Production of resistant HIV mutants during

antiretroviral therapy

Ruy M. Ribeiro* and Sebastian Bonhoeffer*

*Wellcome Trust Centre for the Epidemiology of Infectious Diseases, Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford,
United Kingdom; and fFriedrich Miescher Institut, P.O. Box 2543, CH-4002 Basel, Switzerland

Communicated by Robert M. May, University of Oxford, United Kingdom, April 19, 2000 (received for review December 25, 1999)

HIV drug therapy often fails because of the appearance of multi-
drug-resistant virus. There are two possible scenarios for the
outgrowth of multidrug-resistant virus in response to therapy.
Resistant virus may preexist at low frequencies in drug-naive
patients and is rapidly selected in the presence of drugs. Alterna-
tively, resistant virus is absent at the start of therapy but is
generated by residual viral replication during therapy. Currently
available experimental methods are generally too insensitive to
distinguish between these two scenarios. Here we use determin-
istic and stochastic models to investigate the origin of multidrug
resistance. We quantify the probabilities that resistant mutants
preexist, and that resistant mutants are generated during therapy.
The models suggest that under a wide range of conditions, treat-
ment failure is most likely caused by the preexistence of resistant
mutants.

In recent years, management of HIV infection has greatly im-
proved because of the development of new treatment protocols,
involving the combination of highly potent drugs (1-5). However,
combination therapy is not effective in all patients and may fail
because of severe side effects, nonadherence to therapy protocol,
lack of potency of drugs, or emergence of resistant virus (refs. 2 and
6; See www.hivatis.org/trtgdIns.html and refs. therein).

Generally, there are two main processes leading to resistance-
related treatment failure: preexisting resistant strains may be
selected by the drugs used, or resistant mutants are generated de
novo by residual virus replication during treatment. It is impor-
tant to distinguish between these processes, because they require
different actions to improve therapy. If treatment fails because
of preexisting resistant virus, than increasing the efficacy of the
drugs (for example by increasing the dosage) may not suffice to
control virus replication. Rather, several drugs with different
resistance profiles need to be combined, reducing the likelihood
that strains resistant to combination therapy are present in the
first place. On the other hand, if resistance arises de novo during
treatment, then increasing the dosage of the drug may lead to a
more effective treatment. In this case, the objective would be to
minimize any residual replication of the sensitive virus during
therapy, because this would reduce the probability of producing
a resistant mutant.

Thus, determination of which of the two causes for treatment
failure is more likely may be helpful to find the best therapy
regimen. Laboratory testing for the presence of resistant strains
in a patient has been proposed (7-12). However, current meth-
ods either are not sensitive enough to detect mutants at very low
frequencies or are too laborious to be used in clinical practice
(7). Inview of these difficulties, this question has been addressed
by using population dynamical models (13-15). However, so far,
these theoretical approaches have underestimated the probabil-
ity of treatment failure attributed to de novo generation of
resistance by the residual virus replication during treatment.
Here, we use both deterministic and stochastic approaches to
investigate the origin of drug-resistant mutants and derive an
upper limit to the probability of emergence of resistant virus
during therapy. On the basis of quantifiable parameters such as
the viral load and the viral mutation rate, we estimate the
likelihood of preexistence of resistant strains in comparison to

the likelihood of emergence of resistant virus during therapy. We
emphasize at the outset that we are not concerned with drug
resistance in patients who were infected by resistant carriers.
Although a major concern for the future, to date the spread of
resistant strains seems to account only for a minority of treat-
ment failures caused by resistance (16—18). Instead, we focus on
the emergence of resistance in drug-naive patients who were
infected with sensitive virus, but who may develop resistant
mutants at low frequency in a mutation-selection equilibrium.

Definition of the Model
We begin with the basic model of HI'V dynamics (13, 14, 19-22):

K S
i x — rbxy
[1]
dy
E—rbxy—ay.

