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We propose a general theoretical framework for modeling receptor
sensitivity in bacterial chemotaxis, taking into account receptor in-
teractions, including those among different receptor species. We
show that our model can quantitatively explain the recent in vivo
measurements of receptor sensitivity at different ligand concentra-
tions for both mutant and wild-type strains. For mutant strains, our
model can fit the experimental data exactly. For the wild-type cell, our
model is capable of achieving high gain while having modest values
of Hill coefficient for the response curves. Furthermore, the high
sensitivity of the wild-type cell in our model is maintained for a wide
range of ambient ligand concentrations, facilitated by near-perfect
adaptation and dependence of ligand binding on receptor activity.
Our study reveals the importance of coupling among different che-
moreceptor species, in particular strong interactions between the
aspartate (Tar) and serine (Tsr) receptors, which is crucial in explaining
both the mutant and wild-type data. Predictions for the sensitivity of
other mutant strains and possible improvements of our model for the
wild-type cell are also discussed.

The bacterial chemotaxis pathway is one of the best charac-
terized signal transduction pathways in biology (see refs. 1–3

for recent reviews of the subject). The molecular hardware of the
chemotaxis response has been worked out, and we have a rather
complete qualitative description of how the signal is received,
transduced (to the motor), and regulated. However, at the
quantitative level, there are still many unanswered questions.
One long-lasting puzzle in bacterial chemotaxis is the problem
of gain (4), i.e., a small change in external concentration of
attractant or repellent can cause substantial change in the cell’s
swimming behavior. One possible source of gain could be the
interaction of the signaling molecule CheY-P with the motor
complex, in particular the FliM protein. However, despite the
large Hill coefficient for the rotation bias vs. CheY-P concen-
tration relation discovered recently in tethered single-cell ex-
periments (5), a simple calculation quickly shows that the
amplification at the motor level can only be part of the story,
because quantitatively it simply cannot account for all the gain
of the system (6). Therefore, there has to be significant ampli-
fication from the ligand concentration change to the change in
CheY-P concentration. Recently, this high signal amplification
was demonstrated directly in a set of beautiful experiments by
Sourjik and Berg (SB) (7), where CheY-P concentration was
measured in vivo for the first time by using fluorescence reso-
nance energy transfer. In their study, SB measured the sensitivity
of the wild-type and different mutant strains of Escherichia coli
in their response to different concentrations of methyl-aspartate
(MeAsp). The wild type is found to have extremely high sensi-
tivity, which translates into a high gain of �36 once the receptor
occupancy is inferred by a simple approximation.

Because of their direct, quantitative, and systematic nature,
the SB data provide us with a unique opportunity to understand
the internal workings of the bacterial chemotaxis signaling
pathway. In this paper, we construct a model framework capable
of explaining the SB data quantitatively.

Motivation, Models, and Methods
The Motivation. Six mutant strains were studied in ref. 7. The cheR�

and cheB� mutants correspond to strains with either CheR or CheB
unexpressed. Four cheRcheB mutants correspond to strains miss-
ing both CheR and CheB and with the Tar receptor genetically
engineered to be in different methylation states (EEEE, QEEE,
QEQE, and QQQE). A careful look at the response data for all the
mutant strains from the SB paper (reproduced here in Fig. 1a)
reveals several suggestive features, which we describe in the fol-
lowing to motivate the construction of our model.

For the four cheRcheB mutants, the response curves have two
steep drops as the MeAsp concentration increases: the first one
corresponds to the transition of the aspartate receptor (Tar)
between its ligand free state and its ligand occupied state; the
second corresponds to the same transition for the serine receptor
(Tsr) at a higher ligand concentration. The sizes of these two activity
drops are different for different cheRcheB mutants. Although the
difference for the first drops among different cheRcheB mutants
could be explained by the different modification states of Tar in
different mutant strains, the difference for the second activity drops
is very intriguing, because the Tsr receptors should be in the same
methylation state (QEQE) for all cheRcheB mutants. This obser-
vation suggests that Tsr activity is affected by Tar receptors, and the
interaction depends on the methylation state of the Tar receptors.

