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Many regulatory molecules are present in low copy numbers per cell
so that significant random fluctuations emerge spontaneously. Be-
cause cell viability depends on precise regulation of key events, such
signal noise has been thought to impose a threat that cells must
carefully eliminate. However, the precision of control is also greatly
affected by the regulatory mechanisms’ capacity for sensitivity am-
plification. Here we show that even if signal noise reduces the
capacity for sensitivity amplification of threshold mechanisms, the
effect on realistic regulatory kinetics can be the opposite: stochastic
focusing (SF). SF particularly exploits tails of probability distributions
and can be formulated as conventional multistep sensitivity amplifi-
cation where signal noise provides the degrees of freedom. When
signal fluctuations are sufficiently rapid, effects of time correlations
in signal-dependent rates are negligible and SF works just like con-
ventional sensitivity amplification. This means that, quite counterin-
tuitively, signal noise can reduce the uncertainty in regulated pro-
cesses. SF is exemplified by standard hyperbolic inhibition, and all
probability distributions for signal noise are first derived from un-
derlying chemical master equations. The negative binomial is sug-
gested as a paradigmatic distribution for intracellular kinetics, appli-
cable to stochastic gene expression as well as simple systems with
Michaelis–Menten degradation or positive feedback. SF resembles
stochastic resonance in that noise facilitates signal detection in non-
linear systems, but stochastic resonance is related to how noise in
threshold systems allows for detection of subthreshold signals and SF
describes how fluctuations can make a gradual response mechanism
work more like a threshold mechanism.

Internal regulation of biochemical reactions is essential for cell
growth and survival. Initiation of replication, gene expression,

and metabolic activity must be controlled to coordinate the cell
cycle, supervise cellular development, respond to changes in the
environment, or correct random internal fluctuations. All of these
tasks are orchestrated by molecular signals whose concentrations
affect rates of regulated processes. Because many of the regulatory
kinetic mechanisms are insufficiently characterized for accurate
quantitative analyses, they often are explicitly or implicitly approx-
imated as Boolean step-functions, assuming that a regulated pro-
cess switches on or off at a threshold signal concentration. How well
Boolean approximations apply to real biochemistry depends on the
underlying kinetic mechanisms’ capacities for sensitivity amplifica-
tion (1–3). Rates of simple reactions often respond far from
Boolean to signal changes, and high sensitivity basically requires
complicated control structures, as when signal molecules enter a
reaction in many copies (cooperatively) or at many subsequent steps
along a pathway.

Sensitivity analyses are generally phenomenological, assuming
that concentrations change continuously and deterministically.
However, signal molecules in genetic or metabolic networks are
often present in a few to a few hundred copies (4) and the actual
copy number in individual cells inevitably will fluctuate (4–13)
because of the intrinsically random nature of chemical reactions
(14–16). The relation between signal and response in intracellular
processes is thus inevitably affected by noise. This noise can be
exploited when nongenetic variation is selected for (6, 11), but its
presence raises critical questions. How can cells respond in a reliable
way to changes in conditions when signal molecule concentrations

only represent these conditions in a probabilistic sense? Would not
significant signal noise cause cells to frequently make the wrong
decisions? Reports (4–13) that explicitly address these questions
confirm the consensus that noisy signals reduce the reliability of
control in intracellular regulatory networks by randomizing the
response. However, these reports generally assume threshold ki-
netics and rarely take sensitivity into account.

It is unfortunate that sensitivity amplification and noise are
treated as separate aspects of intracellular regulation because the
two in fact are fundamentally connected. High sensitivity amplifi-
cation is essential for reducing uncertainty in the timing of cellular
events, and the significance of concentration noise is greatly af-
fected by how formation and elimination rates respond to concen-
tration changes. Conversely, random signal fluctuations can greatly
affect the capacity for sensitivity amplification. For threshold-
dominated control, fluctuations cause the signal to randomly jump
back and forth across the threshold and thereby randomize the
outcomes of the response reactions. Fluctuations thus turn the
average response rates into more gradual functions of the average
signal levels, i.e., reduces the sensitivity amplification. However, this
is only a special case of the general principle that the average of a
nonlinear function is not the same as the function of the average.
When the kinetic mechanism itself is gradual so that the response
is probabilistic also in the absence of signal fluctuations, the
situation can be the opposite: random fluctuations can make it
transcend all macroscopically predicted limits for sensitivity ampli-
fication. We term this phenomenon stochastic focusing (SF), and it
applies quite generally to insensitive nonlinear regulatory mecha-
nisms and signal noise that emerges spontaneously from biochem-
ical reactions. An effect of SF is that cells can exploit signal noise
to reduce the random variation in regulated processes.

