A pseudo zeta function and the distribution of primes

Paul R. Chernoff*

Department of Mathematics, University of California, Berkeley, CA 94720-3840

Edited by Richard V. Kadison, University of Pennsylvania, Philadelphia, PA, and approved April 24, 2000 (received for review April 7, 2000)

The Riemann zeta function is given by:

 $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1} \text{ for Re } s > 1.$

 $\zeta(s)$ may be analytically continued to the entire *s*-plane, except for a simple pole at s = 0. Of great interest are the complex zeros of $\zeta(s)$. The Riemann hypothesis states that the complex zeros all have real part 1/2. According to the prime number theorem, $p_n \approx n \log n$, where p_n is the *n*th prime. Suppose that p_n were exactly *n*log*n*. In other words, in the Euler product above, replace the *n*th prime by *n*log*n*. In this way, we define a pseudo zeta function C(*s*) for Re *s* > 1. One can show that C(*s*) may be analytically continued at least into the half-plane Re *s* > 0 except for an isolated singularity (presumably a simple pole) at *s* = 0. It may be shown that the pseudo zeta function C(*s*) has no complex zeros whatsoever. This means that the complex zeros of the zeta function are associated with the irregularity of the distribution of the primes.

F or Re s > 1, the Riemann zeta function is defined by the series $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$. Euler (1,2) observed that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$
 [1]

This is a simple consequence of unique factorization.

Riemann (1,2) showed that $\zeta(s)$ continues analytically to the entire *s*-plane, except for a simple pole at s = 1. The ζ function has real zeros at $s = -2, -4, -6, \ldots$. Of great interest are the *complex* zeros of $\zeta(s)$. The celebrated Riemann hypothesis states that the complex zeros all have real part 1/2.

From Eq. 1 above,

$$\frac{1}{\zeta(s)} = \prod_{p} \left(1 - \frac{1}{p^s}\right),$$

so the Riemann hypothesis says that $1/\zeta(s)$ has *no poles* with Re $s \neq 1/2$ in the critical strip $0 \leq \text{Re } s \leq 1$. Because of the symmetry implied by Riemann's functional equation (see *An Unsolved Problem* below), it is equivalent to show that $1/\zeta(s)$ has no poles with Re s > 1/2.

Now, for Re s > 1, we have (2)

$$\log \zeta(s) = -\sum_{p} \log\left(1 - \frac{1}{p_s}\right)$$
$$= \sum_{p} \sum_{k=1}^{\infty} \frac{p^{-sk}}{k}$$
$$= \sum_{k=1}^{\infty} \frac{1}{k} \sum_{p} p^{-sk}.$$

If we write

$$\varphi(s) = \sum_{p} \frac{1}{p^s} = \sum_{p} p^{-s}, \qquad [2]$$

then we have

$$\log \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k} \varphi(ks).$$
 [3]

Note that the series $\sum_{k=2}^{\infty} 1/k\varphi(ks)$ is uniformly convergent, hence analytic, in any half-plane Re $s \ge (\frac{1}{2}) + \delta$, $\delta > 0$, for then Re $(ks) \ge 1 + 2\delta$, and $|\varphi(ks)| \le \sum_{p} p^{-k(1/2+\delta)}$. This series is uniformly convergent, because

$$\operatorname{Re} s \geq \frac{1}{2} + \delta \operatorname{implies} |\varphi(ks)| \leq \sum_{p} p^{-k(1/2+\delta)}$$
$$\leq \sum_{n=2}^{\infty} n^{-k(1/2+\delta)}$$
$$\leq \int_{1}^{\infty} x^{-k(1/2+\delta)} dx$$
$$= \frac{1}{k\left(\frac{1}{2}+\delta\right)-1} = O\left(\frac{1}{k}\right), k \geq 2.$$

Accordingly, $\sum_{k=2}^{\infty} 1/k |\varphi(ks)|$ is dominated by the constant series $M \sum_{k=2}^{\infty} 1/k^2 < \infty$.

So only the first term $\varphi(s)$ in Eq. 2 can cause trouble; hence the Riemann hypothesis is *equivalent* to the claim that $\varphi(s)$ can be analytically continued into the strip 1/2 < Re s < 1. (NB φ will have a logarithmic singularity at s = 1.)