For the cheR� mutant, the receptors (including both Tar and
Tsr) are all expected to be in their most demethylated states
(EEEE) because of the unbalanced demethylation of receptors by
CheB. Therefore, the Tar receptors should be in the same meth-
ylation state (EEEE) in both cheR� and cheRcheB(EEEE) mu-
tants. However, the responses of these two strains to MeAsp are
extremely different, as shown in ref. 7. The cheR� strain is found
to respond to much lower ligand concentration but with much-
reduced activity as compared with the cheRcheB (EEEE) strain.
To understand this difference, it is important to note that even
though the Tar receptors are in the same methylation states in both
cheR� and cheRcheB(EEEE) strains, the Tsr receptors are in
different methylation states for these two strains: one in its most
demethylated state (EEEE) and the other in its unmodified state
(QEQE). Therefore, the different behaviors between cheR� and
cheRcheB(EEEE) could be understood if we assume again there is
strong coupling between Tar and Tsr, and the interaction depends
on the methylation state of the Tsr receptor.

These two observations of SB’s response data lead us to construct
a theoretical model, in which one of the main ingredients is the
coupling among receptors, in particular among different types of
receptors. Cooperativity between receptors as a mechanism for the
system’s large gain was first suggested by Bray, Levin, and Morton-
Firth (8). Later, Shi and Duke (9) proposed an Ising-type model,
where identical receptors on a regular extended lattice interact with
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their nearest neighbors, as a materialization of the idea. Duke and
Bray (10) eventually implemented a Monte Carlo version of the
simple Ising-type model and demonstrated that it is capable of
enhancing the gain of the system. Although conceptually appealing,
these models lack the necessary ingredients, such as a proper
description of different methylation states of the receptors and the
inclusion of heterogeneous receptor interactions among different
types of receptors, which are essential in explaining the quantitative
data in the SB experiment. In this paper, we will construct and study
a simple model that implements the general idea of receptor
coupling among different types of receptors and a detailed descrip-
tion of the properties of receptors in different methylation levels,
with the aim of understanding the SB data quantitatively.

The General Structure of the Model. We first assume that each
receptor (complex) has two distinct states: active and inactive. Each
receptor, Tqm�, is characterized by three parameters: q is the type
of receptor, only the two high-abundance types of receptors with

q � 1 for Tar and q � 2 for Tsr being considered in this paper, and
the total number of Tsr being twice that of Tar; m � [0, 4] is the
number of methyl groups; and � � 0, 1 represents vacant and
ligand-occupied receptors, respectively. We assume the probability
of finding the receptor in the active or inactive state is controlled
by their energy difference and obeys the Boltzmann distribution (9).
The average activity for receptor Tqm� is then given by:

aqm� � �1 � exp��Eqm����1. [1]

�Eqm� is the dimensionless total energy difference between the
active and inactive states for receptor Tqm�. All energies in this
paper are in units of the thermal energy kBT.

The total energy difference �Eqm� contains two different kind
of contributions: a self energy Eqm� depending on the properties
of the receptor Tqm� itself, and an interaction energy coming
from coupling to other receptors (characterized by q	m	�	):

�Eqm� � Eqm� � �
q	m	�	

Cqq	 fq	m	�	�aq	m	�	 � 1�2�. [2]

Without detailed knowledge of the geometrical nature of the
interaction, we adopt the mean-field approach, where each
receptor’s local environment is approximated by the overall
(fractional) receptor population fq	m	�	. Preferential coupling
between different types of receptor can be captured by the
coupling strength Cqq	 between receptor types q and q	. For
generality, symmetric coupling (Cqq	 � Cq	q) is not enforced. In
principle, coupling strength may depend on the methylation
levels or ligand-binding status of the receptors; however, such
extra degrees of freedom are not needed for fitting the SB data.