Theory
Genetic and biochemical networks are complex systems, the
parts of which cannot be properly analyzed in abstraction from
the whole. Even so, Occam’s razor is essential when making new
kinetic design principles presentable, and this work therefore
gives full precedence to simplicity.

Hyperbolic Inhibition and Sensitivity Amplification. In the classification
of biochemical regulatory mechanisms, hyperbolic control is com-
monly used as a standard (3). Hyperbolic activation is for instance
described by the Michaelis–Menten equation (17), and for the
complementary hyperbolic inhibition, the probability q of not
inhibiting is given by

q 5
1

1 1 @s#yK
. [1]
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Here [s] is the concentration of a signal molecule and K is an
inhibition constant. The special position of hyperbolic control is
warranted both by its simplicity and by the fact that it arises from
ubiquitous reaction schemes, for instance simple branching
reactions (see Appendix).

The standard measure of regulatory sensitivity (1–3) is the
amplification factor, defined as the percentage change in the
response q over the percentage change in the signal [s] or,
identically, as the slope of a curve of log(q) as a function of
log([s]). High sensitivity does not necessarily mean Boolean
control in the strict sense that an activity switches from 0 to 1.
However, the practical implications of switching between e.g.
1023 to 1021 may be very similar; high sensitivity means sharp
shifts between negligible and significant activities.

How sensitively q in Eq. 1 responds to changes in [s] depends
on [s]yK, but the relative change in q is always smaller than the
relative change in [s].

Signal Noise. Internal noise does not reflect arbitrary irregularities
that disturb an otherwise deterministic development. Chemical
reactions are probabilistic by nature (14–16), and this randomness
is the conceptual foundation also for macroscopic approaches. The
mesoscopic molecular-level descriptions, based on chemical master
equations, in fact provide the bases from which the corresponding
phenomenological rate equations should be derived (16). All signal
probability distributions used in the present work therefore were
derived from biochemical reaction schemes (Appendix).

The Poisson distribution is widely used in theoretical analyses
of chemical systems because it frequently arises at thermody-
namic equilibrium (16) as well as when individual formation and
elimination events are independent. However, intracellular pro-
cesses are far from equilibrium and reactions are generally not
even approximately independent. A more suitable paradigmatic
distribution is then the negative binomial (NB) that ranges
between Poissonian and very broad and skewed distributions
depending on the kinetic parameters. The NB arises as the
stationary distribution of many simple birth and death processes,
including three prototypical kinetic designs of biochemical
relevance:

1. When individual signal molecules are synthesized independently
but eliminated with Michaelis–Menten kinetics. Elimination
may mean degradation into constituents, covalent modification,
or incorporation into more complex molecules.

2. When individual signal molecules are degraded indepen-
dently but synthesized along two different pathways, one with
zero and one with first-order rate (15, 16, 18). Apart from
replicators, this approximately applies to systems with posi-
tive feedback, such as when a gene product binds to its own
operator and increases the rate of transcription (Appendix).

3. When individual signal molecules are degraded indepen-
dently but produced in independent, instantaneous, geomet-
rically distributed bursts. Constant competition rates of
mRNA inactivation versus translation give a geometrically
distributed number of proteins translated per mRNA (7, 9).

