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ABSTRACT

Polyadenylation plays an important role in RNA deg-
radation in bacterial cells. In Escherichia coli, exo-
ribonucleases, mostly RNase Il and polynucleotide
phosphorylase, antagonize the synthesis of poly(A)
tails by poly(A) polymerase | (PAP I). In accordance
with earlier observations showing that only a small
fraction of bacterial RNA is polyadenylated, we
demonstrate here that ~10% of rpsO mRNA harbors
short oligo(A) tails ranging from one to five A resi-
dues in wild-type cells. We also compared the
length, frequency and distribution of poly(A) tails at
the 3’-end of rpsO transcripts in vivo in the presence
and absence of Hfq, a host factor that in vitro stimu-
lates the activity of PAP I, and found that Hfq affects
all three parameters. In the hfg* strain the average
length of oligo(A) tails and frequency of poly-
adenylated transcripts was higher than in the hfq-
strain and a smaller proportion of tails was found at
the 3’ end of transcripts terminated at the Rho-
independent terminator. Our data led us to the
conclusion that Hfq is involved in the recognition of
3’ RNA extremities by PAP I.

INTRODUCTION

The occurrence of polyadenylation in prokaryotes was
hypothesized in 1974 when several adenylate residues were
discovered at the 3" hydroxyl end of T7 early messengers (1).
One year later three separate laboratories described low levels
of poly(A) RNA in bacteria (reviewed in 2). In spite of the
discovery of a poly(A) polymerase (PAP 1) in Escherichia coli
in 1962 (3) and extensive studies on the catalytic properties of
this protein (3,4), no function was associated with this activity
in bacteria until recently.

It is now accepted that PAP I adds poly(A) extensions to the
3’ ends of many kinds of RNA, including mRNA, precursor
and mature forms of rRNAs and tRNAs, regulatory RNAs and
small RNAs with unknown functions (5—-13). In some cases,

polyadenylation was demonstrated to facilitate degradation by
3’—5" exoribonucleases. This is the case for RNA molecules
whose 3" ends are sequestered in stable stem—loop structures
which cannot be readily attacked by these enzymes. Addition
of a 3’ poly(A) extension offers a toehold for polynucleotide
phosphorylase (PNPase) to bind the RNA and initiate its
degradation (14—17). In contrast, RNase II, which is also able
to remove these tails, fails to pass through secondary
structures which protect the messenger (17-19). It is generally
accepted that repeated steps of poly(A) addition and
exonuclease digestion are needed to overcome the resistance
of structured RNAs to exonucleolytic decay (15,20).

On the basis of in vitro experiments, it was proposed that
PAP I preferentially recognizes single-stranded RNA extrem-
ities (21,22). In contrast, in vivo poly(A) tails have been
mapped to both single-stranded and folded 3’ termini distrib-
uted at several positions within mRNA molecules, suggesting
that PAP I shows little or no sequence specificity for the
addition of poly(A) tails (20). Also, PAP I polyadenylates
tightly folded mRNA fragments (15,23) and non-coding small
RNAs (RNA I, Cop A and Sok) that are mostly degraded by
poly(A)-dependent RNases (6,24-26). The discrepancy be-
tween PAP I specificity in vitro and in vivo could be explained
if cofactors such as unwinding proteins or RNA chaperones
were involved in the recognition of 3’ extremities and
adenylation by PAP I. Host factor I (Hfq), which stimulates
poly(A) tail elongation both in vivo and in vitro (27) and
exhibits chaperone activity in vitro (28), may play this role. In
the case of QP RNA, Hfq affects the folding of the 3" extremity
of the molecule and promotes its replication by the replicase
(29). We therefore decided to examine whether Hfq affects the
occurrence of poly(A) sites and the extent of polyadenylation
in vivo.

Degradation of rpsO mRNA, encoding ribosomal protein
S15, is initiated by an RNase E cleavage between the coding
sequence and the transcriptional terminator. The body of the
messenger is then further degraded by the combined actions of
PAP I, PNPase and RNase II. Poly(A) tails were detected at
the termini of nascent terminated mRNA and at the end of
decay intermediates produced by endonucleolytic and exonu-
cleolytic digestion (20). In this report, we demonstrate that
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~10% of rpsO mRNA 3’ extremities harbor oligo(A) tails
ranging from one to five A residues in wild-type cells (4 out of
39 clones). To analyze polyadenylation independently of the
exonucleolytic nibbling which removes poly(A) tails and of
RNase E, which has been shown to initiate the rapid
degradation of the transcript (30) and to cleave poly(A) tails
from RNA in vitro (31), we mapped the position and
determined the frequency and length of poly(A) tails in
rpsO mRNA in cells deficient for RNase II, PNPase and
RNase E, and found that Hfq affects all three parameters.