In Eq. 2, we have used the simplest form of interaction,
wherein the interaction energy depends linearly on the other
receptor’s activity. The interpretation of Eq. 2 is quite transpar-
ent. The activity of a given receptor Tqm� is determined by both
its own properties characterized by Eqm� and those of its
interacting neighbors. If its neighbors’ activity is higher, then
through positive coupling implemented by having Cqq	 
 0, the
total energy difference �Eqm� will be lowered, leading to higher
activity for receptor Tqm� from Eq. 1. The activity value at which
the interaction is zero is set to 1/2 for convenience, and it can be
shown easily that setting it to another value simply amounts to
a renormalization of the local energy Eqm�.

To complete the description of the system, we need to know how
each type of receptor is distributed among its different methylation
and ligand-binding states, i.e., the values of fqm�. From the exper-
imental data, particularly the comparison between cheR� and
cheRcheB(EEEE), it is evident that the ligand-binding kinetics may
depend on the activity itself. Assuming the time scale for active�
inactive transition is faster than that of the ligand-binding�
unbinding reaction, the ligand-binding dynamics can be written as:

Tqm0
I � L -|0

kqm
FI

kqm
RI

Tqm1
I

fast8 8 fast

Tqm0
A � L -|0

kqm
FA

kqm
RA

Tqm1
A

, [3]

where Tqm�
I and Tqm�

A are the receptors in the inactive and active
states, and L represents the ligand. The steady-state ratio
between ligand-bounded and unbounded receptor populations is
given by:

fqm1

fqm0
�

kqm
FAaqm0 � kqm

FI �1 � aqm0�

kqm
RAaqm1 � kqm

RI �1 � aqm1�
�L�, [4]

Fig. 1. (a) Fitting of our model to the response data for all mutant strains
reported in ref. 7. The horizontal axis is the MeAsp concentration. The lines are
theresultsofourmodelwiththeparametersgiven inTable1.Thesymbolsare the
experimental data rescaled to their absolute values according to the activity at
[L] � 0 provided in ref. 7. For the cheRcheB mutants, the Tsr receptors are in the
m � 2 methylation state, and Tar receptors are in m � 0 (‚), m � 1 ({), m �

2 (�), or m � 3 (ƒ) methylation state, respectively. The cheR(�10) and cheB
mutants are represented by � and E. (b) The receptor occupancy for Tar and Tsr
for all mutant strains calculated from our model for the same parameters as in a.
The half-occupancy ligand concentrations are: K1�2 � 3.53, 42.2, 86.6, 97, 267,
and 996 �M for Tar in cheR, cheRcheB(EEEE), cheRcheB(QEEE), cheRcheB(QEQE),
cheRcheB(QEQQ), and cheB cells, respectively.
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where [L] is the ligand concentration, and kqm
FA (kqm

RA); kqm
FI (kqm

RI )
are the ligand-binding (unbinding) rates for the active and
inactive receptors, respectively. To include the possibility that
the ligand-binding kinetics described in Eq. 3 is not an isolated
process, no thermodynamics constraints are used to relate the
rate constants with the receptor energy differences. However,
such constraints are not expected to change the main results of
this paper due to the underdetermined nature of the problem.

The Model for the Mutants. For all the mutants studied by SB, the
normal methylation process is disabled, because either one or
both of the methylation and demethylation enzymes is missing.
Therefore, for any given mutant strain, each receptor type q(�1,
2) is in a unique methylation state mq, e.g., m1 � 0 and m2 � 0
for the cheR� mutant; and m1 � 2 and m2 � 2 for the
cheRcheB(QEQE) mutant. For a given mutant characterized by
m1 and m2, the coupled nonlinear Eqs. 1, 2, and 4 can be solved
together at any given ligand concentration to obtain the activities
and receptor distribution functions aqmq� and fqmq�, from which
the (average) activity of the whole system A � �q� aqmq�fqmq� can
be determined. In this paper, we assume that CheY-P concen-
tration is linearly proportional to the total (kinase) activity A,
therefore the behavior of A from our model is directly compared
with that of the (experimentally measured) CheY-P concentra-
tions. The parameters of this model are the self-energies for each
receptor type Eqm�, the coupling strengths Cqq	, and the kinetic
rates for describing the ligand-binding kinetics. To validate our
model quantitatively, our goal is to find a set of parameters such
that the behaviors of the model would agree with the experi-
mental data for all six mutant strains in ref. 7.