Modification of signal molecules often produces additional
precursors for demodification, such as phosphorylation-
dephosphorylation of a constant total number of molecules.
When the individual reactions are independent, the stationary
distributions are binomial. When molecules instead compete for
modification-demodification enzymes, as for the zero-order
ultrasensitivity mechanism (19), f luctuations can be much more
significant. In the extreme where the rates are constant, the
stationary distribution of the minority molecular configuration is
a truncated geometric distribution.

Effective Probabilities. The signal concentration is the number of
signal molecules divided by the reaction volume (e.g. cell size), [s]

5 nyv. The expression for q in Eq. 1 is thus not only macroscopic,
q(n) is also the reaction probability in cells with n signal molecules
and therefore fluctuates randomly with n. However, because q is not
a linear function of n, the average response probability is generally
not the same as the response probability for the average signal,
q(^n&). The macroscopic approach is then insufficient for describing
average response rates, and because a population of cells cannot be
seen as a single super-cell it does not even describe averages over
infinitely large populations of identical, independent cells. The real
average ^q& is instead found by compounding q over all probabilities
pn for n signal molecules at the time of the reaction, assuming that
n stays constant during the time window of an individual response
reaction (Appendix).

^q& 5 O
n50

`

q~n!pn . [2]

When n f luctuates slowly, outcomes of subsequent signal-
dependent reactions become correlated. The parameter ^q& is
then relevant because it determines average rates, but it is
insufficient for describing the full impact of signal noise. How-
ever, when the signal f luctuates so rapidly that these response
correlations are insignificant, ^q& is not only an average over a
cell population, but also the actual probability of every single
reaction and thus determines the full random process so that the
variance of q over the distribution pn is irrelevant. The averaging
procedure in Eq. 2 is then practical for kinetic modeling, but ^q&
is neither more nor less than a simple reaction probability.

Signal, Noise, and Ambiguities. To inspect the impact that signal
noise has on ^q& it is tempting to simply relate ^q& to the average
signal ^n& and compare results in the presence and absence of
fluctuations around ^n&. For distributions that are completely
determined by their average, like the Poisson, this approach works
fine. However, when ^n& does not uniquely determine the proba-
bility distribution, it is impossible to unambiguously track changes
in ^q& for changes in ^n&. The exact changes in the underlying kinetic
parameters, such as rates of underlying reactions or binding con-
stants, then must be specified because a change in two parameters
such that ^n& is kept constant can elicit a sharp change in the
response ^q&. Taken over an entire cell population, the average
signal then would not change at all while the average response rate
could change with orders of magnitude.

Taking fluctuations into account and separating between differ-
ent sources of changes in the average is not a subversive way of
introducing additional layers of regulation. It instead reveals the
true regulatory nature of a system where the full distribution over
the internal states cannot be exchanged for the average. A state can
be identified as the number of molecules of a given species, and
conventional macroscopic kinetics relies on the approximate valid-
ity of replacing a set of possible states (internal noise) with a scalar
mathematical abstraction: the average. Although trivial, it should
be stressed that averages are defined from the distributions over the
internal states, not vice versa, and a system’s multivariate nature
always precedes the macroscopic phenomena. In molecular biology,
signal and response are mutually defining concepts, i.e., a concen-
tration receives its signal character through the kinetics of the
response reaction. By assuming that fluctuations in signal molecule
concentrations obstruct reliable intracellular signal processing,
without first carefully considering their impact on the response, one
thus implicitly sequesters parts of the signal from the mechanism
that defines it. The way to avoid these semantic but tangible
problems of signal and noise is to return to the fully mesoscopic
perspective where both the average and the fluctuations have their
origin in the underlying kinetics.

Time-Correlated Noise. When signal fluctuations are slow, outcomes
of subsequent signal-dependent reactions are correlated. Long time
periods with high signal-regulated intensity are then randomly
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succeeded by long time periods with negligible intensity. This can
increase fluctuations in the regulated process greatly.

The significance of correlations between outcomes depends
on how frequently the response reactions follow each other in
time compared to how rapidly the signal probability distribution
is reshuffled. Rapid signal f luctuations can be achieved by rapid
degradation but also by equilibration between active and inactive
configurations. High energy dissipation is thus not necessary to
avoid response correlations.

