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As biological studies shift from molecular description to system
analysis we need to identify the design principles of large intra-
cellular networks. In particular, without knowing the molecular
details, we want to determine how cells reliably perform essential
intracellular tasks. Recent analyses of signaling pathways and
regulatory transcription networks have revealed a common net-
work architecture, termed scale-free topology. Although the struc-
tural properties of such networks have been thoroughly studied,
their dynamical properties remain largely unexplored. We present
a prototype for the study of dynamical systems to predict the
functional robustness of intracellular networks against variations
of their internal parameters. We demonstrate that the dynamical
robustness of these complex networks is a direct consequence of
their scale-free topology. By contrast, networks with homoge-
neous random topologies require fine-tuning of their internal
parameters to sustain stable dynamical activity. Considering the
ubiquity of scale-free networks in nature, we hypothesize that this
topology is not only the result of aggregation processes such as
preferential attachment; it may also be the result of evolutionary
selective processes.

Complex protein and genetic networks are large systems of
interacting molecular elements that control the propagation

and regulation of various biological signals (1–3). They consti-
tute essential classes of biological computations reflecting vital
cellular processes such as the regulation of the cell cycle and gene
expression. Because some intracellular processes are crucial for
the survival of the cell they need to be achieved with reliability.
For example, the variation of the concentration of network
components in a metabolic network may affect numerous pro-
cesses. The intricate architecture of such networks raises the
question of the stability of their functioning. How can such
complex dynamical systems achieve important cellular tasks and
remain stable against the variations of their internal parameters?

Three decades ago, Savageau (4, 5) hypothesized that robust-
ness was an essential property of some genetic networks whose
functioning would be preserved even if some of their compo-
nents were produced in various quantities. More recently, several
compelling theoretical (6, 7) and experimental (8, 9) studies
demonstrated that key processes of specific intracellular net-
works exhibited a robust behavior to variations of biochemical
parameters. Robustness has emerged as a fundamental concept
for the characterization of the dynamical stability of biological
systems.

Are there universal design principles that would determine
whether a given class of networks achieves important intracel-
lular processing with reliability (10)? It would then be possible
to predict dynamical properties underlying cell functions without
a full knowledge of the molecular details. In particular, it would
be important to characterize dynamical robustness as the ability
for the network to perform a sequence of biological tasks in the
presence of perturbations (3). Driven by such considerations, we
analyzed when dynamical robustness may be a direct conse-
quence of the network’s architecture.

As a test-bed for the study of the dynamical properties of
complex biological networks we chose to model molecular
activities by a simple two-state model closely related to the one
proposed by Kauffman (11, 12). This model was originally
created for the study of the dynamics of genetic networks, but

was later applied to evolution and social models and became a
prototype for the study of dynamical systems. In this model, the
network’s architecture follows a random topology in which every
element interacts, on average, with K other elements. Each
network element has two functional states, active and inactive.
The state of a given element is determined by its interactions
with other elements of the network (see Appendix). A generic
biochemical parameter for the whole system is the probability �
that an arbitrary element of the network becomes active after
interacting with other elements (13). This probability can be
inferred in principle from the reaction rates and the relative
concentration of each element. The nature of the dynamical
process performed by a given network is determined by its
topological parameter K and its biochemical parameter �. Under
the simple assumption of a random network topology, a very rich
and unexpected dynamical behavior of the network was found
(11, 12, 14). During the time evolution of the system, the network
elements pass through different states until they reach a cyclic
behavior. Different cycles are possible. Each cycle represents a
variety of intracellular tasks. Two regimes of network activity
exist: chaotic and robust. In the chaotic regime a perturbation in
the state of a single element can make the system jump from one
cycle to another. In the robust regime all such perturbations die
out over time. The transition from one regime to the other is
controlled by the parameters K and � and is determined by the
equation

2��1 � ��K � 1. [1]

Fig. 1a defines the two regimes of network activity with drasti-
cally different dynamical properties. In the chaotic regime, which
entirely dominates the parameter space (K-�), small variations of
the initial concentration of only one component would ruin the
network function. Conversely, the robust regime would give rise
to a reliable dynamics for which the network activity would be
insensitive to perturbations in the initial state of the network
elements. With a random network topology this regime is
attained only for a narrow range of the parameters K and �.

