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The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and

rebounding on compliant legs in running. However, while rebounding legs well explain the stance

dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass

model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics;

incorporating the double support as an essential part of the walking motion, the model reproduces the

characteristic stance dynamics that result in the observed small vertical oscillation of the body and

the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the

parameter space of this model, we further show that it not only combines the basic dynamics of walking

and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions

to legged locomotion offered by compliant leg behaviour and accessed by energy or speed.
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1. INTRODUCTION

In his seventeenth century volume ‘De motu animalium’,

Borelli discussed walking as vaulting over stiff legs using a

pair of compasses and noted the importance of rebound-

ing on compliant legs in running (Borelli 1685). From that

early account up to the present, walking and running have

been treated as different mechanical paradigms, and the

two corresponding models, the inverted pendulum model

for walking (Alexander 1976; Mochon & McMahon

1980) and the spring-mass model for running (Blickhan

1989; McMahon & Cheng 1990), have developed into the

conceptual basis for our understanding and technical

realization of legged locomotion. The models motivate the

changes of kinetic and potential energies that are observed

in each gait (Cavagna et al. 1964, 1977; Dickinson et al.

2000), give insights into the remarkable universal

speed dependency that describes the walk–run transition

(Alexander 1989; Kram et al. 1997; Minetti 2001) and

reveal the importance of self-stability for legged systems

(Garcia et al. 1998; Kuo 1999; Seyfarth et al. 2002;

Ghigliazza et al. 2003) inspiring the construction of

walking (McGeer 1990; Collins et al. 2005) and running

machines (Raibert 1986; Saranli et al. 2001; Cham et al.

2004).

However, these models also show that, whereas

rebounding on compliant legs explains well the basic

mechanics of running, vaulting over stiff legs cannot truly

reproduce that of walking (Full & Koditschek 1999). For

instance, instead of the large vertical amplitudes suggested

by vaulting over stiff legs, the upper body shows

comparably small vertical amplitudes during walking

(Weber & Weber; Lee & Farley 1998). This discrepancy
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is also reflected in the forces acting on the centre of mass

(COM; Marey 1894; Fischer 1899). For example, in

stance, the vertical ground reaction force (GRF) is

characteristically M-shaped: it has one early and one late

peak separated by a minimum around midstance, which

the inverted pendulum model cannot reproduce (figure 1;

Pandy 2003).

To account for these differences, more complex models

of walking use more detailed representations of the leg

components, including springs and dampers, multi-

segments or neuromuscular structures (Siegler et al.

1982; Gurp et al. 1987; Pandy & Berme 1988; Neptune

et al. 2001; Pandy 2003; Zajac et al. 2003). Although these

models describe the dynamics of walking much closer than

an inverted pendulum can, and indicate compliant leg

behaviour to be relevant in walking, they are too complex

to serve as conceptual models. Hence, despite being

inaccurate, the stiff-legged motion remains the mechanical

paradigm for the walking gait (Dickinson et al. 2000;

Srinivasan & Ruina 2005).

We argue that not stiff but compliant legs are

fundamental to the walking gait. Hereto, we first introduce

the bipedal spring–mass model, which adds a second leg to

the known running model and represents the simplest

walking model using compliant legs. We then look for

stable locomotion of this model and show that its resulting

steady-state patterns reproduce those observed in walking.

Finally, we generalize the model and suggest that walking

and running are just two out of the many solutions to

legged locomotion offered by compliant leg behaviour and

accessed by energy or speed.
2. THE BIPEDAL SPRING–MASS MODEL
The model represents the body as point mass m at the

COM and describes the legs as two massless, linear

springs of equal rest length [0 and stiffness k (figure 2).

