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The Riemann zeta function is given by:

z~s! 5 O
n51

`

1yns 5 P
p prime

S1 2
1
psD21

for Re s . 1.

z(s) may be analytically continued to the entire s-plane, except for
a simple pole at s 5 0. Of great interest are the complex zeros of
z(s). The Riemann hypothesis states that the complex zeros all have
real part 1y2. According to the prime number theorem, pn ' n logn,
where pn is the nth prime. Suppose that pn were exactly nlogn. In
other words, in the Euler product above, replace the nth prime by
nlogn. In this way, we define a pseudo zeta function C(s) for Re s >
1. One can show that C(s) may be analytically continued at least
into the half-plane Re s > 0 except for an isolated singularity
(presumably a simple pole) at s 5 0. It may be shown that the
pseudo zeta function C(s) has no complex zeros whatsoever. This
means that the complex zeros of the zeta function are associated
with the irregularity of the distribution of the primes.

For Re s . 1, the Riemann zeta function is defined by the
series z(s) 5 (n51

` 1yns. Euler (1,2) observed that

z~s! 5 O
n51

` 1
ns 5 P

p prime

S1 2
1
psD21

. [1]

This is a simple consequence of unique factorization.
Riemann (1,2) showed that z(s) continues analytically to the

entire s-plane, except for a simple pole at s 5 1. The z function
has real zeros at s 5 22, 24, 26, . . . . Of great interest are the
complex zeros of z(s). The celebrated Riemann hypothesis states
that the complex zeros all have real part 1y2.

From Eq. 1 above,

1
z~s!

5 P
p

S1 2
1
psD ,

so the Riemann hypothesis says that 1/z(s) has no poles with Re
s Þ 1y2 in the critical strip 0 # Re s # 1. Because of the
symmetry implied by Riemann’s functional equation (see An
Unsolved Problem below), it is equivalent to show that 1yz(s) has
no poles with Re s . 1y2.

Now, for Re s . 1, we have (2)

logz~s! 5 2O
p

log S1 2
1
ps
D

5 O
p

O
k51

` p2sk

k

5 O
k51

` 1
k O

p

p2sk .

If we write

w~s! 5 O
p

1
ps 5 O

p

p2s , [2]

then we have

logz~s! 5 O
k51

` 1
k

w~ks!. [3]

Note that the series (k52
` 1/kw(ks) is uniformly convergent,

hence analytic, in any half-plane Re s $ (1⁄2) 1 d, d . 0, for then
Re(ks) $ 1 1 2d, and uw(ks)u # ¥pp2k(1/21d). This series is
uniformly convergent, because

Re s $
1
2

1 d impliesuw~ks!u # O
p

p2k~1/21d!

# O
n52

`

n2k~1/21d!

# E
1

`

x2k~1/21d!dx

5

1

kS1
2

1 dD 2 1
5 OS1

kD , k $ 2.

Accordingly, (k52
` 1/kuw(ks)u is dominated by the constant series

M ¥k52
` 1yk2 , `.

So only the first term w(s) in Eq. 2 can cause trouble; hence
the Riemann hypothesis is equivalent to the claim that w(s) can
be analytically continued into the strip 1/2 , Re s , 1. (NB w
will have a logarithmic singularity at s 5 1.)

Motivated by the prime number theorem, which states that the
nth prime pn ' n log n, we consider the ‘‘comparison series’’

c~s! 5 O
n52

`

~n log n!2s . [4]

Can c be continued analytically into the critical strip? This
question is at least vaguely related to the Riemann hypothesis,
because presumably the properties of c are related to those of w.
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An Integral Formula
From Eq. 4, we have the Stieltjes integral formula

c~s! 5 E
22

`

~x log x!2sd@x#

5 ~x log x!2s@x#u22
` 1 sE

2

`

~x log x!2~s11!.

z ~log x 1 1!@x#dx

5 2 ~2 log 2!2s 1 sE
2

`

@x#~x log x!2~s11!~log x 1 1!dx.

Write {x} 5 x 2 [x], the fractional part of x. Then the integral
above is

E
2

`

~x log x!2sS1 1
1

log xDdx 2 E
2

` $x%~log x 1 1!

~x log x!s11 dx. [5]

Note that the second integral in Eq. 5 defines an analytic
function for Re s . 0.

Denote the first integral in Eq. 5 by I(s). Then I(s) 5 J(s) 1
K(s), where

J~s! 5 E
2

`

~x log x!2sdx 5 E
2

`

x2s~log x!2sdx

and

K~s! 5 E
2

`

x2s~log x!2~s11!dx.

If we integrate K by parts, we get

u 5 x2~s21! dv 5 ~log x!2~s11!
x
dx

du 5 2 ~s 2 1!x2sdx v 5 2
1
s

~log x!2s,

whence

K~s! 5
1
2

z 22~s21!~log 2!2s 2 S s 2 1
s D E

2

`

x2s~log x!2sdx

5
2z~2 log 2!2s

s
1 S1

s
2 1D J~s!.