Unfortunately, this model is inadequate to account for the
functioning of biological networks that have heterogeneous
architecture. Such topological heterogeneity is present in the
human genome. For example, the expression of the �-globin
gene is controlled by �20 regulatory proteins. The fibroblast or
the platelet-derived growth factor activation induces the activa-
tion of �60 other genes (15). Also, the zinc-finger protein Sp1
controls the expression of �300 genes (16). Under an assump-
tion of a random homogeneous architecture with a mean con-
nectivity K � 20, robust behavior would be virtually attained only
for �5% of the possible values of �. Fig. 1b shows the fraction
of the interval (0,1) for which the parameter � gives rise to
networks with a robust behavior. It is apparent that for a random
topology only the fine-tuning of the parameters K and � in a
narrow interval would allow networks to operate with a robust
behavior. An alternative approach is to substitute the random
network topology for a more realistic one (17).
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In recent years, the analyses of the topology of large intra-
cellular networks have revealed a common architecture (18–20).
In these natural networks not all elements are equivalent. A
small, but significant, fraction of the elements are highly con-
nected, whereas the majority of the elements are poorly con-
nected. This architecture is called scale-free topology and was
found to be ubiquitous in networks as diverse as social (21),
ecological (22), and genetic, protein networks (18, 23), and the
World Wide Web (24, 25). Although the effect of deleterious
perturbations on the topology of these networks has been
thoroughly studied (23, 26), their dynamical properties need to
be explored.

In view of the ubiquity of scale-free networks in nature, we
chose to implement the scale-free topology into the two-state
model. This topology is defined such that the probability P(k)
that an arbitrary element of the networks interacts with exactly

k other elements follows the power law P(k) � [Z(�)k�]�1. The
parameter � is called the scale-free exponent, and Z(�) is the
normalization factor. When � increases both the fraction of
highly connected elements and the mean connectivity of the
network decrease. In the limit � 3 � the network becomes a
homogeneous random network with K � 1.

Our approach aims to characterize how the network architec-
ture shapes its dynamical properties and how one particular
topology favors a class of networks with robust dynamical
behavior (10). Although the average connectivity K is a relevant
parameter to characterize the homogeneous topology of random
networks, it becomes irrelevant to describe the highly hetero-
geneous scale-free topology. Thus, the only relevant parameter
that characterizes the architecture of scale-free networks is the
scale-free exponent �.

For networks with scale-free topology, the transition from
chaotic to robust dynamics is determined by the equation (see
Appendix)

2��1 � ��
Z�� � 1�

Z���
� 1. [2]

The values of � and � that satisfy this transcendental equation are
plotted on Fig. 2a. The results of our model reported in the
diagram reveal a large class of robust networks. This class is
defined for networks with topological parameters � � 2. These
networks can operate with a robust dynamical behavior for which
the mean biochemical parameter � spans over a large range of
values. In particular, networks with a parameter � � 2.5 would
display a robust dynamics for any value of �. The transition from
the chaotic to the robust regimes occurs for values of � in the
interval [2,2.5] and different values of �. Fig. 2a reveals another
class of networks with a topological parameter � � 2 that exhibit
chaotic behavior. This dynamical behavior is characterized by an
extreme sensitivity to small variations of the initial states of the
network elements. Our model shows that the emergence of a
large class of robust networks is a direct consequence of the
network architecture.