For a detailed description of this model, see ref. 23. Here the
variables x and y denote the population densities of susceptible
and infected cells, respectively. The model has five parameters:
A, the rate of immigration of susceptible cells from a pool of
precursor cells; 8, the death rate of susceptible cells; b, the
infectivity rate; a, the per capita death rate of infected cells; and
r, the inhibitory effect of drug therapy on virus replication, which
is between 0 and 1, with » = 1 corresponding to no treatment.

This model has two equilibria corresponding to the uninfected
and infected steady states. The evolution of the system to one or the
other steady state is determined by the basic reproductive ratio, Ry
(24-26). In the present context, Ry is defined as the average number
of secondary infected cells produced by the first infected cell
introduced in a wholly susceptible population. For the above model,
the basic reproductive rate before the start of treatment is given by
R, = Ab/(8a). If R, < 1, then on average one infected cell produces
less than one secondary infected cell, and hence the system goes to
the uninfected steady state given by xy = A/8 and yy = 0.
Conversely, if R, > 1, the system goes to the infected steady state
given by x; = a/b and y; = Aa — §/b.

In the absence of treatment (» = 1), the virus is expected to
have a basic reproductive ratio larger than 1, because otherwise
it is unable to cause or sustain an infection. During treatment
(r < 1), the new basic reproductive ratio, R; = rAb/(8a), can be
smaller or larger than 1, depending on whether the virus
population is sensitive or resistant to treatment. In the following,
we define resistant viruses as those viruses with a basic repro-
ductive ratio during treatment larger than one, R; > 1. This
defines drug resistance not in terms of an in vitro assay, but as
a combined property of host, virus, and drug. Note, however,
that a basic reproductive ratio smaller than one does not imply
that there is no replication. The de novo production of a resistant
virus during therapy is possible so long as the basic reproductive
ratio is larger than zero.
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Fig. 1. Graphical comparison of the full (solid line) and simplified (dashed
line) models under drug therapy (see text). In A, we compare the increase in
the number of susceptible cells and in B, the decrease in the infected cell
population. Notice that in both cases, the simplified model overestimates the
full model. Parameters are as follows: A = 106, b = 5 X 1078, by = rb =
2.25 X 1078,a = 0.5, 8 = 0.05.Thus, R, = 2and Ry = 0.9.

Analysis of the Model

We use the above model to distinguish between the two alter-
native hypotheses for the cause of treatment failure caused by
resistance: (i) The preexistence hypothesis, according to which
treatment failure is caused by the existence of resistant mutants
in the patient’s virus population before the start of therapy; and
(ii) the emergence hypothesis, according to which resistant vari-
ants are absent before therapy, but treatment failure occurs
because resistant mutants are produced from the sensitive virus
population as it declines during therapy.

The likelihood of emergence of resistance during therapy de-
pends on the number of cells that become newly infected as the
sensitive virus population declines during therapy. This number is
given by b [}Z; xydt, where t = ( is the start of therapy, and r < 1.
Unfortunately, this integral cannot be calculated in closed form,
because we do not have analytical solutions for x(f) and y(t).
However, we can approximate Eq. 1 by neglecting the term rbxy in
the first equation for x(¢). The simplified model is:

d);(tt) N

(2]

d~
% = RO (1) — ay (0).

Because the simplified model has no nonvanishing steady state for
the infected cell population, we use the infected steady state of Eq.
1 as the initial condition. Because Eq. 2 neglects the loss rate of
susceptible cells because of infection, #(f) overestimates x(¢), as
given by the full model (Eq. 1). As a consequence, y(f) also
overestimates y(f), because the per capita rate of production of new
infected cells, rb¥(), overestimates rbx(¢). For a numerical compar-
ison of the models, see Fig. 1. For the simplified model, we can
obtain analytical solutions for #(f) and j(¢) and thus can compute rb
J§ Xydt, which gives an upper limit to rb [ xydt.

