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The transmission of many parasitic worms involves aggregated
movement between hosts of ‘‘packets’’ of infectious larvae. We
use a generic metapopulation model to show that this aggregation
naturally promotes the preferential spread of rare recessive genes,
compared with the expectations of traditional nonspatial models.
A more biologically realistic model also demonstrates that this
effect could explain the rapid observed spread of recessive or
weakly dominant drug-resistant genotypes in nematode parasites
of sheep. This promotion of a recessive trait arises from a novel
mechanism of inbreeding arising from the metapopulation dynam-
ics of transmission.

The emergence of drug-resistant strains of a wide variety of
pathogens is a major epidemiological challenge. One of the

oldest and most economically important examples is that of
gastrointestinal trichostrongylid nematode parasites of farmed
ruminants (1–3). Drug resistance in trichostrongylids appears in
many cases to be a single- or few-locus trait (4), though there has
recently been evidence for polygenic resistance to Avermectin in
Caenorhabditis elegans (5). Although resistance is commonly at
least partially dominant, there is also a significant prevalence of
autosomal, fully recessive traits such as resistance to Levamisole
in Haemonchus contortus, as well as incompletely recessive
two-locus traits such as resistance to Benzamidazole in H.
contortus and Trichostrongylus colubriformis (4).

The existence of fully or predominantly recessive drug resis-
tance is difficult to explain, even in the presence of a strong
selection pressure during drug treatment. Assuming that the
resistant allele preexists at a very low level, q, in the parasite
population because of mutation (6), the resistant phenotype
would only occur with vanishingly small frequency q2, and so
would never exist in sufficient numbers to invade a population.
More generally, the ‘‘q2 constraint’’ should inhibit the spread of
any recessive trait from a rare beginning. By contrast, for
dominant or sex-linked traits the resistant genotype occurs at a
much higher frequency, proportional to q, and is easily spread.

Here, we show that the characteristically aggregated trans-
mission of many parasites can overcome this constraint on rare
recessives. Spatial aggregation of the infectious stage, within an
intermediate vector host (7) or the definitive hosts’ fecal deposits
(8, 9), means that parasites tend to enter the host in ‘‘clumps’’
rather than singly. This process can make a significant contri-
bution (10) to the characteristically aggregated (i.e., overdis-
persed) distributions of worm burdens among hosts (11, 12)
[other processes that contribute to aggregated parasite distribu-
tions are heterogeneity of infection rates or immunity between
hosts (8) and positive feedback in the reinfection dynamics (13)].

We focus here on the simplest epidemiological picture, the
dynamics of trichostrongylid nematode parasite outbreaks in
farmed ruminants, maintained at constant sticking density dur-
ing a grazing season. Previous studies that combine clumped
infection and genetics (14, 15) have focused on the initial
dynamics soon after uninfected hosts are turned out onto
pasture. Ingested larvae take a couple of weeks to become
sexually mature worms, and any offspring will not become

infectious for a further few weeks, so the early infection events
involve preexisting larvae on pasture, the offspring of any adult
worms in the hosts do not contribute. Using this simplification,
we have shown that extrinsic infection by clumps containing
genetically heterogeneous larvae may lead to deviations from
Hardy–Weinberg mating rates, with significant repercussions on
the population genetics of the system (14, 15). However, the
dynamics of an epidemic are fueled by later generations of
parasites, and the nonlinear rates of production of different
genotypes complicate the system dramatically. Other nonlineari-
ties such as acquired immunity and density dependence cloud the
later picture still further.

Here we allow the size and genetic diversity of clumps to be
determined by the subpopulation of worms that produced them,
hence closing the ‘‘feedback loop’’ of infection that is an essential
element of the dynamics of the epidemic. This study integrates
clumped infection and population genetics into stochastic mod-
els of macroparasite epidemics. Because the larvae in a clump
are the offspring of a finite number of worms, they will be
somewhat related, especially at low worm burdens. When these
larvae are ingested together, they will then be in a position to
interbreed in their definitive host. This presents a potential route
to inbreeding, which could promote the frequency of rare,
resistant homozygotes.

Aggregation has previously been incorporated into models of
the evolution of anthelmintic drug by imposing a negative-
binomial distribution on the worm burdens (20, 21). This method
modifies the parasites’ mating probability and leads to a rich
variety of nonlinear behavior. However, it is not clear whether
this leads to significant deviations from Hardy–Weinberg mating
rates unless some degree of mate choice is assumed, explicitly or
implicitly (21, 22). By contast, the ‘‘spatial inbreeding’’ that is the
topic of the present paper occurs under completely random
mating within each host. It is produced by the specific ancestry
of each infectious clump of larvae, so we need an underlying
individual-based mechanistic model to investigate it.