MATERIALS AND METHODS
Strains, plasmid and growth conditions

Strains MG1693, SK5704 (rne-1% pnp-7 rnb-500%) and
IBPC922 [rne-1% pnp-7 rnb-500% hfgl::Q(KmR, Bcll)] and
the pFB1 plasmid carrying the rpsO locus have been described
(27,32). These strains and their transformed derivatives were
grown at 30°C in LB medium supplemented with thymine
(40 ug/ml) and ampicillin (100 ug/ml) when required.
Aliquots were prepared from exponential growing cells at
30°C (wild-type cells) or shifted to 44°C for 15 min to
inactivate the thermosensitive enzymes RNase E and RNase 11
(RT-PCR analysis). To stop transcription, rifampicin
(500 pg/ml) was added at the time of the shift (#5) (northern
blotting analysis).

RNA preparation and northern blotting

RNA preparation and northern blotting were as described (27).
Cells transformed with pFB1 were used for RT-PCR analysis
while non-transformed strains were used for northern blotting
experiments. Directed cleavage of RNAs by RNase H was
performed as described (17).

RT-PCR cloning

Oligonucleotides used for 3" end and poly(A) tail detection
and characterization were the oligoribonucleotides RIBOLI
(5’-pUGGUGGUGGAUCCCGGGAUC-3") and RIBOFED
(5’-pGCUUGGUGGUGGAUCCCG-3"), respectively, and
the oligodeoxyribonucleotides DEOXYLI (5-GATCCCGG-
GATCCACCACCA-3") and DEOXYFED (5-CGGGATC-
CACCACCAAGC-3"), respectively, as reverse primers.
Selective amplification of rpsO cDNA was performed using
the oligo 5-GCAAACGACACCGGTTCTAC as forward
primer. Bases in italics represent partial HindIII restriction
sites and bases in bold the BamHI site used in the subsequent
cloning procedure.

An aliquot of 2.5 pg total RNA was ligated to 100 pmol
oligo RIBOLI or RIBOFED using 20 U T4 RNA ligase in the
reaction buffer and incubation conditions described in Li et al.
(33). After ethanol precipitation, an aliquot of the ligation was
annealed to the DEOXY oligo complementary to the linker.
cDNA synthesis was performed by incubating the annealing
mix with 10 U AMV reverse transcriptase in 50 mM Tris—HCl
(pH 8.5), 8 mM MgCl,, 30 mM KCI, 100 mM DTT and 100
mM each dNTP at 42°C. The cDNA was subjected directly to
PCR amplification with the same DEOXY oligo and the rpsO
forward primer, under conditions suggested by the manufac-
turer. PCR products were digested with Pstl and BamHI or
HindIII and cloned into vector pT3T718U digested with the

same enzymes. Polyadenylated clones are counted as those
clones that possess extra A residues at the 3" end of the RNA.
Since we cannot distinguish between two encoded A residues
at the 3’ end, the addition of one A after an encoded A or two A
residues polymerized by PAP I, we assume that we under-
estimate the number of polyadenylation sites and size of the
poly(A) tails.

RESULTS

About 10% of rpsO mRNAs harbor an oligo(A) tail in
wild-type cells

It is already known that the relative amount of RNA harboring
poly(A) tails is low in bacteria. In order to determine precisely
the fraction of rpsO transcripts harboring poly(A) extensions
and the length of these tails, we analyzed the 3’ ends of this
particular mRNA species in wild-type cells in vivo. To this
end, we end-ligated the RIBOLI oligoribonucleotide to RNA
extracted from strain MG1693 transformed with pFB1 and
performed an RT-PCR using the DEOXYLI and rpsO forward
oligonucleotides complementary to the end-ligated oligoribo-
nucleotide and rpsO mRNA, respectively, so as to selectively
amplify rpsO mRNA 3’ ends (7). The PCR fragments were
cloned and sequenced.

