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GUEST COMMENTARY

Antibody-Mediated Immunity against Intracellular Pathogens:
Two-Dimensional Thinking Comes Full Circle

Arturo Casadevall*
Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461

The view that antibody-mediated immunity against many
prokaryotic and eukaryotic intracellular pathogens is not im-
portant was popular until recently (6). The concept of a divi-
sion of labor whereby antibody-mediated immunity protected
against extracellular pathogens and cell-mediated immunity
protected against intracellular pathogens may have had its
intellectual origins in the great debate between the advocates
of humoral and cellular immunity at the turn of the 20th
century. The humoralists, championed by Paul Ehrlich, viewed
immunity as being conferred by soluble substances in the blood
and the generation of an effective antibody response, with
phagocytic cells functioning primarily to clean up microbial
debris (42). The cellularists, championed by Elie Metchnikoff,
viewed immunity as being conferred by macrophages and other
phagocytic cells, with the role of humoral factors being to
provide opsonins (42). This debate was fueled by the success
and difficulties associated with demonstrating antibody-medi-
ated protection against certain pathogens in passive immuni-
zation studies. Administration of immune serum protected
against toxin-mediated diseases such as tetanus and diphtheria
and a certain subset of bacterial pathogens exemplified by the
organisms now known as Streptococcus pneumoniae, Neisseria
meningitidis, and Haemophilus influenzae. However, passive
immunization provided little or no protection against other
microbes such as Mycobacterium tuberculosis (reviewed in ref-
erence 19).

By the 1960s, classical studies with facultative intracellular
pathogens such as Listeria monocytogenes had shown that ef-
fective control of infection depended on cellular immunity, as
manifested by granuloma formation and participation of T
lymphocytes (28). The microbes for which passive antibody was
not protective and cell-mediated immunity appeared to be
paramount for host defense were often facultative intracellular
pathogens. This association gave credence to the concept of an
immunological division of labor whereby humoral and cellular
immunity provided effective control for extracellular and in-
tracellular pathogens, respectively (3, 8, 28). Furthermore, this
division of labor was conceptually consistent with a large body
of experimental observations that indicated an inverse and
mutually antagonistic relationship between humoral and cellu-
lar immunity (35). In recent years, the view that antibody-
mediated immunity protects against extracellular pathogens

and cell-mediated immunity protects against intracellular
pathogens has been modified and extended by the Th1/Th2
paradigm, which posits a division of labor at the level of T-cell
differentiation. According to this view, Th1-polarized responses
result in granulomatous inflammation that effectively controls
intracellular pathogens, whereas Th2-polarized responses re-
sult in the production of antibodies that control extracellular
pathogens and parasites.

The fact that a microbe inside a cell is separated from serum
antibody has contributed to the belief that serum antibody
cannot be effective against an intracellular pathogen. However,
the two-dimensional separation and categorization of microbes
as either intracellular and extracellular pathogens was never
absolute, since tissue examination often revealed that patho-
gens classified as intracellular could be found in the extracel-
lular space and vice versa. Furthermore, at some point in the
infectious cycle, most intracellular pathogens reside in the ex-
tracellular space, where they are vulnerable to antibody action,
and Fc receptor cross-linking can have profound effects in the
intracellular milieu through signal transduction.

In this issue of Infection and Immunity, we have an example
of how the investigation of mechanisms by which passive an-
tibody protects against the obligate intracellular pathogen Ehr-
lichia chaffensis led to the discovery of an extracellular phase
that may include replication (27). Hence, the wheel has turned
full circle, since an investigation to explain how antibody pro-
tects against an obligate intracellular pathogen has revealed
that it may not always reside in the intracellular space and thus
could become accessible to serum antibody.