In equilibrium, the probability of preexistence of resistant virus
depends on the total number of infected cells present at the start of
therapy, which is given by y;. We thus calculate the ratio, ©, of the
number of cells infected during therapy (given by b [ %ydt) and the
number of infected cells present at the start of therapy (given by y;).
A detailed derivation in the Appendix yields:
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Fig. 2. Behavior of ©® (the ratio between the likelihood of emergence of
resistant mutants emergence during therapy and the likelihood of preexistence
of resistant mutants) with Ryand Ry, for y = 10. For most of the parameter region,
the ratio is smaller than one. The ratio ® becomes close to one only when Ry, the
basic reproductive ratio during therapy, is also close to one.

®(Rb> Rd? 'Y) =

Ry

xR, >71, 131

where 1F; is the generalized hypergeometric function, v = a/8
is the ratio of the death rates of infected and uninfected cells, and
R, and R, are the basic reproductive ratios of the sensitive virus
before and during treatment, respectively. Note also that the
ratio, ®, depends only on three parameters, vy, Rp, and Rg.

As the sensitive virus is able to maintain an infection in the
absence but not in the presence of treatment, we have R, > 1 and
R; < 1. Furthermore, it is reasonable to assume that the death rate
of infected cells exceeds that of uninfected cells, i.e. y > 1. Fig. 2
shows the ratio ® as a function of R, and R, for a conservative
minimal value of y = 10 (21, 27, 28). [Generally, O(Rp, R4, v) is a
decreasing function of v.] Interestingly, the ratio ® is smaller than
1 for most of the parameter region, implying that the number of
infected cells present at the start of therapy is larger than the
number of cells infected during therapy. © is larger than 1 only if
R, is close to 1. However, this is also the region where ® greatly
overestimates the corresponding ratio (rb/y; [ xydt) of the full
model defined by the system of Eq. 1.

Thus, typically the number of infected cells present at the start of
therapy exceeds the number of infected cells produced during
therapy, which suggests that the probability of preexistence of
resistance is larger than the probability of production of resistance
during therapy. Exceptions to this rule may occur in a narrow
region, where the basic reproductive ratio of the sensitive virus
during therapy, Ry, is very close to but below 1. Nonetheless,
numerical simulations of the full model, given by Eq. 1, suggest that
this region is actually smaller than that shown in Fig. 2.

1
1_7&11:1(1, 1+ y(1—Ry), —YRy

Multistrain Model

Although the comparison of the number of infected cells present
at the start of therapy with the number of cells infected during
therapy provides an intuitive measure of the relative likelihood
of the preexistence and emergence hypothesis, this is only
partially satisfactory, because it ignores the full complexity of a
heterogeneous virus population before and during selection
pressures imposed by drug treatment. Therefore, we extend the
above model and subdivide the population of infected cells into
I populations, y;, each infected with a different virus mutant i.
Again we calculate the ratio of expected production during
therapy and expected frequency before therapy, but this time we
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calculate this ratio for each mutant, as a function of the number
of point mutation differences between the mutant and the
predominant wild type. The modified dynamical equations are:

dx !
i A—Ox —x E rb(1 — s;)y;
i=0

[4]
dy; !
ditl =X E rb(1 — s)pyy; — ay;

=0

Here the infectivity parameter b is multiplied by a factor 1 — s;,
which accounts for the selective disadvantage of mutant i in
comparison to the wild type. Hence, s = 0 for the wild type
(mutant 0), and 0 <'s; = 1 for all other mutants. The matrix u;
describes the probability of mutation of strain j into strain i
during reverse transcription. Hence, cells infected by mutant i
are produced either by infection of a susceptible cell with mutant
i or by mutation of strain j into strain i during infection.

We consider only the n nucleotide sites in conferring resis-
tance to a particular drug regimen. That is, we group all possible
strains in the viral population in classes according to their status
at the sites that confer resistance. At these n sites, each strain
either has the nucleotide necessary for resistance or not, which
we call 1 and 0, respectively. This represents a binary model for
n nucleotides. The resistant mutant is n-point mutations away
from the wild type, and for each class of k-point mutants, there
are (i) strains. For instance, if we consider n = 3, then there are
three one-point mutants (001, 010, 100) and three two-point
mutants (011, 101, 110). The total number of strains, /, in Eq. 4
thus equals 2.