Results
To illustrate the surprising impact that signal noise can have on
intracellular regulation, we executed Monte Carlo simulations for
some simple systems and calculated effective reaction probabilities.

Monte Carlo Simulation of a Branched Reaction. We studied the
scheme:

A L|;
k

ka@s#
IO¡

kp

P ¡

1
A. [3]

The empty set A denotes sources and sinks of molecules. It is
unaffected by the reactions and does not affect the rates.
I-molecules are produced constitutively with rate k and degraded
or converted into P (product) with rates ka[s] and kp, respec-
tively. Product molecules are individually degraded with nor-
malized rate constant 1. I may be a constitutively synthesized
replication preprimer (10) that can mature or be inhibited by
signal molecules. However, scheme 3 can be given many inter-
pretations, and I also may be a transcription complex, an active
mRNA or an intermediate metabolite.

Noise in the signal concentration [s] arises from random
synthesis and degradation of signal molecules S. Here we used

A L|;
ks

kd

S

(corresponding to standard in Appendix) so that stationary signal
f luctuations are Poissonian.

When the transition from I to A or P is fast enough, the pool
of I-molecules is insignificant, and [s] does not change signifi-
cantly during the life span of an individual I-molecule. Scheme
3 then simplifies to

A L|;
kq

1
P

with q from Eq. 1 and K 5 kpyka so that the rate equation is
d[p]ydt 5 kq 2 [p]. Simulations were made both for noise-free and
noisy signal concentrations by using the Gillespie algorithm (20)
with the rates above as transition probabilities per time unit. From
the sum of rates, this algorithm iteratively generates exponentially
distributed reaction times for the next event. The type of event is
simulated with probabilities proportional to the respective rates.

When signal noise is insignificant, a 2-fold decrease in signal can
never result in more than a 2-fold increase in the average number
of products due to the intrinsic limitation of hyperbolic inhibition
(Eq. 1 and Fig. 1 Upper). However, Fig. 1 Upper shows that when
signal noise is significant, a 2-fold decrease in the average signal
concentration results in about a 3-fold increase in the average
number of product molecules. Consequently, when the (stationary)
signal molecule distributions overlap significantly (Fig. 1 Lower),
the corresponding average reaction probabilities can in fact become
more separated than when fluctuations are negligible: SF.

The increased capacity for sensitivity amplification is the only
effect of a rapidly fluctuating signal (Fig. 1 Upper). Stationary
product fluctuations are then Poissonian regardless of signal

noise. However, if signal f luctuations are slow (long signal
half-life) and significant, product fluctuations may be consider-
ably larger (Fig. 1 Upper), because of time correlations in the
product synthesis rate. Their impact depends on the time scale
of the regulated process, in this case the half-life of product
molecules. Because time scales of intracellular processes span
over many orders of magnitude, the effects of correlations can
be anything from insignificant to extreme.

Effective Probabilities. Fig. 2 shows ^q& (Eq. 2) as a function of ^n&
for the four distributions inspected in the Theory section. The
biological cause of the change in ^n& depends on the underlying
process (see Appendix). Only the Poisson is uniquely determined
by its average. For the NB, one of the kinetic parameters is varied
and the other is kept constant. For the binomial and truncated
geometric distributions we keep the total number of molecules
fixed and change the average number of signal molecules
through the modification-demodification balance.

As can be seen in Figs. 2 and 3, all four distributions used for
signal noise can significantly increase the sensitivity amplification.
For Poisson and binomial distributions, fluctuations are only sig-
nificant at very low averages so that low inhibition constants are
required to get significant SF for hyperbolic inhibition (Figs. 2 and
3, Left). However, when fluctuations are larger, as for the NB or
truncated geometric distributions, significant SF is possible in a
much broader range of averages and inhibition constants (Figs. 2
and 3, Right). In these two cases, hyperbolic inhibition also can
display stochastic defocusing, i.e., lower sensitivity than the re-
sponse to a noise-free signal (Fig. 3, not shown for NB).