Motivated by the prime number theorem, which states that the *n*th prime $p_n \approx n \log n$, we consider the "comparison series"

$$\psi(s) = \sum_{n=2}^{\infty} (n \log n)^{-s}.$$
 [4]

Can ψ be continued analytically into the critical strip? This question is at least vaguely related to the Riemann hypothesis, because presumably the properties of ψ are related to those of φ .

MATHEMATICS

This paper was submitted directly (Track II) to the PNAS office.

^{*}E-mail: chernoff@math.berkeley.edu.

An Integral Formula

From Eq. 4, we have the Stieltjes integral formula

$$\psi(s) = \int_{2-}^{\infty} (x \log x)^{-s} d[x]$$

= $(x \log x)^{-s} [x]|_{2-}^{\infty} + s \int_{2}^{\infty} (x \log x)^{-(s+1)}.$
 $\cdot (\log x + 1)[x] dx$
= $-(2 \log 2)^{-s} + s \int_{2}^{\infty} [x] (x \log x)^{-(s+1)} (\log x + 1) dx.$

Write $\{x\} = x - [x]$, the fractional part of x. Then the integral above is

$$\int_{2}^{\infty} (x \log x)^{-s} \left(1 + \frac{1}{\log x} \right) dx - \int_{2}^{\infty} \frac{\{x\} (\log x + 1)}{(x \log x)^{s+1}} dx.$$
 [5]

Note that the second integral in Eq. 5 defines an analytic function for Re s > 0.

Denote the first integral in Eq. 5 by I(s). Then I(s) = J(s) + K(s), where

$$J(s) = \int_{2}^{\infty} (x \log x)^{-s} dx = \int_{2}^{\infty} x^{-s} (\log x)^{-s} dx$$

and

$$K(s) = \int_2^\infty x^{-s} (\log x)^{-(s+1)} dx.$$

If we integrate K by parts, we get

$$u = x^{-(s-1)} \qquad dv = (\log x)^{-(s+1)dx} du = -(s-1)x^{-s}dx \qquad v = -\frac{1}{s}(\log x)^{-s},$$

whence

$$K(s) = \frac{1}{2} \cdot 2^{-(s-1)} (\log 2)^{-s} - \left(\frac{s-1}{s}\right) \int_{2}^{\infty} x^{-s} (\log x)^{-s} dx$$
$$= \frac{2 \cdot (2 \log 2)^{-s}}{s} + \left(\frac{1}{s} - 1\right) J(s).$$

Therefore,

$$I(s) = J(s) + K(s) = \frac{2 \cdot (2 \log 2)^{-s}}{s} + \frac{1}{s} J(s).$$
 [6]

Next, we integrate J(s) by parts:

$$u = x^{-(s-1)} \qquad dv = (\log x)^{-s\frac{dx}{x}} du = -(s-1)x^{-s}dx \qquad v = -\left(\frac{1}{s-1}\right)(\log x)^{-(s-1)}.$$

We obtain

$$J(s) = \frac{(2\log 2)^{-(s-1)}}{s-1} - \int_2^\infty x^{-s} (\log x)^{-(s-1)} dx.$$

In the latter integral, make the substitution $x = e^t$; the integral becomes

$$\int_{\log 2}^{\infty} t^{-(s-1)} e^{-(s-1)t} dt,$$

which equals

$$\int_{0}^{\infty} t^{-(s-1)} e^{-(s-1)t} dt - \int_{0}^{\log 2} t^{-(s-1)} e^{-(s-1)t} dt = W(s) - Y(s).$$
 [7]

The second integral Y(s) in Eq. 7 is an analytic function if Re(s - 1) < 1, i.e., Re s < 2. As for the first integral W(s), it is convergent for 1 < Re s < 2, and we have the explicit formula

$$W(s) = (s-1)^{-s} \Gamma(2-s) = -(s-1)^{-(s-1)} \Gamma(1-s).$$

Now $(s-1)^{-(s-1)} = \exp[-(s-1)\log(s-1)]$ is a single-valued analytic function on the (simply connected) slit plane $\mathbb{C}\setminus[1,\infty)$. Then for $s \notin [1,\infty)$, we have the relation

$$J(s) = \frac{(2\log 2)^{-(s-1)}}{s-1} + (s-1)^{-(s-1)}\Gamma(1-s) + Y(s), \quad [8]$$

whence J(s) can be analytically continued into the entire *s* plane minus the point {1}.