For simplicity, we assume that the point mutation rate per
replication cycle is the same at all sites, u, such that u; = pl=/
fori # j, and Mii = 1 — Z[#_,‘ ij = (1 - M)" (where |l - ]‘ is
the number of sites at which mutant i and j differ). Assume
further that all mutants have the same selective disadvantage in
comparison to the wild type (s; = s << 1 for 1 =i < /). In this
case, a simple expression can be obtained for the equilibrium
frequency of a k-point mutant (29):

k
o
Vi =k!(;> Yo [5]

where y§ stands for the equilibrium frequency of the wild type.
For the resistant n-point mutant, we calculate the ratio
between the number of cells newly infected during therapy and
the number of cells infected with that strain present at the start
of therapy. To this end, we calculate the total production of the
n-point mutant during therapy, provided it did not exist before
therapy, but all 0 to n — 1 point mutants were in the mutation-
selection equilibrium given by expression 5. Again, at ¢ = 0, we
initiate therapy which reduces the basic reproductive ratio of all
strains present to 0 < R; < 1. The total production of n-point
mutants by a strain k(0 = k < n) during therapy is given by:

w' ok f bax(t)yx(t)dt, (61

0

where by = rb(1 — s) is the infectivity during therapy. Hence,
the total production of n-point mutants by all other strains
k(0 =k =n — 1) can be approximated as:

n—1 .
> (Z) et f bat(0)7(0)d. (7]

k=0 0
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Fig. 3. Behavior of ®, with (A) increasing selective disadvantage and (B)
larger number of point mutations separating the wild type and the resistant
mutant. Notice in A that the ratio ©, is bigger than one only for large values
of the selective disadvantage. Parameters are as in Fig. 1 except for the ones
indicated; in A, n = 3andinB,s = 0.1.

This expression represents the sum of the contribution of all
preexisting strains according to Eq. 6, taking into account that
for each k there are (%) strains, as explained above.

Evaluating the sum in Eq. 7 (see Appendix) and dividing by
expression 5 (with k& = n), we obtain for the ratio of the
production of n-point mutants during therapy and their fre-
quency at the start of therapy:

n

si
®n(Rb> Rd7 Y S) = E lT ®(Rb> Rd’ 'Y) =~ S®(Rb> Rd’ 'Y), [8]

i=1

where O(R,, Ry, v) is given by Eq. 3. The approximation is valid
fors < 0.2 and n > 3 (see Appendix).

0,, has a number of surprising properties. First, it is independent
of the mutation rate, w. Thus, counterintuitively, the relative
likelihood of a mutant being produced during therapy and being
present at the start of therapy does not depend on the mutation rate.
Second, also contrary to expectation, 0, increases with increasing
selective disadvantage of the mutants, s (Fig. 3). This result arises
because when s increases, the probability of preexistence decreases
disproportionately in relation to the decrease in the likelihood of
emergence during therapy. Third, ®, depends only very weakly on
n. Hence, the relative likelihood of emergence and preexistence is
approximately the same regardless of the number of point muta-
tions by which the resistant differs from the wild type (at least for
n = 3). Finally, 0, is typically smaller than O, because for
small-to-moderate selective disadvantages (s < 0.6), we have =i,
s'/i! =~ (es — 1) < 1. This implies that mutants are less likely to be
produced (for the first time) during therapy than to preexist when
therapy is started. This conclusion holds so long as the basic
reproductive ratio of the sensitive virus during therapy is not very
close to one, and the selective disadvantages involved are small.