Both springs act independently and influence the model
q 2006 The Royal Society



Figure 1. Standard conceptual models of legged locomotion
and their predictive power with respect to walking and running
dynamics. The inverted pendulum and the spring–mass
system are the standard models for walking and running.
The model-predicted stance dynamics (red lines) fit experi-
mental data (black traces recorded from human treadmill
walking at 1.2 m sK1 and running at 4.0 m sK1) only for the
spring–mass model for running. Note that, in the inverted
pendulum dynamics, delta functions appear at 0 and 100%
stance time if one adds collision and push-off models imitating
double support. Fx, y, horizontal and vertical ground reaction
force (GRF) normalized to body weight (bw).
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dynamics only during stance when the spring force

opposes the gravitational force. On the contrary, in

swing, the respective spring has no physical meaning,

but describes a kinematic touchdown condition

yTDZ[0 sin a0, given by the rest length [0 and the fixed

leg orientation a0 with respect to gravity. The transition

from swing to stance occurs when the swing-leg strikes the

ground, whereas that from stance to swing occurs when

the spring reaches its rest length during lengthening. To

compare the model dynamics with that of human walking,

we fix the parameters mass, rest limb length and

gravitational acceleration to mZ80 kg, [0Z1 m and

gZ9.81 m sK2, respectively.

To obtain steady-state solutions of this model, we

investigate a single step, which is defined as the interval

between two subsequent apex events marking the highest

points of the COM trajectory. For example, in figure 2, the

model starts at the ith apex with the left spring (black) in

single support and the right spring (white) describing the

swing-leg. Since the gravitational force exceeds the

opposing spring force, the left spring shortens while

rotating forward and the COM height decreases (dotted

line). When the right leg touches the ground (‘right TD’),

the model enters the double-support phase. The additional

push of the right stance-spring reverses the vertical and

decelerates the horizontal COM motion. Owing to

sufficient momentum, the forward progression continuous

to extend the left spring until it reaches its rest length. At

this instant, the left spring takes off (‘left TO’) and the

system enters the single support phase of the right spring in
Proc. R. Soc. B (2006)
which the (iC1)th apex is reached when the upward COM

motion stops (vertical COM velocity _yZ0), completing the

step. Owing to the parametric symmetry between both

springs, one step represents a basic gait cycle and its

identical repetition, the steady-state locomotion.
3. WALKING SOLUTIONS REPRODUCING
EXPERIMENTAL DATA
Depending on the chosen parameter values, the model

may take off in single support or stumble and fall down;

however, it also shows, and converges to, steady-state

locomotion. By searching for stable locomotion using the

return map of a single step (for details on the stability

analysis see appendix Aa–c), we find three characteristic

steady-state solutions A–C of the model, which have in

common that their stance-phase patterns resemble those

observed in animal and human walking (figure 3). The

horizontal GRF shows the observed change from negative

to positive values and the vertical axis, the double peak

that distinguishes the walking gait (Fx and Fy, first row of

subplots). Correspondingly, as in animals and humans

(Lee & Farley 1998; Gard et al. 2004), the COM oscillates

around its landing height in the vertical GRF with a

smaller increase in height during stance than that of the

inverted pendulum motion (Dy, second row). Moreover,

closer than the inverted pendulum, the bipedal spring–

mass model describes the out-of-phase changes in the

forward kinetic and the gravitational potential energies

that occur in walking (DEk,x and DEp, third row).

The stance-phase patterns of the three example

solutions A–C not only share general features of animal

and human walking, but also have differences that reflect

those observed in walking at different speeds. First, the

patterns differ in their symmetry with respect to midstance

(50% of stance time). They are symmetric in A and C, but

asymmetric in B. For instance, in A and C, the vertical

GRF has two equal peaks that lead to the known M-shape.

On the contrary, in B, the vertical force has a first peak that

is clearly higher than the second one (Fy, first row).

Furthermore, the patterns differ in their amplitudes,

which are large in A and B, but only small in C. For

instance, although for all three solutions A–C, the vertical

displacement of the COM is smaller than that of an

inverted pendulum, in C, the COM remains close to the

landing height throughout stance (Dy, second row).

