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ABSTRACT

The Plant snoRNA database (http://www.scri.sari.
ac.uk/plant_snoRNA/) provides information on small
nucleolar RNAs from Arabidopsis and eighteen other
plant species. Information includes sequences,
expression data, methylation and pseudouridylation
target modification sites, initial gene organization
(polycistronic, single gene and intronic) and the
number of gene variants. TheArabidopsis information
is divided into box C/D and box H/ACA snoRNAs, and
within each of these groups, by target sites in rRNA,
snRNA or unknown. Alignments of orthologous genes
and gene variants from different plant species are
available for many snoRNA genes. Plant snoRNA
genes have been given a standard nomenclature,
designed wherever possible, to provide a consistent
identity with yeast and human orthologues.

BACKGROUND

Small nucleolar RNAs (snoRNAs) are involved in cleavage of
pre-cursor ribosomal RNA (pre-rRNA) and determine site-
specific modification (20-O-ribose methylation and pseudouri-
dylation) in pre-rRNAs and snRNAs (1–4). In Archae,
snoRNAs are responsible for modification of some tRNAs
(5) and in human, brain-specific snoRNAs guide modification
of mRNAs (6). SnoRNAs fall into two major groups, defined
by the presence of conserved sequences: box C/D and box
H/ACA snoRNAs (2–4). The box C/D snoRNAs have two
phylogenetically conserved motifs: box C (RUGAUGA) and
box D (CUGA), flanked by short inverted repeats at the 50 and
30 termini of the snoRNA, respectively. These structural

elements are essential for snoRNA stability and nucleolar
accumulation. Adjacent to the terminal box D, or to an internal
box D0, there is a guide element of 10–21 bases that forms an
snoRNA/rRNA duplex selecting the targeted nucleotide.
In vivo, all box C/D snoRNAs are found within an snoRNP
containing fibrillarin, the methylase and three other conserved
core proteins (2–4). The box H/ACA snoRNAs have an ACA
motif at the 30 end of the snoRNA and a Hinge (H) box linking
two stem structures. The nucleotide targeted for pseudouri-
dylation is determined by an internal loop in the stem(s) with a
pseudouridylation pocket formed by short snoRNA–rRNA
duplexes of 4–10 bp flanking the target residue. All H/ACA
snoRNA form an snoRNP with four core proteins including
NAP57 in vertebrates (Cbf5p in yeast) which is the C synthase
(2–4). Thus, in eukaryotes, snoRNAs represent a family of
small, stable RNAs with a variety of functions. SnoRNAs have
been isolated from small RNA cDNA libraries or by computer
algorithms applied to genomic DNA sequence (2–4;7–9).
More recent isolation of small non-coding RNAs (ncRNAs)
(10) have also identified snoRNAs, and in particular, box
H/ACA snoRNAs. This is significant because their relatively
short conserved sequences have made computer algorithms
difficult to develop.

A major observation over the last five years, based largely on
genomic analyses, has been the discovery of an unexpected
high number of non-coding small RNAs in different organisms,
playing pivotal roles at all levels of gene regulation from DNA
replication to gene transcription and mRNA translation (11–13).
Among the ncRNAs, snoRNAs represent a major family which
have been well characterised both at the functional and
expression level. Therefore, the information on snoRNAs is
highly valuable in advancing the functional characterization
and regulation of ncRNAs which remains largely unknown.

In plants, the availability of the Arabidopsis genome
sequence led to three independent computer-assisted searches
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for box C/D snoRNA genes (14–16). Plant snoRNA genes
differ from those of yeast and human by: (1) the presence of
2–4 gene variants in >50% of the genes, (2) polycistronic gene
organization is the most common organisation, (3) entirely
novel intronic polycistrons have been found in Arabidopsis and
more frequently in rice and (4) processing of pre-snoRNA
transcripts, both polycistronic and single gene, are splicing-
independent (14–19). The Arabidopsis analyses identified 97
different box C/D and two different box H/ACA snoRNA
genes with a total of 175 different gene variants (14–16). Of
these, 133 were organized in 49 gene clusters distributed
across the Arabidopsis genome. These genes were predicted to
methylate ca. 120 rRNA target sites, agreeing well with earlier
biochemical analyses (20,21), and demonstrating that plants
have higher numbers of 20-o-ribose methylated nucleotides
than Archae, yeast and other higher eukaryotes.

The Plant snoRNA Database brings together the information
from the three Arabidopsis studies (14–16). Furthermore, it
includes information from studies on ncRNAs in Arabidopsis
(22,23, JPK and PG, unpublished results). These studies have
identified a number of box C/D snoRNAs, helping to confirm
the computer-assisted gene predictions. More importantly,
they have identified 43 box H/ACA snoRNAs which
guide pseudouridylation of rRNA. Prior to this, only two box

H/ACA snoRNA genes had been identified (16). In addition,
four box C/D and H/ACA snoRNAs which guide modification
of snRNAs were discovered, in line with similar discoveries
in yeast and human (24–26), and nine snoRNAs with no target
site in rRNA or snRNA were also found (16,23). The database
provides a unifying nomenclature for all of the above
genes, which will be applied to newly discovered genes and
genes from different plant species. To date, the Arabidopsis
box C/D snoRNAs have been used to identify �250
genes from different non-Arabidopsis plant species (JWSB,
unpublished results) and these sequences are included as
annotated alignments in the database. The database will
continue to expand, particularly with the release of the rice
genome sequence, where snoRNA searches are already
underway (19).