Stochastic Simulations

The results described so far were obtained by using deterministic
models to calculate the number of infected cells produced during
therapy and present at the start of therapy. In a deterministic model,
the frequency of a mutant will never go to zero, provided its basic
reproductive ratio is larger than one. However, this may not be
realistic. A particular strain might be created by mutation, but there
is some probability that subsequently it will be lost again because of
stochastic effects, even if its basic reproductive ratio is larger than
one, Ry > 1. This is an important consideration, because the
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Table 1. Structure of the stochastic process

Population Population

Event att att + At Probability

Production of X — x+1 A At
uninfected cell

Death of X — x—1 SxAt
uninfected cell

Production of {;’ - {i‘/,:_ 11} X 3 biyjuiAt
infected cell, y;

Death of infected Vi — yi—1 ay; At
cell, y;

None of the above {f, — {fi} 1 — ®At

events happen

Structure of the stochastic process used in simulations and associated
probabilities. ® = (A + 8x + xZ by + 2 ay;), and nis the number of sites.
Thus, indices /, j run from 0 to 2". The parameters b; = (1 — s)bwt and w; are
the same as in the deterministic model.

frequencies of mutants are often very small and therefore subject
to stochastic fluctuations. In this section, we develop a stochastic
approach to the problems addressed above. Instead of the number
of infected cells produced, we consider the actual probabilities that
a specific mutant exists in the population before and during
treatment. Although an analytic approximation for this stochastic
model is possible (30), here, in the interest of space, we show only
results of simulations.

In the stochastic framework, each event (production and death
of susceptible and infected cells) is assigned a probability as
opposed to a deterministic rate. The probability of each event
occurring is related to the rates in the system of Eq. 1. Table 1
shows the structure of the stochastic model with its events and
associated probabilities.

For the following simulations, we assume a scenario where
three particular point mutations confer drug resistance. Hence
we consider 8(=2%) different mutants, corresponding to all
possible one- and two-point mutants at the three relevant sites,
as well as the wild type (000) and the strain (111) with all the
required mutations for resistance. For simplicity, we assume, as
in the previous section, that all intermediate one- and two-point
mutants and the resistant three-point mutant have the same
selective disadvantage, s. At the start of the simulation, all strains
except the resistant strain are present at their respective equi-
librium frequencies, given by Eq. 5. The simulation is run for a
period that allows the generation of stochastic diversity around
the equilibrium. Then treatment is started. If the resistant
mutant is present, the simulation is stopped. Otherwise, the
simulation is continued either until the virus population is
eradicated or until a resistant mutant emerges.

We simulated all permutations of the following set of param-
eters: selective disadvantage s = 0.002, 0.005, 0.009; ratio of
infected to uninfected cell death rates y = 5, 10; basic repro-
ductive ratio before therapy R, = 2, 10; and basic reproductive
ratio during therapy R; = 0.9, 0.98. This makes a total of 24 sets
of simulations. For each set of parameters, the simulation was
run 100 times to calculate the average probability of emergence
of a resistant mutant and 500 times for the average probability
of resistance emerging during treatment. We calculated the
probability of emergence of the resistant strain as the proportion
of runs the resistant strain was present at the end of a sufficiently
long time, with or without treatment. We also calculated the
fraction of the time that a resistant mutant is present in an
untreated patient. Because these results are equivalent to the
number of times a resistant strain is present at the end of a
sufficiently long run, these results are not shown here.

In support of the conclusions drawn from the deterministic
models, the probability of the resistant strain emerging after
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Table 2. Ratio of probabilities obtained in the stochastic
simulations

Standard
Probability Probability Estimated deviation
Parameters before after Ratio ratio of ratio
R4*
0.8 0.32 0.026 0.081 0.083 0.026
0.9 0.35 0.034 0.097 0.099 0.027
0.98 0.31 0.052 0.168 0.172 0.042
0.99 0.35 0.056 0.160 0.163 0.037
,yT
1 0.35 0.232 0.663 0.675 0.107
2 0.32 0.132 0.413 0.421 0.078
5 0.31 0.052 0.168 0.172 0.042
10 0.37 0.016 0.043 0.044 0.016
Si
0.0015 0.54 0.100 0.185 0.187 0.030
0.002 0.31 0.052 0.168 0.172 0.042
0.003 0.10 0.030 0.300 0.327 0.129
0.005 0.03 0.004 0.133 0.176 0.160
0.009 0.01 0.004 0.400 0.796 0.971