Most of the 39 3’ ends analyzed by this method corres-
ponded to transcripts lacking the transcription terminator
hairpin and only four of them (10%) harbored very short
oligo(A) extensions ranging from one to three A residues
(Fig. 1A, square symbols). Because of the low frequency of
poly(A)-tailed rpsO transcripts, we modified the above RT-
PCR protocol so as to select for mRNA harboring at least two
consecutive A residues at their 3" ends. For this purpose, we
ligated the RIBOFED oligoribonucleotide terminating with 5’
GCUU... to total RNA. The junction between this oligo-
ribonucleotide and RNAs terminating with two A residues
created a HindIII restriction site on the RT-PCR products
which permitted selective cloning of amplified DNA frag-
ments containing adenylated rpsO mRNAs (12). Strikingly, 34
out of 49 3’ ends analyzed (69%) contained at least two
terminal A residues corresponding to encoded nucleotides,
strongly reinforcing the notion that the relative frequency of
RNA harboring post-transcriptionally added poly(A) exten-
sions is very low. On the other hand, the other 15 ends
contained non-encoded A residues in stretches ranging from
one to five A residues in length, confirming that oligo(A) tails
are very short in the wild-type strain (Fig. 1B). Moreover, the
identification of poly(A) extensions both upstream (two clones
at position 347) and downstream of hairpin structures (two
clones at position 417) suggests that PAP I can polymerize
AMP downstream of both single-stranded and double-
stranded sequences (Fig. 1A).

Hfq affects the frequency of oligoadenylated rpsO
transcripts

The current model of polyadenylation in bacteria postulates
that the length of poly(A) tails results from a dynamic
equilibrium between the opposite activities of PAP I and
3’—5’ exonucleases, namely PNPase and RNase II, which
shorten or completely remove single-stranded nucleotides
from the 3’ end of RNAs. To investigate the role of Hfq in
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Figure 1. rpsO mRNA polyadenylation in wild-type cells. (A) Predicted structure of the rpsO mRNA 3’ region from position 320 (Pstl cloning site) to
position 420 corresponding to the 3’ end of the transcript terminated at the Rho-independent transcription terminator tl1. Residue 1 is the first residue
transcribed from the natural P1 promoter (40). This 201 nt long region was folded with mfold (http://www.bioinfo.rpi.edu/applications/mfold). The locations
of rpsO 3’ extremities harboring poly(A) tails in RNAs isolated from wild-type strain MG1693/pFB1 are indicated on this secondary structure. Positions were
deduced from RT-PCR analysis without (squares) (4 clones out of 39) and with selection of RNA 3’ extremities harboring at least two A residues at their 3
ends (triangles) (13 clones in the 7psO sequence out of 49). Number 2 in bold indicates that two clones harboured poly(A) at the same position. Extremities
terminated by two encoded A residues are not shown in this diagram. (B) Clones harboring post-transcriptionally added oligo(A) tails shown in (A) are plotted
as a function of tail length. Two polyadenylated extremities located at the upstream RNase III site of the rpsO—pnp intercistronic region were included in this

analysis.

poly(A) synthesis, we compared the frequency of tails in
isogenic hfg* and hfg~ strains deficient for PNPase, RNase 11
and RNase E. RNase E inactivation has the advantage of
increasing the intracellular concentration of the rpsO tran-
script. RT-PCR of rpsO transcripts was performed using an
oligoribonucleotide ligated to the 3" end of total RNA as
described above (7). Strikingly, sequencing of the amplified
rpsO cDNAs showed that 57% (41 clones out of 72) of 3’
mRNA extremities were adenylated in an Afg* strain compared
to only 20% (14 clones out of 70) of 3 mRNA extremities in
the strain lacking Hfq (Fig. 2). A %2 test of the data indicates
that differences in the number of adenylated and non-
adenylated clones in hfg* and hfg~ strains is highly significant
(3% =20.4, P << 0.001). We concluded that Hfq enhances the
polyadenylation status of RNA transcripts.

Hfq decreases polyadenylation at the terminus of the
primary transcript

Since the number of oligoadenylated 3’ extremities isolated
from the hfg~ strain was not sufficient to allow comparison
between hfg* and hfg~ strains as to the location and length of
poly(A) tails, we repeated the RT-PCR experiment with the
oligoribonucleotide allowing the selective cloning of RNAs
harboring at least two adjacent A residues at their 3" end. We
isolated 71 and 70 oligoadenylated extremities from the hfg*
and hfq~ strains, respectively, in the triple mutant background
and found polyadenylation at different sites in the Afg* and
hfg~ strains (Fig. 3). In the hfg~ strain we observed that 39 out
of 70 clones were located at position 420, as compared to 14
out of 71 clones located at the same position in the Afg* strain.
This poly(A) site is isolated from the others and corresponds to

the 3" end of the primary transcript. A 2 test of the data ()2 =
14.6, P << 0.001) indicates that this difference in the number
of adenylated clones located at the end of the primary
transcript in Afg* and hfg strains is highly significant.