CONTENT OF THE DATABASE

The database currently contains 475 snoRNA gene sequences
from Arabidopsis and other plant species. The entry point to
the database is through a number of topics on the Home Page.
The first, ‘snoRNA genes in Arabidopsis’, presents summary
Tables of Arabidopsis snoRNAs arranged in two groups: box

Figure 1. Screen shot of Arabidopsis snoRNA gene information table ‘Box C/D snoRNAs with complementarity to rRNAs’.
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C/D and box H/ACA snoRNAs, and by the target RNA for
modification: rRNA, snRNA and unknown (Fig. 1 and
Supplementary Material). For each snoRNA, information is
provided on: (1) predicted/mapped modification sites, (2) the
number of gene variants, (3) whether the gene is found as a
single gene or in a polycistronic cluster, (4) whether the gene
or cluster is intronic, (5) supporting expression data and (6)
whether orthologues have been found in other plant species.

The second topic, ‘snoRNA genes in other plant species’,
covers the snoRNA genes from the 18 plant species besides
Arabidopsis, where snoRNA sequences have been found.
These species include both dicotyledonous and monocotyle-
donous plants, a gymnosperm species, two moss species and
an algal species. The number of snoRNA sequences so far
identified for each species roughly reflects the total number of
ESTs available, except for rice, where many sequences are of
genomic origin. Under each species name, a list of snoRNA
sequences identified and the number of variants found are
provided, with links to annotated sequence alignments (e.g.
Fig. 2). The alignments contain varying numbers of sequences,
with some having up to 18 (e.g. snoR28). The alignments show
conservation of boxes C, D0 and D, and complementary
regions, while demonstrating substantial sequence variation
among species and variants.

The third topic highlights the conservation of modification
sites among plant, yeast and human rRNAs. The Arabidopsis

modification sites are organized by their position along rRNA.
The information includes the position of corresponding
modifications in yeast and human rRNA and the identity of
the cognate snoRNAs (see Supplementary Material). Finally, a
series of links to other snoRNA and ncRNA web pages, key
references and a description of the nomenclature system are
given.

NOMENCLATURE

Due to the number of Arabidopsis snoRNA genes with
similarity to vertebrate and yeast genes, the Arabidopsis
snoRNAs were named to identify relationships using the
following criteria. When the complementary region(s) of an
identified gene corresponded to that of a vertebrate or
vertebrate/yeast snoRNA, the plant snoRNA was given the
vertebrate name (e.g. U14, U34 etc.). If the complementary
sequence corresponded only to that of a yeast snoRNA, then it
is given the yeast number followed by ‘Y’ (e.g. snoR77Y).
Novel plant genes were named following the nomenclature for
the maize snoRNA genes, snoR1, snoR2 and snoR3 etc. (17).
For a small number of genes, when a plant gene contained two
guide sequences found separated in different single genes in
human or yeast, the gene was considered novel. Similarly, if a
plant gene contained a single guide sequence where the

Figure 2. Typical sequence alignment. SnoR22 orthologues from Arabidopsis thaliana (At), Medicago truncatula (Mt), Lycopersicon esculentum (Le), Glycine max
(Gm) and Hordeum vulgare (Hv). Boxes C, D0 and D are boxed and regions of complementarity to rRNA are underlined with dashed lines.
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corresponding vertebrate gene contained two, the plant gene
was given a plant snoRNA name (e.g. snoR21). When a plant
gene contained two guide sequences, one of which corre-
sponded to a vertebrate/yeast guide sequence, and the other
was unique to plants, the plant gene was given the vertebrate/
yeast name (e.g. U36a). When more than one gene variant was
found at the same locus, the genes were given the suffix a, b, c
etc. and when at different loci, they were given the suffix .1, .2
etc. or combinations thereof.

DATABASE ACCESS AND MANIPULATION

The database provides a structured interface to all of the
published snoRNA gene sequences though a set of linked
HTML tables and sequence files. Sequence information for
individual genes is available in FASTA format and the entire
set of sequences can be downloaded as a multiple sequence
FASTA file.

LINKS

Links are provided to relevant snoRNA and ncRNA databases:
yeast snoRNA databases (7,27), archael snoRNAs (9), non-
coding RNAs (13) and non-coding RNAs in plants (22).

FUTURE OF THE DATABASE

In the near future, once analysis of particularly box H/ACA
snoRNAs is complete, we will provide links from the
Arabidopsis snoRNA tables to: (i) schematic diagrams of gene
clusters from different plant species showing conservation and
non-conservation of gene order, and intronic or non-intronic
location of related clusters in different species, (ii) the position
on Arabidopsis chromosomes of genes and gene clusters and
(iii) schematic diagrams of complementary sequences base-
paired with target RNAs for both box C/D and H/ACA
snoRNAs. We are also developing a MySQL implementation of
the database to allow more complex queries enabled through a
Perl.DBI and Perl.CGI WWW interface and the entire sequence
set will be made available as a Blastable database.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

REFERENCES

1. Venema,J. and Tollervey,D. (1999) Ribosome synthesis in Saccharomyces
cerevisiae. Annu. Rev. Genet., 33, 261–311.
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