DECONSTRUCTING A PARADIGM

The notion of an immunological duality whereby immunity
to intracellular pathogens is conferred by cell-mediated mech-
anisms and immunity to extracellular pathogens is conferred by
antibody-mediated mechanisms was a reigning paradigm in the
closing decades of the 20th century and still has wide credence.
However, this view is problematic because it is not universally
applicable to all pathogens and because the induction of anti-
body mediated-immunity is sufficient to prevent infection with
some intracellular pathogens. For example, the major child-
hood viral diseases and smallpox were drastically reduced in
incidence or eradicated by vaccines that elicited antibody-me-
diated immunity despite the fact that all viruses are obligate
intracellular pathogens. For some intracellular bacterial patho-
gens, such as Salmonella enterica serovar Typhimurium, it was
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clear that antibody responses were protective in certain hosts
(13). The concept of an immunological division of labor based
on whether or not a microbe assumed intracellular residence
defied the common-sense view that the most effective immune
response was one that combined both humoral and cellular
components.

Perhaps the most important advance in suggesting a resolu-
tion to the cellular versus humoral controversy was the appli-
cation of hybridoma technology to investigate the potential of
antibody-mediated immunity against certain pathogens for
which immune serum did not manifest efficacy. In contrast to
immune serum, which varied greatly in the composition, iso-
type, and specificity of microbe-binding antibodies, monoclo-
nal antibodies provided a homogenous preparation or defined
reagents with which to investigate the variables that contrib-
uted to antibody-mediated protection. Studies with monoclo-
nal antibodies have now demonstrated passive protection for
several microbes where experiments with immune serum had
provided negative or inconsistent results, including Candida
albicans (20), Cryptococcus neoformans (9, 17, 32, 40), Listeria
monocytogenes (11), Leishmania mexicana (1), Mycobacterium
tuberculosis (45), and Histoplasma capsulatum (J. D. Nosan-
chuk, A. Casadevall, and G. Deepe, Abstr. Annu. Meet. Am.
Soc. Microbiol., 2001, abstr. F-143). For these pathogens, the
identification of protective monoclonal antibodies established
the precedent that antibody could be effective and dispelled
the notion that humoral immunity was ineffective due to an
inherent limitation in the activity of this arm of the immune
system. The list of intracellular pathogens for which antibody
has been shown to modify the course of infection to the benefit
of the host is extensive (Table 1).

INTERPRETATION OF NEGATIVE RESULTS

A central argument for the concept that antibody lacked
efficacy against certain intracellular microbes was the observa-
tion that transfer of immune serum was not protective in ani-
mal models of infection. In fact, Mackaness proposed six cri-
teria for establishing the importance of cellular immunity, of

which the first one stated that “there should be no evidence
that protection can be conferred by passive transfer of anti-
body alone” (29). However, the absence of demonstrable pro-
tection in passive antibody experiments does not mean that
antibody has no role in protection, since this conclusion cannot
be made from a negative experimental result. In recent years,
studies with monoclonal antibodies to Cryptococcus neofor-
mans and other pathogens have provided several insights as to
why passive antibody experiments can produce negative results
even when protective antibodies exist and protective antibody
responses are possible.

A dramatic example of the limitations of passive antibody
transfer experiments is provided by the observation that trans-
fer of either too little or too much antibody can result in no
protection. In 1987, Dromer et al. generated a protective im-
munoglobulin G1 (IgG1) monoclonal antibody to Cryptococcus
neoformans and demonstrated that a certain amount of immu-
noglobulin was necessary to observe protection in a murine
model of cryptococcosis (9). This observation suggested that
the inability to protect with immune serum may have been a
consequence of inadequate amounts of protective antibody.
Similarly, it was noted that a monoclonal antibody to listerio-
lysin O was protective against Listeria monocytogenes if admin-
istered in large doses but that antibodies with that specificity
were not common in immune serum (11). More recently, my
group has shown prozone-like effects with protective IgM and
IgG, such that the administration of large amounts of immu-
noglobulin can result in reduced or abolished protective effects
(43, 44). Consequently, too much or too little antibody can
yield a negative result in a passive protection experiment de-
spite the fact that antibody can be protective against the rele-
vant pathogen.