We begin by studying a stochastic metapopulation model that
encapsulates the essential biological processes of positive feed-
back through clumped (re-)infection. We are able to prove
analytically that a rare, selectively neutral recessive trait has
prevalence proportional to q rather than q2 in this model. We
then present simulation results for a more detailed model of
parasitic gastrointestinal nematodes in farmed sheep, which
demonstrate that the metapopulation dynamics of transmission
leads to a much higher risk of invasion by a recessive drug-
resistant, relative to a model without spatial inbreeding.

Generic Metapopulation Model
We begin with a generic model. This is a simple, stochastic
branching process metapopulation, which examines the spread
of alleles as a function of a clumping parameter, defined as the
mean number of offspring per parent per clump, and is depicted
schematically in Fig. 1. The model describes the invasion of a
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large (asymptotically infinite) number of patches (‘‘hosts’’) by a
parasitic worm. The worms within a host mate and produce
offspring; these pass out of the host in clumps whose size and
genetic makeup will reflect the population of worms within that
host. A clump can then infect another host at random. We focus
on the initial growth of the parasite population, therefore
ignoring effects that become important at higher densities such
as density dependence and the hosts’ immune response. We also
assume that the initial growth of the population is very rapid
compared with the mortality rate of the worms, and that the
infectious stage is short-lived so that any infections take place
instantaneously.

The clump size is a Poisson-distributed random number whose
mean equals the clumping parameter multiplied by the number
of worms in the host producing the clump. The clumped infection
process leads to the worm burdens, and hence the clump sizes,
becoming aggregated (overdispersed) over time. However, our
clumping parameter is a property of the infection process, so it
has no simple relationship to measures of the degree of aggre-
gation of the worm population (such as Lloyd’s mean crowding
or the negative binomial k value), beyond the fact that these
measures increase monotonically with the clumping parameter.

For simplicity, the parasite is assumed to be a diploid, nonselfing
hermaphrodite, and is classified by a single-locus, two-allele trait.
Worms are assumed to be promiscuous, so the genetic diversity
within a clump reflects all possibly mating combinations within the
host. All genotypes have equal fitness, so the mean allele frequency
is constant over time. This gives a very conservative estimate of the
impact of spatial clumping on the population genetics, because we
allow no selective advantage to the resistant genotype. If there were
no clumping in the infection process, the distribution of genotypes
would automatically follow a Hardy–Weinberg scenario, and the
distribution of worms between hosts would obey a Poisson distri-
bution. The clumped infection process both allows the worms to
have aggregated subpopulations, and also to have non-Hardy–
Weinberg genetics.

Numerical results for the model can be obtained by simulating
the number of worms of the three genotypes in each of a very
large number (several million) of hosts. At each infection event,
one host is chosen at random, and each worm in the host
generates a Poisson-distributed clutch of offspring, with mean
equal to the clumping parameter and genetics corresponding to
random mating within the host. These offspring are all added to
another randomly chosen host. Analytical results can also be

obtained for this model, and these will be presented elsewhere.
A formal definition of the model is given in Appendix.

We start at a low level of infestation (two worms per host),
with the rarer allele occurring with frequency q. Fig. 2 shows the
frequency nss of the rare homozygote as a function of q, for one
value of the clumping parameter at four different times t. At t �
0, nss begins at its Hardy–Weinberg value q2, then increases
rapidly to a maximum at t � 3–5 (for these parameter values),
then decreases slowly toward an asymptote. Under random
mating, we would have nss � q2 for all t, the rare homozygote
clearly has a much higher prevalence than this Hardy–Weinberg
prediction. This effect is strongest for small allele frequencies,
and also when the clumping parameter is large (though this latter
effect is not shown in the figure). In fact, we can establish
analytically that, in the rare allele limit, nss is proportional to q
rather than q2. This can be seen in Fig. 2 from the fact that the
data for a given time t lie parallel, on a log–log scale, to a line
with nss � q.

We have also run simulations of a similar model with dioecious
worms. The same effect is present, though it is weaker than for an
hermaphrodite model with the same parameters. This is because
only half as many worms per clump can contribute eggs (assuming
1:1 sex ratio), which effectively reduces the clumping parameter.
Comparing a dioecious model with a hermaphrodite model having
half the fecundity and clumping parameter (and hence identical
numbers of egg-producing individuals per clump and per host), we
find similar values for nss, though it is nevertheless slightly smaller
in the diecious model as the additional presence of males means that
there is more mixing in the population.