It is interesting to note that experimental values of �, extracted
from real intracellular networks, range in the interval [2, 2.5]. To
illustrate this general remark, we indiscriminately report on a
histogram 46 published values of scale-free exponents (Fig. 2c).
These values were obtained not only from real biological systems
but also from many other scale-free networks (20, 23, 25). Remark-
ably, the majority of these exponents fall in the predicted interval
where the transition from chaotic to robust behavior occurs.

This observation leads us to explore the dynamical response of
the network to perturbations in the three different regimes:
chaotic, critical, and robust. In a scale-free network not all
elements are equivalent. We do not expect that perturbing highly
connected elements have the same effect on the network dy-
namics than perturbing poorly connected elements. To test this
idea we analyzed numerically how a perturbation produced on
only one element affects the dynamics of the network. We
computed the overlap (see Appendix) between two trajectories.
One trajectory is computed with one element �i with ki con-
nections being perturbed at every time step of the temporal
evolution of the network. The second trajectory is computed
from the same initial condition but with no perturbation. Such
overlap is a measure of the dynamical stability of the system
under sustained perturbations. Fig. 3 shows that the stability of
the network decreases with the connectivity ki of the perturbed
element �i. Remarkably, we found that networks operating in the
robust regime are sensitive to perturbations applied to the highly
connected elements. In contrast, perturbations produced on
arbitrary elements, which in general are poorly connected, will
have little effect on the network functioning. The heterogeneity
of scale-free networks operating in the robust regime allows

Fig. 1. Dynamical robustness of a Boolean network with random topology.
(a) The network dynamics exhibit both chaotic and robust behaviors, depend-
ing on the value of the parameters K and �. The parameter space K-� is then
divided into two distinct regimes: chaotic (white) and robust (gray). The curve
separating these two regimes is given by the solutions of Eq. 1. For a random
network topology (Inset), the parameter space K-� is totally dominated by the
chaotic regime. Therefore, it is necessary to fine-tune the parameters K and �

to achieve robust dynamics. (Inset) A typical realization of the random net-
work topology, generated by using a Poisson distribution with K � 2. All
elements in the network (F) have approximately the same number of input
elements (E). (b) The dynamical robustness R of the network is defined as the
fraction of the interval (0,1) for which the parameter � gives rise to networks
with a robust behavior. This quantity is a function of the mean connectivity K
and decreases rapidly a K increases. For a moderate connectivity K � 20, the
dynamical robustness is �R � 5%.
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different dynamical responses to perturbations depending on the
particular element being perturbed. This behavior cannot be
observed in homogeneous random networks in which all of the
elements are equivalent.

For a homogeneous network topology, stable behavior was
achieved only for very restricted values of the parameters � and
K. Conversely, the scale-free topology does not require a fine-
tuning of the system parameters to attain robustness. This
topology allows the existence of robust dynamics in heteroge-
neous networks. Furthermore, the dynamics of scale-free net-
works can change if the highly connected elements are per-
turbed. Thus, scale-free networks operating in the robust regime
exhibit both, robustness and sensitivity to perturbations. The
above results suggest that the dynamical robustness of a wide
variety of biological processes may be a direct consequence of the
network architecture. The ubiquity of scale-free networks in
nature with a topological parameter 2 � � � 3 could be the result
of evolutionary processes (27). Such a large class of networks,
whose key dynamical processes are robust, may have an essential
evolutionary advantage in possessing a larger parameter space to
adapt to new environmental conditions (27, 28). In our opinion,
it would be surprising if nature did not exploit this convenient
dynamical property of the scale-free topology.