The Model for the Wild Type. To model the response behavior of
the wild type properly, we need to introduce the methylation�
demethylation kinetics. At a given ambient ligand concentration,
the receptors in a wild-type cell are distributed in different
methylation states due to adaptation mediated by the methyl-
ation�demethylation kinetics. To make this a tractable problem,
we use a coarse-grained description for the Tar receptors with
only five methylation states characterized by their total number
of methyl groups m � [0, 4] instead of considering all 16 possible
methylation states. Hence m has a slightly different meaning
here from that in the mutant model. For example, although
parameters with m � 1 in the wild-type model represent the
average properties of all receptors with one methylated site, i.e.,
(QEEE), (EQEE), (EEQE), and (EEEQ), they describe the
properties of the specific methylation state studied in the current
mutant experiments, i.e., (QEEE). Therefore, the parameters
from these two models may not be the same, and we choose to
fit the mutant and wild-type data separately.

It is known that E. coli adapts almost perfectly to MeAsp, i.e.,
the steady-state total activity is independent of the ambient
ligand concentration. As shown in previous studies on adapta-
tion (11–14) one of the key conditions for achieving perfect
adaptation is that the methylation�demethylation rates depend
on the activity of the receptor. Assuming that only inactive
receptors can be methylated, and only active receptors can be
demethylated (12, 14), we use the following simplified methyl-
ation flux balance equation between any two consecutive meth-
ylation levels to determine the steady-state distribution of the
receptors in different methylation states:

kRB �
�

�1 � a1m��f1m� � �
�

a1�m1�� f1�m1�� ,

m � 0, 1, 2, 3. [5]

kRB is the ratio of the methylation�demethylation rates, which
depends on the enzyme concentrations and methylation kinetic

constants. It is easy to show by summing Eq. 5 over m that the
total activity of the Tar receptors, A1 � ��,0�m�4 f1m�a1m�, is a
constant if the fully methylated receptors are always active,
a14� � 1, and the least methylated receptors are always inactive,
a10� � 0. This is also one of the conditions for perfect adapta-
tion found in our earlier work by studying a full adaptation
model (14).

The Tsr receptor distribution in different methylation states, f2m,
can be determined similarly as in Eq. 5. Because of perfect
adaptation and the fact that Tsr does not bind to MeAsp in the
concentration range (
10 mM) where the wild-type experiments
were performed, the steady-state Tsr distribution f2m is indepen-
dent of the ambient MeAsp concentration. To avoid introducing
too many parameters describing the details of the different Tsr
methylation states, we simplify our model by approximating f2m �
�mm0

(m0 is set to 2 for bookkeeping purposes), i.e., all Tsr receptors
are in the same methylation state. This is a reasonable approxima-
tion for studying the MeAsp response, because f2m is independent
of the ambient MeAsp concentration, and f2m is usually dominated
by a single methylation level (see supporting information on the
PNAS web site, www.pnas.org, for Tar distribution f1m).

Eq. 5, together with Eqs. 1, 2, and 4, defines the steady-state
receptor distributions (in different methylation states) of the
wild-type cell for any given ambient MeAsp concentration.
Because methylation�demethylation is much slower than the
ligand-binding process, the short time response of the wild-type
cell to different added�removed MeAsp concentrations can be
calculated by solving just Eqs. 1, 2, and 4 for the fast processes,
while keeping the receptor distribution in different methylation
states the same as that of the (prestimulus) steady state. These
responses can be directly compared with the wild-type data
provided in SB’s study.

The types of parameters in the wild-type model are similar to that
of the mutant, except that there is only one Tsr state in the wild-type
model. In addition, we have introduced an extra parameter kRB for
describing the methylation�demethylation processes.

The Fitting Method. We construct an error function by summing
the square of the difference between the model’s predicted
response and the experimental value at each data point. A global
scaling factor is also introduced as a fitting parameter in con-
verting the model’s predicted activity into the experimentally
observed CheY-P concentration. The Newton–Raphson method
(15) is used for solving the self-consistent equations for a given
set of parameters, and Powell’s quadratically convergent method
(15) is used subsequently in minimizing the error function in the
parameter space with different initial parameter values.