The analysis of the generic metapopulation model shows that
the promotion of rare homozygotes to a prevalence of order q
rather than q2 is a generic consequence of aggregated transmis-
sion in the invasion of a parasite–naive host population. This has
very powerful implications: the aggregated spatio-temporal dy-
namics allow a wholly recessive trait to invade the population
almost as quickly as a partially or wholly dominant trait. This is
especially important for an allele that only has a selective
advantage in the presence of drug treatment, and which, in the
absence of the drug, will be maintained in the population at an
extremely low level by mutation.

Sheep–Trichostrongylid Model
To explore applications to nematode drug resistance explicitly,
we now consider a model for the immunoepidemiology of

Fig. 1. Schema of the generic branching metapopulation model. Adult
worms mate in the host and produce offspring, which pass out of the host in
‘‘clumps.’’ A clump can then infect another host.

Fig. 2. Simulations of the generic model, with clumping parameter 2:
prevalence of the rare homozygote as a function of allele frequency at
different times. Lines with nss � q and nss � q2 and are included for comparison
purposes.

7402 � www.pnas.org�cgi�doi�10.1073�pnas.0832206100 Cornell et al.



trichostrongylids in farmed ruminants, which takes into account
the stochastic nature of the population dynamics and the spatial
nature of the infection process (16). The life cycle of this
dioecious parasite as we model it is depicted schematically in Fig.
3A. Hosts encounter ‘‘clumps’’ of herbage containing infectious
larvae of mixed genotypes on pasture. When a host ingests a
clump of larvae, a fraction of these may avoid immune exclusion
and become established as mature parasites in the digestive tract
of the host. The adult worms in a host mate randomly (within the
host), and their offspring over some period are evacuated in the
host’s feces, and form a new infectious clump on pasture. The
model is a stochastic version of a standard, deterministic model
(17), and a formal definition may be found in Appendix.

We performed simulations of our model with biologically
realistic parameter values (taken from ref. 14), for a scenario
where 50 initially uninfected hosts are left on pasture from spring
to autumn. The pasture was originally infested with infectious
larvae, a small number of which had the resistant allele; the hosts
were treated prophylactically with a drug that reduced the
lifetime of susceptible (homo- and heterozygote) adult worms in
the host from 70 days to 2 days, while leaving the lifetime of the
resistant homozygote unaltered. At the end of each season, the
hosts are removed from pasture, the remaining larvae on pasture
are thinned by overwinter mortality, and then a new cohort of
uninfected, susceptible hosts is placed on pasture at the begin-
ning of the next season.

The system rapidly progresses to one of two outcomes, either
saturation with the resistant strain, or extinction of the parasite
population, within three to four seasons, as illustrated in Fig. 3B.
Note that this is roughly the time scale over which resistance is
commonly seen to emerge in the field (18). The stochastic nature
of the system means that either fate is possible with the same
parameter values. We define the ‘‘invasion probability’’ as the
fraction of realizations in which the parasite population has risen
to saturation.

Fig. 3C shows the invasion probability as a function of the
initial allele frequency, for differing degrees of clumping (for this
model, we define the clumping parameter as the clump size,
expressed as a fraction of the total number of offspring produced
by one host’s parasites in one day). The data from the model
described above are labeled ‘‘inbred,’’ whereas ‘‘random’’ de-
notes data from an alternative model without the spatial in-
breeding mechanism. The ‘‘random’’ model is equivalent to the
‘‘inbred’’ in all respects except one: the genetic makeup of
infectious clumps is a mixture over the offspring of all parasite
subpopulations, rather than the parasites in a single host. We do
not simply compare with the case of smaller clumping parameter,
because the need to find a mate in dioecious parasites introduces
another nonlinearity at low densities, the ‘‘mating probability.’’
This interacts strongly with the degree of clumping even in the
absence of genetic considerations.

Not only is the invasion probability for the ‘‘inbred’’ model
orders of magnitude higher than the ‘‘random’’ model for the
same parameter values, but also it is much less sensitive to the
initial allele frequency, so that invasion is still possible even for
much lower allele frequencies than we have shown in Fig. 3. We
also performed simulations for other parameter values, and
found that the effect persists under many conditions, being even
stronger for lower values of the basic reproductive ratio.