Simulation results for the probability of emergence of a resistant mutant
before and during therapy. The following parameters are the same in all
simulations: A = 10%,a = 05,6 = 0.1,n = 3, » = 3 X 1075, byt = Ry X
(ad/)),and b; = (1 — s)bwt. The simulations were run at least 100 times for the
estimation of probability before therapy and 500 times for the corresponding
probability during therapy. The estimated ratio and standard deviation of the
ratio are calculated according to the & method (36). Note that the large
standard deviation for very small values of s is because of the small values of
the probability of emergence before and during treatment.

*Parameters of the simulation are: R, = 10, y = 5ands = 0.002.
tParameters of the simulation are: Ry = 0.98, R, = 10, and s = 0.002.
*Parameters of the simulation are: Ry = 0.98, R, = 10, and y = 5.

treatment was in no case higher than the probability of the
resistant virus already being present before treatment (data not
shown). Even when R;(=0.98) and R,(=2) are close to 1, for
which the analytical calculations are most inaccurate, the rele-
vant ratio is still smaller than 1.

To study the effect of the different parameters on the ratio of
probabilities, the results of further simulations are presented in
Table 2. In the top of the table, we find that for increasing R, the
ratio increases, as expected from the deterministic theory. This
increase in the ratio is because of an increase in the probability of
the resistant strain emerging after the start of therapy, because, as
expected, the corresponding probability before therapy stays
roughly constant. Although the ratio increases with R, even for
R, = 0.99, the ratio of probabilities is small.

In the middle of the table, the effect of y is shown. Again, the
probability of the resistant mutant being present before therapy
stays roughly constant, suggesting that this probability is inde-
pendent of y. On the other hand, for smaller vy, the probability
of producing a mutant during therapy is higher. Thus, the ratio
of probabilities increases for smaller vy, but remains below one
even for an unrealistic value of y = 1 (implying that uninfected
and infected cells have the same life span). The bottom of the
table shows the effect of s. The selective disadvantage affects
both probabilities before and after treatment in the same way:
the probabilities decrease for larger values of s. This double
effect makes it difficult to discern a clear trend for the ratio of
probabilities. However, it seems that the ratio of probabilities
increases with s, because the probability of the resistant strain
being present before therapy decreases disproportionately in
relation to the decrease in the corresponding probability after
treatment. In any case, also in these simulations, the ratio of
probabilities is always smaller than one.
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Table 3. Ratio of probabilities when the wild type does not
replicate

Probability ~ Probability Probability Ratio
before after after (Bwt = 0) Ratio (Bwt = 0)

i 0.01 <0.002 0.010 - 1.000

ii 0.02 0.008 0.006 0.400 0.300

iii 0.13 0.042 0.072 0.323 0.554

iv 0.32 0.132 0.396 0.413 1.238

v 0.035 0.232 0.632 0.663 1.806

Results of the simulations showing the effect of total suppression of wild
type replication on the probability of emergence of resistance during therapy.
The simulations were run at least 100 times for the estimation of probability
before therapy and 500 times for the corresponding probability during ther-
apy. Parameters of the simulations are: for i, i, and jii, y = 5, Rqy = 0.98, Rp =
2,ands = 0.009,s = 0.005, ands = 0.002, respectively; for ivand v, Ry =
0.98, R, = 10,s = 0.002, and y= 2, and y = 1, respectively. Other parameters
areinallcases: A =105a = 05,8 = a/y,u = 3 X 1075 n = 3, Buwt = Rg X
(@d/A), and Bi = (1 — 5)Buwt.

In summary, the stochastic simulations are in excellent agree-
ment with our analytical calculations. They strongly support the
hypothesis that the more likely cause of resistance-related treat-
ment failure is the presence of resistant strains before therapy.
Moreover, even for unrealistic sets of parameters, corresponding to
cases where the theoretical value of ®, is close to or above one, the
probability of producing a new resistant mutant is smaller than the
probability of this mutant preexisting in the population.