Similar differences in symmetry and amplitude can be

found in animal and human walking when considering

different speeds (Keller et al. 1996). For slow walking,

symmetric stance-phase patterns with small amplitudes

are observed that compare to the patterns in C. For faster

walking, patterns with larger amplitudes are observed that

compare to the patterns in A or B.

To investigate how the solutions A–C depend on the

specific parameters chosen, we scan the physiologically

plausible range of angle of attack a0, spring stiffness k and

system energy Es for stable locomotion of the model.

(Dimensional analysis shows that the model has only three

independent parameters: angle of attack a0, dimensionless

spring stiffness ~kZk[0=ðmgÞ and dimensionless system

energy ~EsZEs=ðmg[0Þ, where Es is the constant system

energy of the conservative model. Without loss of general-

ity, we can use their dimensional counterparts a0, k and

Es, since we fixed the remaining parameters m, g and [0.)
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Figure 3. Stance-phase patterns of walking at about 1.2 m sK1. (A–C) Examples of three characteristic steady-state solutions of
the bipedal spring–mass model are compared with (exp) experimental results (mean and s.d. shown as line and shaded area) of
five subjects (meanGs.d. of mass: 81G3.5 kg, leg length: 1.07G0.03 m) walking on a treadmill (Adal3D, TecMachine, France;
with force sensors recording horizontal and vertical GRFs). The subplots show horizontal and vertical GRFs, Fx and Fy; vertical
displacement, Dy; and changes in forward kinetic and gravitational potential energies, DEk,x and DEp. The vertical displacement
is compared with that of an inverted pendulum (dashed line). The shaded segments at the time-scales denote double supports.
The depicted lengths of the time-scales reflect the absolute stance times.

Figure 2. The bipedal spring–mass model. The model has two independent, massless spring legs attached to a point mass m.
Both springs have stiffness k, rest length [0 and, in their swing phases, a constant orientation a0 with respect to gravity
(g, gravitational acceleration). A single step is shown that starts at the highest COM position in left leg single support (apex i ),
includes the double support ranging from right leg touchdown (right TD) to left leg take-off (left TO), and ends at the next apex
in right leg single support (apex iC1). FP, foot point position in single support.
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We find that the parameter adjustments leading to

solutions, which describe animal- and human-like pat-

terns similar to A–C, form a whole domain in this three-

dimensional parameter space (figure 4a, walking domain
Proc. R. Soc. B (2006)
indicated by double force-peak icon). This domain splits

into three sub-domains (slice through this domain at

EsZ816 J shown in figure 4b), which correspond to

the three characteristic solutions A–C. Within these
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Figure 4. Parameter domains for stable walking and running. (a) Combinations of angle of attack a0, spring stiffness k and
system energy Es leading to stable locomotion are shown. Related to Es, the locomotion speed v is shown, which is the average
speed of all solutions that belong to one system energy (maximum deviation 0.1 m sK1 at EsZ800 J). The model finds stable
walking at low energies or slow speeds (walking domains): next to the domain with double-peak patterns of the vertical GRF,
domains with multi-peak patterns exist (small icons). Owing to the limited scan resolution, only domains with up to five peaks
are resolved, and the four- and five-peak domains seem to overlap. Circles indicate the parameter sets of the examples A–C
shown in figure 3. In addition to walking, the model finds stable running with single-peak vertical GRF above an energy or speed
gap of about 500 J or 1.5 m sK1 (running domain). Note the different scales of system energy at the walking domains and the
running domain. (b) A slice at EsZ816 J (vw1.2 m sK1) through the walking domain with double-peak patterns is shown. Three
sub-domains of parameters exist that lead to three qualitatively different steady-state patterns (small icons) exemplified by the
three solutions A–C (compare figure 3).