The large fraction of mRNA-oligo(A) junctions mapping
downstream of transcription terminator tl in the Afg~ strain
[56% of oligo(A) tails] might reflect a preferential poly-
adenylation of primary transcripts, harboring a 3’ terminal
stem—loop structure, in the absence of Hfq. The fact that this
fraction drops to 20% in cells containing Hfq suggests that Hfq
may facilitate adenylation of the 3" end of molecules truncated
within the coding sequence of rpsO resulting from both endo-
and exonucleolytic cleavage of the primary transcript.
Alternatively, Hfq might destabilize the terminated-polyade-
nylated transcripts in an rne-pnp-rnb independent way.

Oligo(A) tails are shorter when Hfq is inactivated

Comparison of oligoadenylated 3" extremities isolated from
hfg* and hfg~ strains (71 and 70 clones, respectively) lacking
exoribonucleases and RNase E suggested that Hfq also affects
the length of poly(A) tails. Indeed, the number average lengths
calculated from data reported in the histogram in Figure 4A
are 5.6 £ 0.9 and 9.1 = 1.2 in the hfg~ and the hfg* strains,
respectively. If tails longer than 14, which seldom occur, are
excluded, the number average lengths fall slightly to 5.1 = 0.6
in the hfg~and 7.3 = 0.6 in the hfg* strains. These results show
that in the absence of RNase II, PNPase and RNase E, tails are
longer in an Afg* strain than in the mutant.

To test whether this difference could reflect the rate of
addition of A residues, we analyzed the length of the tails at
different times after inactivation of RNase II and RNase E in
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Figure 2. Location of both adenylated and non-adenylated 3’ extremities
generated in strains deficient or proficient for Hfq. Distribution of non-
adenylated and adenylated rpsO 3’ extremities in SK5704 (rne-1% pnp-7
rnb-500%) (upper panels) and IBPC922 (rne-1 pnp-7 rnb-500% hfg-1::Q)
(lower panels) 15 min after the temperature shift which inactivates thermo-
sensitive RNase II and RNase E. Both strains carried the pFB1 plasmid
overproducing the rpsO mRNA. Positions were deduced from the RT-PCR
analysis during which all RNA 3’ extremities harboring (grey) or not
(black) non-encoded nucleotides were mapped. The locations and the
number of independent clones corresponding to non-adenylated 3" ends (31
clones from strain SK5704, 56 clones from strain IBPC922) and adenylated
3" ends (41 clones from strain SK5704, 14 clones from strain IBPC922) are
presented according to their positions in the rpsO sequence. Position 420
corresponds to rpsO mRNA terminated at the Rho-independent transcription
terminator (Fig. 1A).

cells lacking PNPase, at single nucleotide resolution. This was
done by northern blotting of RNA fragments corresponding to
the 3" end of rpsO transcripts obtained by RNase H-directed
cleavage 50 nt upstream of the transcription termination site
(17). Figure 4B shows that the rpsO transcript may gain up to
three additional nucleotides at its 3" extremity (presumably A
residues) 4 min after the inactivation of RNase II and RNase E
in the strain lacking Hfq compared to seven nucleotides in
cells containing Hfq. This elongation suggests that Hfq
stimulates the rate of polyadenylation at the end of the
primary transcript immediately after the inactivation of RNase
E and RNase II in the absence of PNPase. However, we cannot
exclude the possibility that Hfq may protect rpsO RNA tailed
at different positions from degradation by ribonucleolytic
activities different from RNase II, PNPase and RNase E.
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Figure 3. Sites of rpsO poly(A) tails isolated from strains deficient or
proficient for Hfq. Amplified rpsO cDNA clones from strains SK5704
(rne-1% pnp-T7 rnb-500%) (upper panel) and IBPC922 (rne-1% pnp-7 rnb-
500" hfg-1::Q) (lower panel) containing at least two A residues at the junc-
tion with the oligoribonucleotide were cloned selectively. The diagram
shows 3’ extremities containing non-encoded riboadenylates on the sequence
of the rpsO mRNAs isolated from the hfg* and hfg~ cells (15 min after the
temperature shift which inactivates thermosensitive RNase II and RNase E).
Position 420 corresponds to rpsO mRNA terminated at the Rho-independent
transcription terminator (Fig. 1A).
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Figure 4. Length of rpsO poly(A) tails isolated from strains deficient or
proficient for Hfq. (A) Clones containing post-transcriptionally added tails
isolated from hfg* (black) and hfg~ (open symbol) cells, described in Figure
3, are plotted as a function of poly(A) tail length. (B) Rate of poly(A) tail
elongation by PAP I, downstream of the rpsO transcription terminator in
SK5704 (rne-1% pnp-7 rnb-500%) and IBPC922 (rne-1% pnp-7 rnb-500%
hfg-1::Q) visualized on a northern blot. Cells grown at 30°C to an ODgs0 nm
= 0.4 were shifted to 44°C at f, to inactivate RNase E and RNase II.
Rifampicin was added at the time of the shift and total RNAs were prepared
from bacteria withdrawn at different times after the shift, indicated in
minutes at the bottom of the autoradiograph. Aliquots of 5 pg total RNA
extracted from strains containing (+) or not (-) the Hfq protein and run off
transcript (c) were treated with RNase H in the presence of the chimeric
rpsO oligonucleotide described in Marujo et al. (17) and analyzed on a
northern blot, probed for rpsO mRNA. The arrow indicates the normal 3
terminus of the rpsO primary transcript.