This work describes the dynamics of networks where complex
molecular activities are idealized with a two-state model (29).
There exists a fair number of intracellular regulatory systems
with components obeying the rules of a two-state model. For
example, in signal transduction networks, the signal is processed
through phosphorylation cascades where signaling molecules can
be active or inactive upon phosphorylation. It is also common to
describe regulatory transcription networks in this simple lan-
guage: A transcription factor regulates positively or negatively
the transcription of a given gene. Moreover, available data on the
activity of molecular components from large intracellular net-

Fig. 2. Dynamical robustness of a Boolean network with scale-free topology.
(a) The mean connectivity K is not a relevant parameter to characterize the
network topology for a scale-free network. The dynamics is then character-
ized in terms of the parameters � and �, where � is the scale-free exponent. The
parameter space �-� is divided in two distinct regimes: chaotic (white) and
robust (gray). The transition between these two regimes, given by Eq. 2, is
represented here by the solid curve. The chaotic regime does not longer
dominate the parameter space. (Inset) A typical realization of the scale-free
topology, generated by using a power-law distribution with � � 2.5. The
majority of the elements only have a few connections. But there are two
elements connected to almost all other elements in the system. (b) Dynamical
robustness R as a function of the scale-free exponent �. The transition from the
chaotic to the robust regime occurs in the interval [2, 2.5]. For � � 2.5 the
dynamics is robust for any value of �. The scale-free topology does not require
fine-tuning of the parameters � and � to achieve stability. (c) Histogram of 46
scale-free exponents reported for a wide collection of scale-free networks.
This collection includes not only biological networks, but also social, ecolog-
ical, and informatics networks (23, 30–33). It is interesting to note that the
majority of the exponents belong to the interval (2, 2.5) where the transition
from a robust to a chaotic behavior occurs.

Fig. 3. Dynamical stability of scale-free networks. The overlap between a
perturbed trajectory and an unperturbed trajectory is computed. Both trajec-
tories start out from the same initial configuration. In the perturbed trajectory
one element �i with ki connections randomly takes the values 0 and 1 with the
same probability, regardless of the configuration of its input elements. All of
the other elements for this trajectory are updated according to Eq. A.1. For the
unperturbed trajectory all of the elements follow the dynamics given by Eq.
A.1. The graph shows the overlap x between the perturbed and the unper-
turbed trajectories as a function of the connectivity ki of the perturbed
element �i. The different curves correspond to the three different regimes:
chaotic (� � 1.1), critical (� � 2.5), and robust (� � 4). In these three cases � �
0.5. The simulation was carried out for networks with N � 20 elements. Each
point represents the average over 20,000 network realizations.
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works are produced by high-throughput experiments such as
two-hybrid assays and C-DNA microarrays. Because of technical
constraints, the readout of these experiments is fashioned ac-
cordingly to a two-state format that facilitates the applicability
of our approach.

The identification of a relationship between topology and
dynamical properties of large biological networks primarily
motivated our work. But it seems appropriate to think that in
view of the significance of scale-free networks in other fields
such as sociology and economics our results could be of some
interest beyond the scope of biology.

Appendix
A Boolean network is represented by a set of N elements, {�1,
�2, . . . , �N}. Each element has two possible states: active (1) or
inactive (0). The value of each �i is controlled by ki other
elements of the network (see Fig. 4), where ki is a random
variable chosen from a probability distribution P(k). This prob-
ability distribution determines the topology of the network. We
define K as the mean value of P(k). Let {�i1

, �i2
, . . . , �iki

} be the
set of controlling elements of �i. We then assign to each �i a
Boolean function fi(�i1

, �i2
, . . . , �iki

). For each configuration of
the controlling elements, fi(�i1

, �i2
, . . . , �iki

) � 1 with proba-
bility � and fi(�i1

, �i2
, . . . , �iki

) � 0 with probability 1 � �. Once
the controlling elements and the Boolean functions have been
assigned to every element in the network, the dynamics of the
system are given by

�i�t � 1� � fi��i1
�t�, �i2

�t�, . . . , �iki
�t��. [A.1]

We will denote as 	(t) the configuration of the entire system at
time t: 	(t) � {�1(t), �2(t), . . . , �N(t)}.