Using Signal Noise to Attenuate Noise in Switching Delays. High
sensitivity amplification can be used for stricter control and
reduced uncertainty in a regulated process (31). Signal noise thus
can be used to attenuate response noise through SF. Here we
exemplify this fundamental principle with a signal molecule that
inhibits gene transcription. It is assumed that the signal synthesis

Fig. 1. (Upper) Number of product molecules as a function of time when
product formation is inhibited by a noisy or noise-free signal (see main text).
Product half-life is ln(2) time units, k 5 104 and ^q& 5 1%. To keep the same ^q&
before the shift for noisy and noise-free signals, the value of Kv, the inhibition
constantmultipliedbythereactionvolume, isdifferent inthetwocases.Afterfive
time units the signal time average ^n& 5 10 shifts to ^n& 5 5 due to a 2-fold
reduction in ks from 10 kd to 5 kd. For slow fluctuations, kd 5 100. When ks and
kd are 10 times higher, slow and rapid signal fluctuations give rise to almost
indistinguishable processes for product formation (not shown). Rapid signal
fluctuations correspond to insignificant time correlations. (Lower) Stationary
signal distributions (Poissonian) before and after the shift in conditions in Upper.
^q& (Eq. 2) is calculated by using the same Kv as in Upper.

7150 u www.pnas.org Paulsson et al.



rate decreases exponentially and that the signal concentration
continuously relaxes to the changing steady state (Eq. A7). This
can, for instance, be the case when synthesis depends on a
rate-limiting precursor or enzyme that decays exponentially
(with insignificant fluctuations). Defining switching delay as the
waiting time before the first transcript appears, two questions are
of particular interest. What is the average switching delay and
how significant is random variation around the average?

The uncertainty in the number of signal molecules inevitably
would increase the uncertainty in the switch delay if transcription
were turned on at a threshold signal concentration. However,
realistic regulatory mechanisms invoke random variation also in
the response to noise-free signals. Like most mechanisms,
hyperbolic inhibition has intrinsic shortcomings as a switching
mechanism due to its limited capacity for sensitivity amplifica-
tion. For a given initial transcription intensity, both the average

and the variance of the switching delay have lower limits (Eq. A8)
that cannot be transcended regardless of the choice of rate
constants. Signal noise changes the scenario. Both the average
and variance can then in fact be reduced indefinitely. A less
dramatic example of this effect is shown in Fig. 4.

Fig. 4 Upper shows a fluctuating signal and its average as
functions of time. The large fluctuations come from random
bursts in signal synthesis (gene expression in Table 1). Fig. 4
Lower shows the probability density for the switch-delay times.
The narrowest distribution corresponds to response to a noisy
signal and the two others correspond to the lower dispersion
limit when all rate constants can be chosen freely but signal noise
is insignificant (Eq. A8). The quasi-stationary distributions of the
noisy signal were NB, but the same effect is observed in all cases
that give rise to SF (Figs. 2 and 3).

Though signal noise also can increase the uncertainty in the
switch delay, the effects in Fig. 4 Lower are in no way restricted
to the specific assumptions of the given example. Similar effects
can, for instance, be observed if synthesis of a monomer is shut
off at time t 5 0 so that the number of dimers (signal molecules)
fluctuates around a decreasing average.

Discussion
Regulatory reliability is a double-edged concept. To operate in a
broad range of conditions, a regulatory mechanism must be robust
(21) to many biochemical changes but must at the same time
respond hypersensitively to specific changes for precise control (10).
The present work inspects how sensitivity is affected by signal noise.

Biological Impact: Evolutionary Exploitation of Noise. Biochemistry
on the level of single molecules has received much attention in
the last years (22). It is also becoming increasingly appreciated
that the probabilistic nature of chemical reactions can invoke
large random variation in regulatory responses and that this
noise could be exploited for nongenetic variation (6, 11). Ac-
cordingly, gene regulation has been called a noisy business (13).
Because it is also a nonlinear business, the sources and effects of
the noise must be carefully analyzed. For instance, the validity of
macroscopic approaches to describe averages cannot be taken for
granted because the average of a nonlinear function is generally not
the same as the function of the average. This was demonstrated for

Fig. 2. ^q& (Eq. 2) for noisy (solid lines) and noise-free (dotted lines) signals as
a function of the average number of signal molecules ^n& in log-log scale. Kv
is the inhibition constant multiplied by the reaction volume. For a mathemat-
ical specification of the distributions, see Eq. A3. For NB, the value of ^n& is
changed by changing l for fixed r 5 10y11. N in the lower two graphs is the
upper limit in the number of molecules.