Results
The Mutant Strains. Because there is not enough range of activity
change for the Tar receptor in m � 1, 2, 3, and 4 states in the
experimental data, the ligand-binding�unbinding rates of Tar for
m � (1, 4) are underdetermined; i.e., there are many sets of
ligand-binding�unbinding rates that can produce the same good
fit to the data. However, for Tar (q � 1) with m � 0, the best
fit to the data always results in kqm

FA 

 kqm
FI and kqm

RA �� kqm
RI . To

eliminate the unnecessary degeneracy in our fitting, we have
reduced the number of parameters by fixing kqm

FA � 0 and kqm
RI �

0 for all receptor and methylation levels for both the mutant and
wild-type models. However, it is important to keep in mind for
future studies that this requirement may be necessary only for
Tar with m � 0. Now the ligand-binding�unbinding balance
equation can be simplified: fqm1/fqm0 � (1�aqm0)[L]�(aqm1Kqm),
which depends on only one parameter, Kqm � kqm

RA�kqm
FI , instead

of the three ratios between the four kinetic rates in Eq. 4.
From all the initial parameters we tried, the fitting converges to

the same point in the parameter space. However, the attraction
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basin is very flat, i.e., there are many sets of parameters that can fit
the mutant data within the experimental error. Fig. 1a shows one
such good fit of our model to the experimental data, the corre-
sponding parameters being given in Table 1 (see supporting infor-
mation for examples of other good fits). Overall, the model fits the
data remarkably well, considering that the number of parameters is
rather small. Although more experiments are needed to remove the
ambiguity in the parameters, some parameters of the model, do
seem to be constrained by the existing data, e.g., the interaction
strength from Tsr to Tar, C12, is found to be always big as compared
with other coupling constants.

By using our model, we can also directly measure the fractional
ligand occupancy of both the Tar and Tsr receptors, the results
being shown in Fig. 1b. Comparing Fig. 1 a and b, it is clear that
even though the trends of ligand occupancy and the activity
curve for a given receptor are correlated, they can be quite
different quantitatively. Due to the effect of receptor coupling,
high ligand occupancy does not necessarily mean proportionally
large suppression of activity. Depending on the details of the
model, K1�2 (the half-maximum ligand concentration) of the
ligand occupancy curve can be either bigger or smaller than that
of the corresponding activity curve, as shown in Fig. 1.

The Wild Type. The fitting for the wild-type data is significantly
more difficult than for the mutant data, because of the com-
plexity introduced by multiple Tar methylation states. The best
fit to the wild-type data we have found so far within our model
is shown in Fig. 2a, with the parameters given in Table 2. There
is no guarantee that this is the unique, or globally minimum,
solution. The general behavior of the response of the wild-type
cell to increasing and reducing ligand concentration predicted by
our model is highly consistent with the experimental results. Due
to the simplifications made in our wild-type model, the quanti-
tative agreement is not as perfect as for the mutant studies,
especially for the large MeAsp concentration changes. However,
for a relatively small MeAsp concentration change, our model
has captured the essential features for producing high sensitivity
and high gain in the wild-type response. At a given ambient
ligand concentration [L], the system is characterized by its
receptor occupancy L and total activity A. On a sudden change
of ligand concentration �[L], the resulting (fast) changes (before
methylation�demethylation takes place) in receptor occupancy
and total activity are represented by �L and �A. Following SB
(7), sensitivity (S) and gain (G) are defined as: S � ([L]/A)(�A/
�[L]); G � (1/A)(�A/�L). While S measures the sensitivity of
the cell’s kinase activity with respect to the (external) ligand
concentration change, G measures the signal amplification
within the cell.