The dynamical robustness of the network is analyzed by
considering the trajectories 	(0)3 	(1)3 � � �3 	(t) and 	̂(0)
3 	̂(1) 3 � � �3 	̂(t) produced by two slightly different initial
configurations, 	(0) and 	̂(0), respectively. These trajectories
can always be different under the temporal evolution of the
system, or they can eventually converge to the same trajectory.
An important quantity that reveals the robustness of the dy-
namics against perturbations in the initial configuration is the
overlap between 	(t) � {�1(t), �2(t), . . . , �N(t)} and 	̂(t) �
{�̂1(t), �̂2(t), . . . , �̂N(t)}, defined as

x�t� � 1 � 
�1�N��
i�1

N

��i�t� � �̂i�t���,

where 
�� represents the average over all possible initial config-
urations and network realizations. If limt3� x(t) � 1, all per-
turbations in a given initial configuration die out over time
(robust behavior). In contrast, if limt3� x(t) � 1 even small
perturbations in the initial configuration propagate across the
entire system and never disappear (chaotic behavior).

It has been shown in ref. 17 that for a large system (N 3 �),
the temporal evolution of the overlap is given by

x�t � 1� � 1 � 2��1 � ��� 1 � �
k�1

�


x�t��kP�k�� . [A.2]

In the limit t 3 � the above equation becomes a fixed-point
equation for the stationary value of the overlap x � limt3�x(t).
It follows from Eq. A.2 that if 2�(1 � �)K 	 1, the only stable
fixed point is x � 1 [K is mean value of P(k)]. In this case the
system is in the robust regime. On the other hand, if 2�(1 �
�)K � 1 there is a stable fixed point x � 1 and the dynamics of
the network are chaotic. The critical value Kc of the mean
connectivity at which the transition from robust to chaotic
dynamics occurs is given as a function of � by the equation

2��1 � ��Kc � 1. [A.3]

The values of Kc and � that satisfy this equation are plotted on
Fig. 1. It is interesting to note that the transition from robust to
chaotic dynamics is governed by K, the mean value of P(k).
However, this parameter is meaningful only when the distribu-
tion P(k) has a well-defined variance. In this case the fluctua-
tions in the number of connections of the individual elements
around the mean connectivity K are bounded. This is actually the
case when P(k) is a Poissonian or a Gaussian distribution. For
these distributions the mean connectivity K is the relevant
parameter that characterizes the network topology. Originally
Kauffman (11, 12) proposed this model under the assumption
that K is a relevant parameter. However, the variance of the
scale-free distribution P(k) � [Z(�)k�]�1 is infinite for � 	 3.
This means that the actual number of connections of the
individual elements can vary from 1 up to N. Consequently, the
mean value of the connectivity is no longer a meaningful
parameter to characterize the network topology. For a highly
heterogeneous network with scale-free topology, the only rele-
vant parameter that characterizes the network topology is the
scale-free exponent � itself. For these kinds of networks it is
better to represent the mean connectivity K as a function of the
scale-free exponent �, which gives K � Z(� � 1)�Z(�). In the
above expression Z(�) � �k�1

� k�� is the Riemann Zeta func-
tion. With this representation, the transition from robust to
chaotic behavior is then given by

2��1 � ��
Z�� � 1�

Z���
� 1. [A.4]

The values of � and � for which this transcendental equation is
satisfied are plotted on Fig. 2.

The network that we have considered is a directed graph. The
value of each element �i is controlled by a set of ki elements. But
�i can in turn control the values of a number of other elements.
Therefore, each element has a set of input connections and a set
of output connections. The number of inputs and outputs of each
element are not necessarily distributed with the same probability
distribution P(k). However, the total number of inputs in the
network equals the total number of outputs, so that on average,
every element has the same number of inputs than outputs.
Because the phase transition is governed only by the first
moment of P(k), it follows that Eq. A.4 is valid if either the
distribution of input connections or that of the output connec-
tions (or both) is scale free.
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Fig. 4. Schematic representation of the Kauffman model. Every element �i

receives inputs from ki other elements of the network. The ki inputs of �i are
chosen randomly from anywhere in the system. In the case shown, ki � 4.
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