Fig. 3. Amplification factors (1–3) (the slope of the curves in Fig. 2 for other
values of Kv) as functions of ^q& in lin-log scale. The upper curve corresponds
to noise-free signals.

Fig. 4. (Upper) The number of signal molecules as a function of time. The
synthesis rate constant decreases exponentially (Eq. A7). The quasistationary
distribution of molecules is NB and the underlying random process is given by
gene expression in Appendix. (Lower) The probability density for the switch-
ing delay time. The two curves for noise-free response corresponds to the
minimal dispersion possible when all parameters can be chosen freely (Eq. A8),
for the same initial intensity (dashed line) and the same average delay (dotted
line) as the response (solid line) to the noisy signal, respectively. The noisy
signal was NB-distributed with r 5 10y11, as in Upper, Kv 5 1 and assumed
to fluctuate so rapidly that correlations are insignificant. The choice of un-
derlying process does not change the result. See Appendix for a mathematical
and numerical specification.
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bimolecular reactions in 1953 (32). However, the most interesting
aspect is not related to the modeling tools but to the fact that noise
affects the qualitative nature of kinetic mechanisms. Here we show
that as a direct consequence of this principle, standard nonlinear
control in fact allows signal noise that arises naturally from bio-
chemical reactions to reduce the random variation in regulated
processes. The resolution of this paradox lies in the fundamental
connection between noise and sensitivity amplification, two aspects
of intracellular regulation that generally are treated separately.

Regulatory mechanisms’ capacity for sensitivity amplification
greatly affects the random variation in regulated processes and
realistic mechanisms have internal restrictions that invoke an
uncertainty also in the response to noise-free signals. However,
signal noise can render an intrinsically insensitive kinetic mech-
anism a great capacity for sensitivity amplification through SF.
This may apply to any rate that depends nonlinearly on a noisy
concentration, e.g. bimolecular reactions, and was here demon-
strated for hyperbolic inhibition. It is thus not necessary to
combine threshold-dominated control with limited signal mol-
ecule fluctuations to obtain precise regulation. Organisms may
acquire the same effect by exploiting fluctuations to turn insen-
sitive and simple biochemical mechanisms into thresholds, i.e.,
by letting one alleged problem solve the other. It may seem like
cells have insufficient information when making regulatory
decisions based on noisy signals. However, selection acts to link
a certain state of the cell to a certain response, not to make it
possible to determine this state from a sample of the signal
concentration.

SF and Multistep Control. A first step toward understanding how
signal noise can attenuate response noise is to strip terms like
signal and noise from their anthropocentric baggage. Significant
internal noise only means that a system’s multivariate nature
cannot be summarized by a scalar. It has long been appreciated
that high sensitivity can be achieved when a signal regulates
multiple subsequent transitions (23, 24). In a similar way, the
probability that the number of signal molecules randomly moves
from the average to extreme values depends on the underlying
kinetic parameters at every transition. As a consequence, the
probability mass in the tails of distributions generally responds
very sensitively to changes in the average. Because nonlinear
kinetic mechanisms may receive a disproportional contribution
from the tails, SF can be formulated as a multistep kinetic
mechanism that exploits the internal degrees of free-
dom that comes with signal noise. In macroscopic descriptions
internal states are lumped together and only averages are
considered.