DISCUSSION

A minor fraction of E.coli rpsO mRNA is adenylated in
wild-type cells

The RT-PCR analysis of RNA isolated from wild-type cells
strongly reinforces the idea that the fraction of mRNAs
harboring a poly(A) tail is very low in E.coli; indeed ~10% of
rpsO mRNAs are adenylated (4 clones out of 39). More
strikingly, no tail longer than five A residues was found even
when selecting for adenylated 3" extremities harboring at least
two terminal A residues. Our results strongly indicate that
mRNAs (like mature stable RNAs, their precursors and
regulator RNAs) exhibit very short oligo(A) tails at their 3’
ends. RNAI, Sok RNA, CopA RNA, MS2 genomic RNA,
Sral,, CI RNA of phage P4, precursors and mature forms of
rRNA and tRNAtrp* harbor 3’ extensions which do not exceed
seven A residues (6-8,10,12,13,25,26). No tail longer than 29
A residues was found when RNase E together with RNase 11
and PNPase, the two 3'—5" exoribonucleases which shorten
poly(A) tails, were inactive and the vast majority of the tails
that were sequenced were homopolymeric; only 5 out of the
176 tails analyzed contained a C or a G residue, probably
incorporated by PAP I (21,34). It is curious that the long
poly(A) tails such as the 45-55 A residue long ones that were
observed in the wild-type E.coli strain, containing PAP I and
exoribonucleases (9), were not detected in this study. It is
possible that only a few preferentially adenylated RNA
species (that do not include the rpsO mRNA) can acquire
poly(A) tails of such length. On the other hand, one could also
imagine that these long tails correspond to a very small
fraction of all RNA species that have undergone many
successive steps of elongation without being attacked by
exoribonucleases. This latter hypothesis may explain why an
rpsO mRNA harboring 69 A residues was characterized in an
exonuclease-deficient strain by a method selecting for long
transcripts (32). However, the probability of isolating RNAs
with stretches of A residues this long is presumably very low.
On the other hand, our failure to detect the long hetero-
polymeric tails containing G, C and U residues that have been
detected by others at the 3" end of rpsO transcripts in wild-type
cells suggests that these 3’ extensions are only synthesized
when PNPase is overproduced in strains lacking PAP I (35).

Hfq affects rpsO mRNA 3’ end formation and its
polyadenylation

In a previous work, we showed that Hfq stimulates processive
synthesis of poly(A) by PAP I in vitro (27). Here, we
demonstrate that Hfq is also a cofactor of poly(A) metabolism
in vivo that affects the fraction of polyadenylated molecules,
the distribution of adenylation sites and the length of poly(A)
tails. In particular, the higher fraction of polyadenylated
molecules found in the presence of Hfq suggests that this
protein facilitates the recognition of 3" ends by PAP I (Fig. 2).
The scattering of RNA extremities with poly(A) extensions in
the presence of Hfq, compared to the preferential adenylation
of the primary transcript (position 420) in its absence,
suggest that this cofactor improves the polyadenylation of
unstructured 3’ extremities, which probably result from
cleavages internal to rpsO mRNA. Moreover, these data
indicate that the 3’ end of the primary transcript (typical of
RNAs terminated at Rho-independent terminators) harboring