2864 H. Geyer and others Compliant leg behaviour in walking/running
sub-domains, the model is robust with respect to changes in

swing-leg orientation and spring stiffness. Although different

angles a0 or stiffness values k lead to different steady-state

solutions, their stance-phase patterns show the same

characteristics. Across the three sub-domains, the model

still tolerates changes in its leg parameters, but assumes

characteristically different steady-state solutions. For

instance, at a system energy ofEsZ816 J, which corresponds

to an average walking speed of about 1.2 m sK1 in the

model, solutions with small amplitudes, such as in C,

are obtained for steep angles and stiff-leg springs

ða0O758; kO17 kN mK1Þ; solutions with larger amplitudes,

such as in A or B, result from flatter angles and more

compliant leg springs ða0!758; k!17 kN mK1Þ. Here, the

leg stiffness predicted for walking is so low that it approaches

values reported for running (Farley et al. 1993).
Proc. R. Soc. B (2006)
4. WALKING SOLUTIONS UNKNOWN FROM

EXPERIMENTS

For lower system energies or slower speeds, the model

discovers new domains of parameters for stable loco-

motion, which lead to steady-state walking patterns

unknown from experiments (figure 4a, walking domains

indicated by multiple force-peak icons). For instance, the

vertical GRF patterns show more than two force peaks. In

fact, toward small system energies, the number of force

peaks increases with each new domain; and although our

limited scan resolution resolves only domains with up to

the five-peak force pattern, their number grows

incessantly.

The simple analogue of a vertical spring that is loaded

by a mass m helps us to understand these multi-peak

patterns. Owing to the mass, this spring has a compressed
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rest position [�0Z[0Kðmg=kÞ, where k and [0 are the

spring’s stiffness and normal rest length. Any small

deflection causes this system to oscillate around [�0 in the

vertical GRF with a defined period TZ2p
ffiffiffiffiffiffiffiffi
m=k

p
, and the

oscillation results in the peaks and valleys of the GRF

measured underneath the spring. If the loaded spring

remains in the vertical, the oscillation goes on incessantly

and an unlimited number of force peaks is recorded.

However, if the spring rotates forward additionally, the

oscillation is limited as it falls down; the faster it rotates,

the lesser are the number of force peaks recorded.

The natural spring oscillation and its limitation by

forward rotation also apply to the bipedal spring–mass

model; however, its double support (which is neglected in

the inverted pendulum model) adds a crucial component

to obtain multi-peak patterns in walking. The second leg

not only prevents the COM from falling during loco-

motion, but also gradually increases and decreases the

effective load that acts on the other spring leg in its early

and late stance. This ‘load sharing’ allows a stance spring

to start from its initial rest length [0, oscillate around the

length [�0 without completely relaxing in single support,

and finally resume its rest length [0 at the end of stance.

The stance spring oscillation and the gradual transition of

support by the opposite leg require a precise timing,

which is met only by distinct sets of parameters that form

the separate parameter domains for stable locomotion

of the model.
5. WALKING AND RUNNING MECHANICS
COMBINED IN ONE MODEL
Earlier, we mentioned that, the bipedal spring–mass

model may also take off in single support. This happens

if the stance spring produces too large a rebound in single-

support and relaxes completely, even though it is fully

loaded by the mass. For our simple analogue of a vertical

spring–mass system, the same happens if the deflection

from the compressed rest position [�0 is too large and the

system energy is too high. Although the spring still

oscillates around [�0 in the vertical, it has intermittent

flight phases and, in the stance phases, produces only

a single rebound with one force peak of the vertical

GRF—a behaviour related to bouncing gaits. Conse-

quently, the bipedal spring–mass model cannot only walk,

but also run (see also appendix Ad ).

As a result, the bipedal model unifies both gaits with

one mechanical concept and extending the systematic

parameter scan to higher system energies additionally

reveals the domain of parameters that lead to stable

running of the model (figure 4a, running domain

indicated by single force-peak icon). This domain has

already been described in an earlier study on spring–mass

running (Seyfarth et al. 2002). It requires a minimum

locomotion speed of about 3 m sK1, which introduces a

speed gap of about 1.5 m sK1 between the two gaits. A

similar speed gap, albeit not as large, is found in

experiments on the human gait transition. Even though

humans prefer to switch from walking to running at one

speed of about 2.3 m sK1 when they are instructed to walk

or run at different speeds on a treadmill (Thorstensson &

Roberthson 1987; Hreljac 1993), they immediately switch

from walking at about 1.8 m sK1 to running at about

2.3 m sK1 during spontaneous overground progression
Proc. R. Soc. B (2006)
(Minetti et al. 1994), which more closely resembles the