SF and Stochastic Resonance (SR). Quoting Moss and Pei (25): ‘‘The
property of certain nonlinear systems whereby a random process—
the noise—can optimally enhance the detection of a weak signal is
called stochastic resonance (SR).’’ SF and SR thus show conceptual
resemblance. However, SR is related to how threshold systems can
use fluctuations to respond to subthreshold signals (26, 27), and SF
describes how fluctuations can turn a gradual mechanism into a
threshold. There is also a difference in both signal and noise
concepts. SR signals are generally periodic, though aperiodic SR
has been demonstrated (28), and the noise is typically external and
explicitly added to a noise-free system. To our knowledge, all SR
reports where noise is modeled as an effect of the internal degrees
of freedom interpret the noise differently.

It is shown that neurophysiological sensory systems have
evolved to take advantage of SR (29). For SF, fluctuations arise
from underlying chemical pathways that are affected by single
point mutations. Consequently, not only can a regulatory mech-
anism evolve to exploit signal noise, the properties of the noise
can evolve to accommodate the regulatory mechanism.

Conclusion. Deterministic intracellular behavior does not neces-
sarily rely on large numbers of signal molecules. These processes
operate far from equilibrium, with large fluctuations in concen-
trations and are regulated through nonlinear kinetics. Surpris-
ingly, these properties can produce cellular determinism through
the principle of SF.

Appendix
Hyperbolic Control. Hyperbolic control arises from a multitude of
schemes, for instance:

A ¢O
kp

IO¡

ka@s#
B.

This can be derived from the master equations:

ṖA 5 kpPI and ṖI 5 2~kp 1 ka@s#!PI . [A1]

P# A, the probability of ending up in state A, corresponds to
hyperbolic inhibition (q in Eq. 1) and P# B to hyperbolic activation
as in the Michaelis–Menten equation:

P# A 5
kp

kp 1 ka@s#
;

1
1 1 @s#yK

and P# B 5
ka@s#

kp 1 ka@s#
;

@s#yK
1 1 @s#yK

.

[A2]

Signal Noise. The distributions (with averages) used are:

Table 1. Macro- and mesoscopic fluxes and their stationary distributions (Eq. A3)

Standard
Michaelis–Menten

elimination Auto-catalysis
Standard

modification
Zero-order

modification
Gene

expression

J1[s] k9s k9s k9s 1 k[s] ks(C 2 [s]) k9s k9sry(1 2 r)
J2[s] kd[s] k9d[s]

K91[s]

kd[s] kd[s] k9d kd[s]

J1(n) ks ks ks 1 kn ks (N 2 n) ks ks (burst)
J2 (n) kdn kdn

K 1 n

kdn kdn kd kdn

Distribution Poisson NB NB Binomial Trunc. Geo. NB

^n& 5
ks

kd

l 5 K 1 1
r 5 ksykd

l 5 ksyk
r 5 kykd

C 5 ksykd a 5 ksykd l 5 ksykd

Primedandunprimedconstantsare relatedasks 5vks9andthereactionvolumevgoes to infinity in themacroscopic
limit but is time constant. Standard, autocatalysis, standard modification, and gene expression are linear and the rate
equation for the average number of molecules take the same form as the macroscopic equation. For Michaelis–
Menten elimination and zero-order modification the average behaves in a more complicated way.
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5
pn 5

^n&n

n!
e2^n& Poisson

pn 5 rn~1 2 r!l
G~l 1 n!

G~l!n!
, ^n& 5

lr

1 2 r
NB

pn 5 SN
nDCn~1 2 C!N2n, ^n& 5 NC binomial

pn 5
1 2 a

1 2 aN11 an, ^n& 5
a

1 2 a
2

~N 1 1!aN11

1 2 aN11

truncated
geometric,

[A3]

where G is the gamma function.
Changes in a concentration s is determined by the in and out

fluxes J1[s] and J2[s], respectively:

O¡

J1@s#
SO¡

J2@s#
.

With J1(n) and J2(n) as mesoscopic birth and death intensities
when there are n molecules, the general rate and master
equations (for one-step processes) are:

H @ ṡ # 5 J1@s# 2 J2@s#
ṗn 5 ~E21 2 1!J1~n!pn 1 ~E 2 1!J2~n!pn . [A4]

E is a ‘‘step operator’’ (16) defined by Ejf(n) 5 f(n 1 j). A
number of kinetic mechanisms is given in Table 1.