In Fig. 2b, we show the sensitivity for the full range of ambient
ligand concentrations, in the same way as in ref. 7 (see figure 3b in
their paper) for small relative MeAsp concentration changes �[L]/

[L] � 1%, 10%, 20%. For �4 decades of ambient ligand concen-
trations, high sensitivity is maintained between 1 and 8, consistent
with ref. 7. In Fig. 2b, the steady-state activity of our model is also
plotted. The system adapts nearly perfectly, i.e., the steady-state
activity is a constant independent of ambient ligand concentration,
from zero concentration to �1 mM. The adaptation becomes
imperfect for higher ligand concentrations (75% activity at 10 mM),
because one of the perfect adaptation conditions a14� � 1 is not
satisfied, and the m � 4 state becomes highly populated at high
ligand concentrations (14). To determine the gain, we have plotted
the relative activity change �A/A vs. the change in receptor occu-
pancy �L for several ambient ligand concentrations. As shown in
Fig. 2c, most curves for different ambient MeAsp concentrations
collapse onto a single one (as in ref. 7). The deviation from common
behavior at the extremely high ambient MeAsp concentration (5
mM) is probably caused by violation of perfect adaptation at such
high MeAsp concentration in our model. For small �L, the relative
activity change is linearly proportional to the receptor occupancy
change with a high slope (�20). In SB’s paper (7), receptor
occupancy of the wild-type cell was estimated from the data of a
single mutant strain; this inaccuracy in determining the receptor
occupancy may be responsible for the discrepancy between the
gain calculated in our model (�20) and that reported from their
work (�36).

So, where does the high gain come from? In our model, we can
easily calculate the contributions to the gain by Tar and Tsr
separately. For the parameters in Table 2, the gain from Tsr
constitutes a large fraction (�80%) of the total gain for MeAsp
response (see supporting information for a detailed derivation).
Quantitatively, the gain from Tsr at a given ambient concentra-
tion is determined mainly by two factors: the coupling strength
from Tar to Tsr, i.e., C21; and Tsr’s activity at the ambient ligand
concentration A2, which determines the susceptibility of the Tsr
activity with respect to change of its neighbor’s activity. From
Table 2, we can see that a large value of the coupling constant
C21 is required to fit the experimental data.§ Another reason for
the high gain from Tsr is that in our model, the Tsr activity A2
is kept around 1/2, where Tsr activity is most susceptible to the
change of its neighbor’s activities, and the perfect adaptation of
the system is responsible for keeping the Tsr receptors at their
most susceptible states for all ambient ligand concentrations.¶
This observation provides another mechanism in which per-
fect (or near-perfect) adaptation may be required for the

§Due to the dominance of the extremely large self energy difference for the Tar receptors
in our model, large coupling constants do not lead to the ‘‘All-or-None’’ phase transition,
as in the standard Ising model.

¶If Tsr distribution in different methylation states is taken into account, the gain will
decrease but not by much if distribution is centered around the most susceptible meth-
ylation state.

Table 1. A set of parameters for which our model fits all the mutant strain data well

m 0 1 2 3 4

E1m0(A1m0
B ) �2.07 (0.89) �2.51 (0.93) �2.93 (0.95) �15.4 (1.0) �16.0 (1.0)

E1m1(A1m1
B ) 6.22 (0.0) �1.31 (0.79) �1.77 (0.85) �2.27 (0.91) �2.27 (0.91)

E2m0(A2m0
B ) � (0.0) — 0.53 (0.37) — 0.419 (0.40)

E2m1(A2m1
B ) — — 13.2 (0.0) — 12.9 (0.0)

K1m 185681 77.5 32.4 0.00018 0.00111
K2m � — 1.86 � 1011 — 1.35 � 1011

Cqq	 q	 � 1 q	 � 2

q � 1 �1.0 �13.9
q � 2 �1.60 �2.38

Next to the self-energy differences Eqm�, we have included the ‘‘bare’’ activity values Aqm�
B � (1 � exp(Eqm�)) � 1

for reference only; the actual receptor activities are always different from their bare values because of receptor coupling.
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system to have high gain over a large range of ambient ligand
concentrations.