The invasion probability varies nonlinearly with several pa-
rameters in the system, and there are other biological mecha-
nisms, such as the mating probability (19), which interact with
the clumping parameter, but nevertheless we observe an effect
akin to the ‘‘q2’’ versus ‘‘q’’ of the simple branching process
model. The effect persists if drug resistance is only partially
recessive, and only disappears under conditions where the
heterozygote is fit enough to invade the host population by itself,
because then the invasion rate contains a component propor-
tional to q even in the absence of spatial effects.

Fig. 3. Sheep–trichostrongylid model. (A) Schematic diagram. (B) Worms per host (in blue) and larvae per hectare (in red) for two typical realizations, one
corresponding to extinction (dotted lines) and one to an epidemic (solid lines). (C) Invasion probability both with (inbred) and without (random) spatial
inbreeding, for different values of the clumping parameter; the error bars are standard errors from the simulations (based on �10,000 realizations).
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Discussion
These results illustrate a number of new, general points about the
dynamics of rare recessive genes in sexual metapopulations.
First, inbreeding is an emergent property of clumped transmis-
sion of dioecious parasites. This arises from adding the impact of
spatial clumping to previous, important research on the impact
of infrapopulation parasite mating frequency on the dynamics of
resistance (20–22). Spatially generated inbreeding is important
when resistance is a rare trait that only has a small probability of
invading, but does so because of a large number of ‘‘replicates.’’
Similar results may be sought in any metapopulation where the
size of migrating clusters increases with subpopulation size. The
effect is initiated by the high variability in allele frequency
between hosts when the worm burdens are low, and is dramat-
ically weakened if the initial infection rate is increased.

Second, the spatial clumping mechanism may have implica-
tions for the management of resistance. It is commonly thought
that allowing some exposure to parasites promotes acquired
immunity in ruminants (24, 25), and is beneficial in combating
the spread of drug resistance; our results suggests that the
consequent reduction in variability of the allele frequency may
be a further benefit of this practice. The induced inbreeding
requires the simultaneous ingestion of related larvae, which in
turn relies on the integrity of the fecal clumps. It is known that
larvae on pasture disperse more readily in wet weather, and it is
interesting to note that dry weather has been implicated in the
promotion of anthelmintic drug resistance (25, 26). Experimen-
tal molecular ecology to explore these effects might be very
fruitful.

More broadly, this is a generic model for the spread of rare
genes in a metapopulation with clustered migration. Our model
illustrates the often unexpected emergent properties arising
from the interaction between population genetics and popula-
tion dynamics (25, 26). This work also underlines the suitability
of macroparasite systems for exploring the ecological and evo-
lutionary dynamics of metapopulations.

Appendix
Definition of Branching Metapopulation Model. Finite number of hosts.
The model is a Markov process in continuous time. The state of
the system at time t is specified by ({Wi, j(t) : i � {1,. . . N}, j �
{1, 2, 3}}), where Wi, j is the number of parasites of genotype j
in host i, N is the number of hosts, and j is an index corresponding
to genotypes ss, sS, and SS, respectively (‘‘s’’ denotes the rare
allele and ‘‘S’’ the wild-type allele).

The system only changes through the infection of a host (i say)
with a clump of parasites arising from another host (k say, where
k � i is possible). Such infections take place at a rate ��N, so that
� is the total rate at which the ith host encounters clumps. Given
Wk, j, the clump is always of zero size if ¥jWk, j � 1, because the
worms do not self-fertilize. Otherwise, the clump has size (C1, C2,
C3), where the Cj have independent Poisson distributions with
means �j, where

�1 �
1
�

v2 � Wk,1 �
Wk,2

4
w � 1

�2 �
1
�

2v�w � v� �
Wk,2

2
w � 1

�3 �
1
�

�w � v�2 �
Wk,2

4
� Wk,3

w � 1
,

and w � Wk,1�Wk,2�Wk,3, v � Wk,1�Wk,2�2. Note that the
mean number of offspring per clump per parent is 1��, so the
mean number of worms per host is independent of �.
Infinite number of hosts. The probability that a host is infected at
any given instant with a clump of size C � (C1, C2, C3) is
proportional to the average over all other hosts of the probability
�(C�W) that a host with W � (W1, W2, W3) worms will produce
a clump of size C [since the Cj have Poisson distributions, we have
�(C�W) � e	�1	�1	�3�1

C1�2
C2�3

c3�(C1!C2!C3!), where the �i are
defined in the previous section]. In the limit N3 
, the average
over all hosts becomes synonymous with the average over
realizations of one particular host. It is now possible to consider
only the dynamics of one subpopulation W, for which the
transitions are: W3W � C at rate �, where C is a random triple
with P(C � c) � pC(c, t).