The Main Theorem

From the results of the preceding section,

$$I(s) = \frac{2 \cdot (2 \log 2)^{-s}}{s} + \frac{1}{s} J(s)$$

also has an analytic continuation into the critical strip. That is, in particular, it has no singularities there. Hence

пенсе

$$\psi(s) = I(s) - \int_{2}^{\infty} \frac{\{x\}(\log x + 1)}{(x \log x)^{s+1}} dx$$

has an analytic continuation into the critical strip $0 < \text{Re } s \le 1$ in which it has no singularities. [This is in contrast with $\varphi(s)$, which must be singular at the complex zeros of J(s).]

Conclusion. THEOREM. Let $C(s) = \prod_{n=2}^{\infty} (1 - (n \log n)^{-s})^{-1}$. Then C(s) continues analytically into the critical strip and has no zeros there.

Significance of the theorem: If the primes were distributed more regularly (i.e., if $p_n \equiv n \log n$), then the Riemann hypothesis would be trivially true. In reality, the zeros of J(s) are related to the *irregularities* in the distribution of the primes. [Of course, the latter fact was known to Riemann; see his "explicit formula" (1) for $\pi(x)$, the number of primes less than x.]

Some Related Pseudo ζ Functions

It is, of course, impossible for the *n*th prime p_n to equal $n \log n$, for the latter is not even an integer. But what if p_n is replaced by $[n \log n]$, the greatest integer in $n \log n$? More generally, what if p_n is replaced by $n \log n + \varepsilon_n$, where $(\varepsilon_n)_2^{\infty}$ is a bounded sequence? It turns out that the corresponding pseudo zeta function also has no complex zeros.

To see this, consider the difference

$$\sum_{n=2}^{\infty} \frac{1}{(n \log n)^s} - \sum_{n=2}^{\infty} \frac{1}{(n \log n + \varepsilon_n)^s}$$

$$= \sum_{n=2}^{\infty} \left\{ \frac{1}{(n \log n)^s} - \frac{1}{(n \log n + \varepsilon_n)^s} \right\}$$
$$= \sum_{n=2}^{\infty} \int_0^{\varepsilon_n} \frac{s}{(n \log n + t)^{s+1}} dt.$$

This series converges uniformly for Re s > 0. Indeed, writing $\sigma = \text{Re } s$, we have

$$|| |n \log n + t|^{s+1}| = |n \log n + t|^{\sigma+1} \ge (n \log n - t)^{\sigma+1},$$

so that our series is dominated by

$$|s|\sum_{n=2}^{\infty}\int_{0}^{|\varepsilon_n|}\frac{dt}{(n\log n-t)^{\sigma+1}} \leq |s|\sum_{n=2}^{\infty}\int_{0}^{\varepsilon}\frac{dt}{(n\log n-t)^{\sigma+1}},$$

where $\varepsilon = \sup_n |\varepsilon_n|$. Interchanging the order of summation and integration, we have

$$|s| \int_0^\varepsilon \sum_{n=2}^\infty \frac{1}{(n \log n - t)^{\sigma+1}} dt,$$

 Edwards, H. M. (1974) Riemann's Zeta Function (Academic, New York) 1–38, 299–307. which converges uniformly for $\sigma > 0$. Accordingly, the two series

$$\sum_{n=2}^{\infty} \frac{1}{(n \log n + \varepsilon_n)^s} \text{ and } \sum_{n=2}^{\infty} \frac{1}{(n \log n)^s}$$

have the same analytic behavior in the critical strip. Hence $\sum_{n=2}^{\infty} 1/(n \log n + \varepsilon_n)^s$ has no complex singularities in the critical strip. But this means that the associated pseudo zeta function

$$\tilde{C}(s) = \prod_{n=2}^{\infty} (1 - (n \log n + \varepsilon_n)^{-s})^{-1}$$

has no zeros in the critical strip.

An Unsolved Problem

The Riemann zeta function satisfies the functional equation (1, 2)

$$f(s) = f(1 - s),$$

where $f(s) = \Gamma(s/2)\zeta(s)\pi^{-s/2}$.

Question: Does the pseudo zeta function (say with p_n replaced by $n \log n$) also satisfy some sort of functional equation? This would be quite interesting if true.

 Widder, D. V. (1971) An Introduction to Transform Theory (Academic, New York) 51–55, 60–63, 85–90.