What causes the high sensitivity? From its definition, we can
easily relate the sensitivity to the gain:

S �
L
A

�A
��L�

� �L�
�L

��L�
� G � GL � G, [6]

where GL � [L] (�L/�[L]) represents how receptor occupancy
changes in response to (relative) ligand concentration change.
From Eq. 6, it is clear that high gain alone does not guarantee
high sensitivity unless GL is also kept consistently high for the
same range of [L]. To have a sense of how GL behaves, we
consider the case where ligand binding obeys simple kinetics with
a single dissociation constant Kd

0 for all Tar receptors. In this
case, GL reaches its maximum value: max(GL) � 1/12 at [L] �
Kd

0 and decays rapidly as [L] moves away from Kd
0. Fortunately,

in bacterial chemotaxis, the receptors exist in different methyl-
ation states with different dissociation constants. Due to adap-
tation, as the ambient MeAsp concentration increases, the Tar
receptor population shifts toward higher methylation states with
higher dissociation constants; consequently the effective Kd for
all Tar receptors increases with [L]. In addition, the dependence
of ligand binding on receptor activity, as assumed in our model,
increases max(GL), the maximum value of GL, for each individ-
ual methylation state. Therefore, the dependence of ligand
binding on receptor activity increases GL, and the tracking of the
effective Kd with the ambient ligand concentration keeps the
high GL value through a wide range of ambient ligand concen-
trations (see supporting information for details). Finally, large
GL, together with high gain G, leads to persistently high
sensitivity.

Summary and Discussion
In trying to understand and model recent in vivo experiments on
bacterial chemotaxis response by SB, we discover that receptor
coupling, in particular among different types of receptors, and
dependence of ligand binding on receptor activity are the two
most important ingredients in explaining their data. For the
mutant data, these two ingredients are essential in explaining
some of the intriguing findings in ref. 7, in particular the different
activities of the same Tsr methylation state in different cheR-
cheB mutants and the significant difference in both activity and
sensitivity of the two mutant strains, cheRcheB(EEEE) and
cheR�. From fitting the wild-type data, the results from our
model confirm that the large gain can indeed be explained by
receptor coupling quantitatively. More specifically, our model
suggests that most of the gain in response to MeAsp could come
from Tsr. Even though Tsr does not bind to MeAsp directly
except for extremely high MeAsp concentration (�10 mM), its
activity is indirectly affected by the change of MeAsp concen-
tration because of its coupling to Tar. The strong coupling
between Tar and Tsr may be related to the preferred mixture of
Tar and Tsr within the trimer of dimer complex, as recently
discovered by Ames et al. (16). The same sort of large indirect
contribution of gain from Tsr (or Tar) may also exist in the
response of the system to ligands that bind directly with low-
abundance chemoreceptors. Finally, we find that, besides the
high gain, the tracking of effective Kd with ambient ligand
concentration through adaptation and the dependence of ligand
binding on receptor activity are crucial in maintaining the
system’s high sensitivity.

The wild-type and mutant data are fitted separately in this
study, mainly due to the different resolutions used in describing
the methylation states for these two data sets. With more
experimental data becoming available, the ultimate goal is to
find a single set of parameters that can explain both the mutant
and the wild-type data within our model. For example, the
heterogeneous coupling constants are found to be large (C12
from the mutant study, C21 from the wild-type study); the
challenge is whether a unified theory with large values for both
C12 and C21 can explain both data sets. Despite the large