This Markov process can be straightforwardly solved to yield
the probability distribution pW(w, t) � P(W(t) � w) in terms of
pC(c, t). The clump size distribution, pC, can then be expressed
self-consistently in terms of pW from the requirement that pC(c,
t) � ¥W �(c�w)pW(w, t). Some headway may be made toward a
full, explicit solution to the system by using generating function
techniques.

Definition of the Sheep–Trichostrongylid Model. This model is a
stochastic version of an original deterministic model described in
G. Smith (17).

We define the model as a Markov process in continuous time
t. The state of the model is specified by

��Mi, j, Fi, j : i � �1, . . . , N�, j � �1, 2, 3��;

L1
B, L2

B, L3
B; K; Lj,k

C : � j � �1, 2, 3�, k � �1, . . . , K���

where Mi, j(t) is the number of male adult parasites in host i of
genotype j; Fi, j(t) is the number of female adult parasites in host
i of genotype j; N is the number of hosts (fixed); Lj

B(t) is the number
of ‘‘background’’ larvae of genotype j; Lj,k

C (t) is the number of
larvae of genotype j in the kth clump; and K(t) is the total number
of clumps.

Genotype index j � 1, 2, 3 correspond to ss (resistant
homozygote), sS (susceptible heterozygote), and SS (susceptible
homozygote), respectively. Transitions in the state of the system
at time t occur at the following rates for all i � {1,. . . N}, j �
{1, 2, 3}, k � {1, . . . , K}, where the chance of multiple
transitions occurring simultaneously can be ignored:

Y Mortality

Lj
B 3 Lj

B � 1 : at rate �LLj
B larvae on pasture

Lj, k
C 3 Lj, k

C � 1 : at rate �LLj, k
C larvae in clump

Mi, j 3 Mi, j � 1 : at rate ��jP
0 � �P

1j�Mi, j � Fi, j��Mi, j;
male parasites

Fi, j 3 Fi, j � 1 : at rate ��jP
0 � �P

1j�Mi, j � Fi, j��Fi, j;
female parasites

Y Production of clumps of larvae

K 3 K � 1 : at rate
1
a

�1 � 	jMi, j,0�

with Lj,K
C � Poi�a�
j�, where


1 � f1m1, 
2 � f1m2 � f2m1, 
3 � f2m2, and

f1 � Fi,1 �
1
2

Fi,2, f2 �
1
2

Fi,2 � Fi,3

m1 �
Mi,1 �

1
2

Mi,2

Mi,1 � Mi,2 � Mi,3
, m2 �

1
2

Mi,2 � Mi,3

Mi,1 � Mi,2 � Mi,3

,
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Here, 	 is the Kroneker delta and a is the clumping parameter.

Y Infection by background larvae

Lj
B 3 Lj

B � 1; Mi, j 3 Mi, j � �M�t� : at rate
�Lj

B

2A

LB 3 LB � 1; Fi 3 Fi � �F�t� : at rate
�Lj

B

2A

,

where �M(t), �F(t) are independent, identically distributed Ber-
noulli variables with P(� � 1) � (t), which allow for the
possibility that ingested larvae may not become established as
mature parasites within the host

Y Infection by clumps

�Mi, j�� 3 �Mi, j� � �j��t��; �Fi, j�� 3

�Fi, j� � �j��t��; Lj�,k
C 3 0; j� � �1, 2, 3� : at rate

�H
N

where �j�(t), �j�(t) are independent, identically distributed Pois-
son variables with mean ((t)�2)Lj�,k

C .
The meanings of the parameters are given in Table 1, with the

exception of the clumping parameter a. Note that we have
assumed male and female parasites to be equally abundant.
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Table 1. Sheep-trichostrongylid model parameters, with the values used

Parameter Meaning Value

H Host density per hectare (ha) 5 ha	1

� Larval encounter rate per host 5 � 10	5 ha�day	1

� Egg production rate per female parasite 1,000 day	1

�L Larval mortality rate 0.05 day	1

�jP
0 Density-independent parasite mortality rate �1P

0 � 0.014 day	1, �2P
0 � �3P

0 � 0.5 day	1

�P
1 Density-dependent parasite mortality 1.44 � 10	6 day	1

(t) � (1�1 � Cebt) Probability of establishment of ingested
larvae as mature parasites

C � 0.0735, b � 0.073 day	1
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