (the corresponding
side). Several hydrophobic residues, such as Ile174, Leu176,
and Leu217 from both molecules, are involved (data not
shown). In addition to the hydrophobic interactions, there are
also multiple hydrogen bonds (data not shown). At the present
time, we do not have data to suggest if this dimerization un-
derlies some of the functional requirements for the SarS pro-
tein. Further characterization of the oligomeric state of SarS in
solution is required to answer this question.

From the above discussion, we classified the SarA and MarR
protein families into three subfamilies. The subtle but distinct
structural differences could cause diverse regulation outputs.
From the structural comparison standpoint, we speculated that
MarR could have a DNA-binding surface similar to those of
SarA, SarR, and SarS. Furthermore, solving the structure of
the putative MarR members in S. aureus would shed light on
our hypothesis.
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