Standard. Individual formation and elimination events are
independent (15, 16).

Michaelis–Menten elimination. K9 is the Michaelis constant and
a stationary distribution exists when kd , ks.

Autocatalysis. As was shown in an analysis of maser amplifi-
cation (16, 18), a stationary distribution exists and is NB when
k , kd. Because ay(1 1 [s] 1 b[s]y(1 1 [s]) ' a 1 b[s] for small
[s], this kind of autocatalysis also may approximate positive
hyperbolic control that increases the synthesis rate from a to b.

Standard modification. The number of signal molecules n is
determined by independent individual modification-demodifi-
cation reactions of a constant total number of molecules in the
system, N 5 Cv, where C is the total concentration.

Zero-order modification. As above but with constant modifi-
cation-demodification rates (extreme zero-order ultrasensitivity;
ref. 19). The rate of modification drops to zero when there are
zero unmodified molecules and vice versa. When a , 1, n follows
a geometric distribution truncated at n 5 N and vice versa for
N 2 n when a . 1.

Gene expression. Macroscopically identical to standard, but every
synthesis event now adds a geometrically distributed number, b, of
molecules, gb 5 rb(1 2 r). The master equation is more complicated
than Eq. A4 and includes probability flows between all states, but
it is still easily solved by using moment generating functions. Closely
related mechanisms have received much attention in studies of
stochastic gene expression (7–9, 12, 30). The value r 5 10y11 used
in the figures corresponds to an average burst size of 10 molecules.

Effective Reaction Probabilities. When fluctuations are so rapid
that the number of signal molecules changes significantly during
an individual response reaction, Eq. 2 must be replaced by a
more complicated integral formulation that depends on the
exact reaction dynamics. For the branching reaction in scheme
3, ^q& can be calculated from the probability wj(t) of still being
in state I at time t, given that state I is reached at time t 5 0 and
that there were j signal molecules at that time, governed by:

ẇj 5 2wj~kp 1 ka^n~t!&j!. [A5]

^n(t)&j is the signal average at time t, given that there were j
molecules at t 5 0. This gives:

^q& 5 O
j50

`

pjkpE
0

`

wj~t!dt . [A6]

When the inhibitor fluctuates exceptionally rapidly, so that kd ..
kp and ^n&j 5 ^n&, Eq. A6 simplifies to ^q& 5 q(^n&).

Switching Delays. Assume that the signal synthesis rate declines
exponentially in normalized time:

@ ṡ # 5 kse2t 2 kd@s#. [A7]

The general solution follows from direct integration. If kd is high
so that [s] rapidly equilibrates to the current steady state, then
[s] ' [s]0 e2t where [s]0 is the initial steady state.

The switch intensity is kq(t) where k is the uninhibited transcrip-
tion intensity. The probability density for the switching delay is thus
f(t) 5 kq(t)T0(t) where T0(t) is the probability of no transcriptions
up to time t, governed by the master equation Ṫ0 5 2kq(t)T0. With
q from Eq. 1 and [s] 5 [s]0 e2t, the general f(t) is easily calculated
analytically. The lowest dispersion possible corresponds to the limit
when both k and [s]0yK tend to infinity, so that hyperbolic inhibition
works with maximal sensitivity, and corresponds to:

f~t! 5 beb~12et!1t, [A8]

where b 5 kKy[s]0 is the initial intensity.
When signal f luctuations are significant, the intensity kq(t)

f luctuates randomly. f(t) then can be found by sampling the
switch time by using Monte Carlo simulations (20). The data in
Fig. 4 Lower represent fluctuations so rapid that outcomes of
subsequent transcription attempts can be approximated as in-
dependent. A more precise f(t) then is found by numerically
integrating Ṫ0 5 2kq(t)T0 with q(t) 5 ^q(t)& where pn in Eq. 2
change with time. In Fig. 4 we used the NB distribution (Eq. A3)
with l(t) 5 l0e2t. All choices of underlying random process that
give rise to a stationary NB (Table 1) give identical results.
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