Nucleic Acids Research, 2003, Vol. 31, No. 14 4021

a UgC sequence downstream of a stable hairpin is very
efficiently adenylated by PAP 1. This result is consistent with
in vitro experiments showing that the addition of a few single-
stranded nucleotides facilitates the adenylation by PAP I of
RNAs harboring a terminal stable stem—loop (21,22).
Reduction of polyadenylation at this site in the presence of
Hfq suggests either that PAP I could be titrated by RNA
extremities resulting from ribonucleolytic cleavage which
become more accessible to PAP I in the presence of Hfq or that
this protein masks the UcC terminal motif of the primary
transcript. The specificity of eukaryotic Lsm and Sm proteins,
belonging to the same family as Hfq, for U-rich motifs and the
affinity of Hfq for an oligo(U) polyribonucleotide are
consistent with this latter hypothesis (36,37; M. Folichon, in
preparation). Altogether, these data indicate that Hfq reduces
the preference that PAP I seems to exhibit towards the 3" ends
of primary trancripts released at Rho-independent terminators
or harboring 3’ terminal hairpins. On the other hand, it is also
conceivable that Hfq protects poly(A) from degradation by
3’5’ exonucleases remaining in cells deficient for PNPase
and RNase II. In this case, the high affinity of Hfq for
oligoadenylated RNA may explain why the fraction of
polyadenylated molecules is higher when Hfq is present in
the cell. Finally, it must be pointed out that the primer anchor
method used in these experiments favors the identification of
clones containing unstructured mRNA extremities; indeed,
ligation of the primer is much less efficient downstream of
stable 3’ hairpins (E. Hajnsdorf, unpublished results). This
probably explains why only 20% of the oligo(A) tails
identified above are located downstream of tl, compared to
52% when reverse transcription was initiated from oligo(dTg)
hybridized to poly(A) (20). This implies that the relative
number of clones containing RNA extremities mapping
downstream of tl or in the coding sequence likely do not
reflect the relative concentrations of full-length and truncated
transcripts. However, in spite of this bias, the primer anchor
method allows a comparison of the distribution of adenylated
and tail-less mRNA extremities and length of tails in cells
containing different sets of enzymes.

We confirm here that Hfq stimulates poly(A) addition. The
number average length of tails is greater in an exonuclease-
deficient strain containing Hfq and longer tails were found in
this strain than in the isogenic Afg~ strain. The fact that the
length of poly(A) was analyzed after a heat shock which
inactivates thermosensitive RNase E and RNase II of a
PNPase-deficient strain suggests that this difference reflects a
stimulation of poly(A) elongation by Hfq occurring after the
inactivation of exonucleases. Consistent with this idea, we
found that longer poly(A) tails are synthesized in the presence
of Hfq after inactivation of RNase II and RNase E than in its
absence (Fig. 4B). The fact that PAP I is not among the few
polypeptides whose synthesis was reported to be modified by
Hfq argues against an effect of this protein on PAP I synthesis
(38). These data are in agreement with our earlier observation
that rpsO transcripts are more rapidly elongated in the
presence of Hfq in vitro (27). However, experiments presented
here show that PAP I, when stimulated by Hfq, synthesizes
tails whose number average length is 9.1 A residues in vivo
(the longest ones are 29 A residues in length), while earlier
in vitro experiments demonstrated that PAP I can processively
synthesize very long tails of nearly 1000 nt in the presence of
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Hfq (27). This clearly demonstrates that other factors,
including exoribonucleases remaining in cells lacking RNase
I and PNPase, prevent the appearance of such tails. On the
other hand, the poor expression of PAP I (39), its very low
intracellular concentration (34) and the failure to detect such
long tails in the cell raises the possibility that the
Hfg-promoted processivity of poly(A) elongation may only
affect a small fraction of bacterial RNA or become more
efficient under particular physiological conditions.

The current model of poly(A) metabolism in E.coli
postulates that the tails synthesized by PAP I are removed
by 3’—5’ exoribonucleases. We clearly demonstrate here that
poly(A) tails resulting from this dynamic equilibrium are rare
and short in spite of the fact that all accessible RNA
extremities that are not masked by proteins, aminoacylated
or engaged in strong secondary structures can probably be
adenylated by PAP I assisted by Hfq.
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