natural situation.
6. DISCUSSION
Our results suggest that the two fundamental gaits of

walking and running are much less different than generally

assumed; with the same compliant stance-leg behaviour

found in running, a bipedal spring–mass model could

reproduce the stance dynamics observed in walking

(figure 3). Thus, it seems that, rather than a stiff-legged

inverted pendulum gait, walking is, like running, a

bouncing gait. Here, the sequence of single and double

support in walking replaces that of flight and stance in

running. Moreover, the identified multi-peak patterns

show that walking and running are just two out of the

many stable solutions to legged locomotion of the same

mechanical system. Each of these multi-peak solutions

occupies a separate domain in the parameter space

(figure 4a). In particular, the walking and running

domains are isolated by a gap in system energy or

locomotion speed, which could explain why both

gaits are perceived as such distinct gaits in animal and

human locomotion, even though they represent the

same mechanical concept that is based on compliant

leg behaviour.

The results also challenge the view that the walking

efficiency depends on how close the COM motion

resembles that of an inverted pendulum. Classically,

walking efficiency is quantified by the percentage recovery,

a parameter that determines how much of the stride

energy is recovered using the inverted pendulum’s

compensating exchange of gravitational potential and

kinetic energies (Cavagna et al. 1977; Mochon &

McMahon 1980; Dickinson et al. 2000). For an ideal

stiff-legged walk, the percentage recovery would be 100%,

yet walking experiments show that it reaches at best 70%

in bipeds and only 35–50% in quadrupeds (Cavagna et al.

1977; Minetti et al. 1999). The difference is mostly related

to the double supports in which reversing the COM in the

vertical disturbs the motion of consecutive inverted

pendulum arcs (Alexander 1976, 1991; McGeer 1990).

However, the bipedal spring–mass model shows that

double supports are crucial to obtain the walking

dynamics and also demonstrates that a resulting low

percentage recovery (15–35% for examples A–C) does not

imply inefficient walking. By transiently storing in the leg

springs the energy that would otherwise be lost during

double support, the model recovers 100% of the stride

energy. Recent experimental findings support such an

elastic contribution (Fukunaga et al. 2001). Thus, walking

efficiency seems to depend less on how close the COM

trajectory follows inverted pendulum arcs, but more on

how much of the stride energy can be stored elastically

when redirecting the COM in double support.

The bipedal spring–mass model is a very simple model

of legged locomotion, which in contrast to more complex

representations (Pandy 2003; Zajac et al. 2003) includes

only two essential features: bipedalism and leg compli-

ance. Yet, this model explains the basic dynamics of

walking and running, and unites both gaits within one

consistent mechanical framework. It may therefore serve

in future as a general gait template (Full & Koditschek

1999) that guides more complex models in exploring, and
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technical systems in realizing, legged locomotion from

walking to the walk–run transition to running.

The authors thank A. Biewener for helpful comments on the
manuscript. This work was supported by an Emmy-Noether
Grant (SE1042/1-5) of the German Research Foundation
(DFG) to A.S. and by a Marie-Curie Outgoing International
Fellowship (MOIF-CT-20052-022244) of the European
Union to H.G.
APPENDIX A
(a) Model equations and simulation environment

For a single step from one apex (i) to the next (iC1,

compare figure 2), the equations governing the motion

of the COM are m €xZPx and m €yZPyKmg in the

initial left leg single support, m €xZPxKQðdKxÞ and

m €yZPyCQ yKmg in the intermittent double support,

and m €xZKQðdKxÞ and m €yZQ yKmg in the final

right leg single support, where PZkð[0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cy2

p
K1Þ,

QZkð[0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdKxÞ2Cy2

p
K1Þ and dZFPiC1;xKFPi;x with

FP denoting the foot point of a stance spring. The

model is implemented in the MATLAB/SIMULINK

environment (Rel. 14, Mathworks, Inc., Natick, MA,

USA) and simulations are run using the embedded

variable step integrator ode113 (maximum step size:

10K3, absolute and relative error tolerance: 10K6).
(b) Apex return map

During a walking step that starts at apex i, the simulation

aborts if the model turns backward, takes off in single

support or stumbles and falls down ( yiC1!yTD). The

simulation otherwise stops if the model reaches the next

apex iC1. The relationship between the initial system

state at apex i and the resulting system state at apex iC1

defines the apex return map, whose fixed points identify

the steady-state locomotion of the model. At any apex

(index ‘apex’), the system state simplifies to only two

independent variables: the horizontal distance between

COM and foot point of the stance spring (FP; figure 2),

DxapexZxapexKFPapex;x, and the apex height, yapex.

This simplification holds since Dxapex accounts for the

influence of xapex on the dynamics of a step,

_xapexZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Es=mKk=m ð[0K[apexÞ

2K2gyapex

q
, where Es is

the constant system energy of the conservative spring–

mass model and [apexZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

apexCy2
apex

q
, and _yapexZ0 by

definition of the apex event. Consequently, the apex

return map is defined as R:(Dx, y)i/(Dx, y)iC1. A fixed

point R satisfies the condition (Dx, y)iC1Z(Dx, y)i and

corresponds to steady-state locomotion of the walking

model (we investigate only period-one limit cycles).

A stable fixed point additionally satisfies that, in its

neighbourhood, the eigenvalues l1,2 of the Jacobian matrix

DRab Z

vDxiC1

vDxi

vDxiC1

vyi

vyiC1

vDxi

vyiC1

vyi

0
BBBB@

1
CCCCA

lie within the unit circle (jl1,2j!1) (Strogatz 2001). A

stable fixed point does not require that the fixed-point

condition be met exactly when computing R, as the model

converges to the steady-state trajectory also from slightly

disturbed apex states.
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(c) Numerical return map analysis

We exploit the convergence to stable fixed points to find

the steady-state locomotion of the model using the apex

return map. Instead of computing R from single-step

simulations of an extensive grid of initial apex states, we

investigate only 50 such states (see below), but for each of

them, iterate the step simulation. If any of these states lies

in the basin of attraction of a stable fixed point, the model

converges to the steady-state trajectory during iteration.

For practical reasons, however, we stop after 99 steps and

verify that an identified fixed point is a stable one by

checking l1,2 in a small neighbourhood of it.

The 50 initial apex states are 50 equally distributed

apex heights yi ranging from yminZ[0 sin a0 (landing

condition of swing leg) to ymaxZ[0 (take-off condition of

stance leg) with the initial horizontal position fixed to

DxiZ0. This restriction to vertical spring positions as

initial apex states assumes that they cover the basin of

attraction of stable solutions. The assumption is justified

for symmetric steady-state trajectories (examples A and C

in figure 3) as they correspond to fixed points with

DxapexZ0, but it may be wrong for asymmetric steady-

state trajectories (example B in figure 3) as they

correspond to fixed points with Dxapexs0. However,

preliminary tests that compared this simplified search

algorithm with extensive return map scans, including

asymmetric start positions xD,is0, showed no substantial

differences in finding stable asymmetric, as well as

symmetric, steady-state solutions.

(d) Extension to running

Running needs no different model, but two formal

changes in the simulation. First, we enable flight phases.

Starting at apex i, the former sequence of single–

double–single support phase now can be paralleled by a

sequence of flight–stance–flight phase. Reaching apex iC1

in the second flight phase completes a step. The apex

return map simplifies to R:yi/yiC1 (Seyfarth et al. 2002).

Its analysis remains the same as described earlier. Second,

to avoid hopping with two parallel legs, we ensure that

only one leg can land at a time.
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