Apart from antibody amount, immunoglobulin-related vari-
ables such as antibody specificity (31), isotype (49), and idio-
type (39) can have profound effects on antibody protective
efficacy. However, host-related variables can also determine
the outcome of passive protection experiments. For example,
the protective efficacy of passive antibody to Salmonella en-
terica serovar Typhimurium is dependent on the mouse strain
used (13). For some pathogens, the efficacy of passive antibody
is dependent on the presence of intact cellular immunity (48).
Adding to the uncertainty associated with negative results in
passive transfer experiments is the observation that antibody
efficacy can depend on the microbial strain used despite the
presence of the target antigen (33).

Clearly, negative results in passive protection experiments
do not exclude the existence of protective antibodies. Con-
versely, the discovery that it is possible to make protective
monoclonal antibodies against several intracellular pathogens
does not necessarily imply that antibody immunity plays a
major role in natural resistance, since the antibodies that me-
diate protection may be absent or rare in the immune response
to natural infection. Experimental variables that can lead to a
negative result in passive protection experiments are listed in
Table 2.

LESSON FROM ERHLICHIA CHAFFEENSIS

The obligate intracellular bacterium Ehrlichia chaffensis is
the causative agent of human monocytic ehrlichiosis. Accord-

TABLE 1. Prokaryotic and eukaryotic intracellular pathogens for
which antibody has been shown to modify the course of infection to

the benefit of the hosta

Pathogen Reference(s)

Bartonella grahamii .........................................24
Brucella spp. ....................................................2, 15
Chlamydia trachomatis ...................................34, 36
Cryptococcus neoformans ...............................9, 17, 32, 40
Erhlichia chaffeensis ........................................23, 26, 27, 47
Francisella tularensis .......................................18
Histoplasma capsulatum .................................Nosanchuk et al., abstract
Legionella pneumophila..................................4, 14
Leishmania mexicana .....................................1
Listeria monocytogenes ...................................11
Mycobacterium tuberculosis............................37, 45
Salmonella enterica Serovar

Typhimurium ...............................................
13

Shigella flexneri ................................................38
Toxoplasma gondii ..........................................22, 41

a The references cited are not a complete list of citations supporting a role for
antibody-mediated immunity.
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ing to the immunological division of labor discussed above,
host protection against E. chaffensis would have been expected
to be conferred exclusively by cell-mediated immune mecha-
nisms. However, there was evidence that specific antibody
could mediate protection against Erhlichia spp. (23), possibly
by blocking cellular entry or promoting the expression of
proinflammatory cytokines (25, 30). Studies by Winslow and
colleagues subsequently established that specific antibody
could protect against E. chaffensis in both normal and SCID
mice (47). That result was surprising because it might have
been anticipated that cell-mediated immunity would play a
major role in promoting antibody efficacy against an intracellular
pathogen, as was shown for Cryptococcus neoformans (48).

The efficacy of passive antibody against E. chaffensis in SCID
mice suggests that antibody-mediated protection was indepen-
dent of T cells and implied that other mechanisms must be
operative. In pursuit of that question, Li and Winslow now
describe an extracellular phase for E. chaffensis during which
the bacteria are potentially susceptible to serum antibody (27).
Although it has not been proven that antibody-mediated pro-
tection against E. chaffensis occurs in the extracellular phase,
this observation suggests a mechanism that is fundamentally

different from that reported for Listeria monocytogenes (12),
where antibody is active intracellularly. Ironically, the finding
that E. chaffensis has an extracellular phase that is presumably
susceptible to serum antibody is consistent with the older view
that antibodies are active only against extracellular microbes.
Nonetheless, antibody may be effective against E. chaffensis
when a threshold portion of the microbial pool is extracellular
and accessible to antibody. This discovery suggests that other
obligate intracellular pathogens may also have extracellular
phases during which they are susceptible to humoral immunity.
This elegant study illustrates the connectivity of scientific
thought in that pursuing an explanation for an observation that
defied one paradigm led to findings that undermined another
and, in so doing, provided new insights into microbial patho-
genesis and immunology.
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