Fig. 2. (a) The instantaneous response to a sudden change in ligand con-
centration. Different curves refer to different initial (ambient) MeAsp con-
centrations (in �M). The horizontal axis is the amount added and then
removed. The lower curves are the responses to the ligand increase and the
upper curves are the responses to the ligand decrease. (b) The sensitivity and
total (steady-state) activity of the wild-type cells at a given MeAsp concentra-
tion. The sensitivity is defined as the fractional change in activity divided by
the fractional change in MeAsp concentration. The percentages refer to the
fractional changes in concentration used in calculating the sensitivity. (c) The
fractional change in activity vs. change in (total) ligand occupancy for differ-
ent initial (ambient) ligand concentrations. The upper and lower curves are for
decreasing and increasing ligand concentrations, respectively. The gain is
defined as the ratio between the fractional activity change and the change in
receptor occupancy. For small changes in receptor occupancy, the gain is �20.
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difference between the mutant and wild-type parameters in the
specific solutions shown in this paper (Tables 1 and 2), a unique
set of parameters is still possible because of the existence of
many equally good solutions when each data set is fitted sepa-
rately. However, it may also turn out that extra mechanistic
ingredients, such as the dependence of the coupling constants on
the methylation level, have to be included in the model to explain
all the data. Before such a unified theory can be attempted, we
need to improve our wild-type model to achieve the same level
of quantitative agreement between model and experiment as for
the mutants; in particular, a more accurate description of the
methylation states and dynamics are needed for both the Tar and
Tsr receptors. Furthermore, the mean-field-type model used in
this paper (Eq. 2) needs to be improved to incorporate the
appropriate spatial (maybe even temporal) information on re-
ceptor interaction once we understand whether the receptor
interaction is mediated by a spatially extended lattice of recep-
tors (17), just by the trimer of dimer complex (18), or through a
dynamically changing network of interacting receptors.

In this paper, we have used the in vivo data of ref. 7 for
constructing and validating our model. There are several other
related recent experimental studies (both in vitro and in vivo),
which are interesting to examine in light of our model. Bornhorst
and Falke (19) measured the activities of all 16 methylation
states of Tar receptors in vitro. Qualitatively, the concentration
that induces half-maximal inhibition (K1�2) is found to be highly
correlated with the activity of the receptor, which is consistent
with our model. It is also interesting to note that the K1�2s for the
same methylation states have different values in refs. 7 and 19,
further evidence that the sensitivities of the receptors may
depend on receptor interactions and therefore may be different
in different systems. The Hill coefficients for the response curves
are all found to be between 1 and 3 for Tar receptors (19) but
as high as 8–10 for the Tsr receptors (20). In our model, the Hill
coefficient depends on interaction strengths among receptors.

Therefore, these experiments can be understood within our
model, because the interaction strengths can be different for
Tar–Tar and Tsr–Tsr interaction, which can also be different
from their value in wild-type cells. In a related study, Levit and
Stock (21) measured directly the receptor occupancy together
with the activity and found that they can be quite different, far
from the linear relations that are often assumed. This is again
consistent with our model, as seen from the comparison of
Fig. 1 a and b. Recently, by using a synthesized multivalent
chemoattractant for Trg, Gestwicki and Kiessling (22) discov-
ered a large increase in sensitivity of the cell’s response not only
to the synthesized chemoattractant itself but also to serine. This
is in support of the notion that the sensitivity of ligand binding
is affected by receptor interactions, which might be enhanced by
the multivalent chemoattractant.

Specific experiments may also be suggested for validating our
model. For example, in our model, the large difference between
the behaviors of cheR� and cheRcheB(EEEE) mutants is
explained by the difference of the Tsr methylation states for
these two mutant strains. Another possible scenario is that CheB
could inhibit receptor activity, as proposed by Barkai et al. (23).
A possible test could be to make a cheRcheB mutant with both
Tar and Tsr in their lowest methylation state (EEEE) and
measure its response to MeAsp. According to our model, the
response to MeAsp for this new mutant should behave more like
the cheR� strain because of the similarity in the methylation
state for the two major receptors, whereas the other theory
would predict it to be more like cheRcheB(EEEE), because both
of them have no cheB.
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Table 2. A set of parameters for which our model fits the wild-type data well

m 0 1 2 3 4

E1m0(A1m0
B ) � (0.0) �12.4 (1.0) �11.5 (1.0) �16.0 (1.0) �30.5 (1.0)

E1m1(A1m1
B ) � (0.0) 15.8 (0.0) 14.3 (0.0) 11.0 (0.0) 11.0 (0.0)

E2m0(A1m0
B ) — — �1.76 (0.85) — —

K1m — 486 1679 12.4 2.32 � 10�4

K2m — — � — —

Cqq	 q	 � 1 q	 � 2

q � 1 �6.85 �0.680
q � 2 �17.9 �3.54

The methylation�demethylation ratio: kRB � 0.26.
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