So far, we have assumed that after therapy, all sensitive strains
have the same basic reproductive ratio, R,. If, on the other hand,
therapy reduces R, of the wild type more than it reduces R, of
the other sensitive strains, such that Ryw) < Ru(other strains)> the
results obtained can be quite different. In Table 3, we show some
results for the limiting case of that inequality, i.e., the wild
type does not replicate at all after therapy, Rywyy = 0, and
Ra(other strains) 1 close to one. In this limiting case, the prob-
ability of producing a resistant mutant is higher than that
observed when the wild type also replicates.

When therapy is more efficient in relation to the wild type than
in relation to the other preexisting sensitive strains, the proba-
bility of production of a resistant mutant during therapy may
sometimes be higher than the probability of that mutant already
existing before therapy.

Discussion

The appearance of HIV strains resistant to a particular drug
regimen is the main problem during treatment of infected individ-
uals (refs. 2 and 7; www.hivatis.org/trtgdlns.html). In principle,
there are two ways in which resistance can emerge in response to
therapy (13, 14): (i) resistant strains may already exist when therapy
is started; or (if) all preexisting strains are sensitive, but the drug
regimen is not 100% effective, and the resistant mutant is created
de novo during treatment. Using various deterministic and stochas-
tic models, we have shown that almost universally treatment fails
because of the preexistence of resistant strains in the drug naive
viral population. It is generally less likely that resistant mutants are
generated for the first time during treatment. This suggests that
efforts to reduce the risk of treatment failure need to concentrate
on the combination of drugs with different resistance profiles in
order to minimize the risk that multidrug-resistant strains preexist
in a drug-naive viral population. Increasing the efficacy of replica-
tion inhibition is only of secondary concern.

It is important to emphasize at this point that this paper has not
dealt with the evolution of resistance caused by poor adherence to
the drug regimen. Clearly, if patients at certain periods take only a
subset of the prescribed drugs, then resistance may evolve succes-
sively to each of the drugs used. Similarly, spatial heterogeneity in
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the distribution of the drugs used may facilitate the evolution of
resistance as the virus may locally be controlled only by a single drug
(31). Furthermore, this paper also does not consider the contribu-
tion of viral replication at sanctuary sites to the evolution of
resistance. In the narrow sense of our definition of drug resistance,
a virus capable of persisting at a sanctuary site is resistant, because
its basic reproductive ratio is larger than one during treatment.
However, the question is whether the virus replicating at these
sanctuary sites is actually likely to produce a fully resistant virus that
is capable of recolonizing the main sites of infection in the presence
of treatment. Clearly, continuous replication of the virus at sanc-
tuary sites increases the risk that a fully resistant mutant is produced
during treatment. However, if such a fully resistant mutant is
unlikely to be present at the start of therapy, then we expect that its
production during treatment should take a long time, because the
viral population replicating during treatment is typically orders of
magnitude smaller than the viral population at the start of therapy.

Although our results show, as expected, that the likelihood of
creating a resistant mutant during therapy decreases with more
effective inhibition of replication (i.e., with smaller Ry), this likeli-
hood is generally smaller than the likelihood that resistant viruses
preexist. Furthermore, it is interesting that the ratio of these
probabilities increases for higher selective disadvantages of the
sensitive strains present at the start of therapy. We must caution,
however, that this is true only for the relative risk. In absolute terms,
the risk decreases with increasing s (Table 2). Most surprisingly, the
relative risk is independent of both the mutation rate and the
number of point mutations necessary for resistance.