Therefore,

I~s! 5 J~s! 1 K~s! 5
2z~2 log 2!2s

s
1

1
s

J~s!. [6]

Next, we integrate J(s) by parts:

u 5 x2~s21! dv 5 ~log x!2s
dx
x

du 5 2 ~s 2 1!x2sdx v 5 2 S 1
s 2 1D ~log x!2~s21!.

We obtain

J~s! 5
~2 log 2!2~s21!

s21
2E

2

`

x2s~log x!2~s21!dx.

In the latter integral, make the substitution x 5 et; the integral
becomes

E
log2

`

t2~s21!e2~s21!tdt ,

which equals

E
0

`

t2~s21!e2~s21!tdt 2 E
0

log2

t2~s21!e2~s21!tdt 5 W~s! 2 Y~s!. [7]

The second integral Y(s) in Eq. 7 is an analytic function if Re(s 2
1) , 1, i.e., Re s , 2. As for the first integral W(s), it is
convergent for 1 , Re s , 2, and we have the explicit formula

W~s! 5 ~s 2 1!2sG~2 2 s! 5 2~s 2 1!2~s21!G~1 2 s!.

Now (s 2 1)2(s 2 1) 5 exp[2(s 2 1) log(s 2 1)] is a single-valued
analytic function on the (simply connected) slit plane C\[1, `).
Then for s [y [1, `), we have the relation

J~s! 5
~2 log 2!2~s21!

s 2 1
1 ~s 2 1!2~s21!G~1 2 s! 1 Y~s!, [8]

whence J(s) can be analytically continued into the entire s plane
minus the point {1}.

The Main Theorem
From the results of the preceding section,

I~s! 5
2z~2 log 2!2s

s
1

1
s

J~s!

also has an analytic continuation into the critical strip. That is,
in particular, it has no singularities there.

Hence

c~s! 5 I~s! 2 E
2

` $x%~log x 1 1!

~x log x!s11 dx

has an analytic continuation into the critical strip 0 , Re s # 1
in which it has no singularities. [This is in contrast with w(s),
which must be singular at the complex zeros of J(s).]

Conclusion. THEOREM. Let C(s) 5 )n52
` (1 2 (n log n)2s)21. Then

C(s) continues analytically into the critical strip and has no zeros
there.

Significance of the theorem: If the primes were distributed
more regularly (i.e., if pn [ n log n), then the Riemann
hypothesis would be trivially true. In reality, the zeros of J(s) are
related to the irregularities in the distribution of the primes. [Of
course, the latter fact was known to Riemann; see his ‘‘explicit
formula’’ (1) for p(x), the number of primes less than x.]

Some Related Pseudo z Functions
It is, of course, impossible for the nth prime pn to equal n log n,
for the latter is not even an integer. But what if pn is replaced by
[n log n], the greatest integer in n log n? More generally, what
if pn is replaced by n log n 1 «n, where («n)2

` is a bounded
sequence? It turns out that the corresponding pseudo zeta
function also has no complex zeros.

To see this, consider the difference

O
n52

` 1
~n log n!s 2 O

n52

` 1
~n log n 1 «n!s
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5 O
n52

` H 1
~n log n!s 2

1
~n log n 1 «n!sJ

5 O
n52

` E
0

«n s
~n log n 1 t!s11 dt .

This series converges uniformly for Re s . 0. Indeed, writing s 5
Re s, we have

i un log n 1 tus11u 5 un log n 1 tus11 $ ~n log n 2 t!s11 ,

so that our series is dominated by

usu O
n52

` E
0

u«nu dt
~n log n 2 t!s11 # usu O

n52

` E
0

« dt
~n log n 2 t!s11 ,

where « 5 supnu«nu. Interchanging the order of summation and
integration, we have

usu E
0

« O
n52

` 1
~n log n 2 t!s11 dt ,

which converges uniformly for s . 0.
Accordingly, the two series

O
n52

` 1
~n log n 1 «n!s and O

n52

` 1
~n log n!s

have the same analytic behavior in the critical strip. Hence (n52
`

1/(n log n1«n)s has no complex singularities in the critical strip.
But this means that the associated pseudo zeta function

C̃~s! 5 P
n52

`

~1 2 ~n log n 1 «n!2s!21

has no zeros in the critical strip.

An Unsolved Problem
The Riemann zeta function satisfies the functional equation
(1, 2)

f~s! 5 f~1 2 s!,

where f(s) 5 G(sy2)z(s)p2sy2.
Question: Does the pseudo zeta function (say with pn replaced

by n log n) also satisfy some sort of functional equation? This
would be quite interesting if true.
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