Although much is now known about HIV genotypic and phe-
notypic resistance (11), testing for the presence of resistant strains
in the context of drug therapy is still not very effective. This is
because of the lack of sensitive and reliable tests, which can rapidly
track resistance mutations (7-10). However, results of this paper
suggest a new reason why great care must be taken in the choice of
therapies. If the drugs are specifically targeted to be more efficient
against the wild type but are less effective against other sensitive
strains present in the viral quasispecies, the risk of producing a
mutant during therapy increases relative to that of preexistence of
resistance. The reason is that intermediate mutants contribute
disproportionately to the production of the resistant strain, even
though they are present at very low frequencies. If drugs control the
wild type selectively, the other sensitive strains present may have
more target cells available for infection (32-35), as they decline
under treatment. The increased opportunities to infect cells, in turn,
increase the risk of mutation into the resistant virus.

In summary, under very general conditions, analytical and
numerical analysis of the viral quasispecies’ response to selection
pressures imposed by drug therapy argues strongly that the
resistant mutants that appear in patients who failed on therapy
are most likely present already at the start of therapy. Even those
patients who fail on triple combination therapy but were fully
compliant most likely already harbored resistant virus when
therapy was started. Thus the key to drug resistance lies in the
diversity of the viral population at the start of therapy.

Appendix
Here we present in detail the analytical expressions for the

production of infected cells during treatment in the basic and
multistrain models.

Basic Model. The solution of the first equation in system 2 is

- A A —t
x(t):g— 5 " Xr)e ™ 9]
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where ¥(0) = x; = a/b corresponds to the infected steady state
of the full model at the start of therapy. Substituting solution 9
into the second equation of system 2 and solving for y, we obtain

}7 (t) =ye (e*ﬁf—1)yR4(Rh—1)/Rb—a(1—R(1)t’ [10]

where y(0) = y; = AJa — 8/b is the steady-state frequency of
infected cells at the start of therapy for the full model. R, =
Ab/(8a) and R; = rR), are the basic reproductive ratios of the
virus before and during treatment, and y = 4/ is the ratio of
the life spans of infected and uninfected cells. Using these
definitions, we can transform the integral rb [ X(¢)y(¢)dt as
follows:

rb| x(@t)y()dt =a| y@t)dt +
0 0 0

“dy(t) “_
it dt =a ) y()dt — y;

(11]

Substituting z = ¢~ %, p = yR4(R» — 1)/Rpy and ¢ = a(1 — Ry),
and using Eq. 10, we obtain:

© ©

rb | x(Oy()dt =y,| a| e« Vg —1

1
ez 1dz — 1

0
=yi(ye P(=p)"*"[T(d/5)
—I'(¢/8, =p)] = 1)

=yl ve ?

a

=i (blFl(l’ 1+ d)/s’ _p) -1 5 [12]

where I'(¢/8) is the gamma function, I'(¢/5, —p) is the incom-
plete gamma function, and (F;(1, 1 + ¢/8, —p) is the gener-
alized hypergeometric function. The integrals and functional
relationships used in the calculation can be found in ref. 37.
Expressed in terms of basic reproductive ratios, we obtain, by
back-substituting z, p, and ¢,
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The ratio of the number of infected cells produced during
therapy (Eq. 13) and the number of infected cells before therapy
(yr) is:

1 R,—1
OR,, Ry, y) = ?Rle1 L1+y(1—-Ry, _’YRdTb -1
[14]
Multistrain Model. The total production of cells infected with the
resistant n-point mutant during therapy is given by Eq. 7. Using
Egs. 7 and 5 and substituting yx(0) = k!(u/s)ky6, we obtain:

k
n—1 .
n - -
2| |k bat (1) o(0)dt
k=0 0
n—1
=y 2|7 |kls™ |ORs, Ry, v), [15]
k=0

where y(0) = y;. The ratio of production of n-point mutants
during therapy and their frequency of preexistence is obtained
by dividing expression 15 by expression 5, with k replaced by n:
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[16]

For s < 0.2 and n > 3, we can simplify further (with an error
of less than about 10%):

®n(Rb> Rd7 s S) ~ (eS - 1)®(Rba Rd7 'Y) = S®(Rb’ Rd7 ‘Y)'
17]
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