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Space and contact networks: capturing
the locality of disease transmission
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While an arbitrary level of complexity may be included in simulations of spatial
epidemics, computational intensity and analytical intractability mean that such models
often lack transparency into the determinants of epidemiological dynamics. Although
numerous approaches attempt to resolve this complexity—tractability trade-off, moment
closure methods arguably offer the most promising and robust frameworks for capturing
the role of the locality of contact processes on global disease dynamics. While a close
analogy may be made between full stochastic spatial transmission models and dynamic
network models, we consider here the special case where the dynamics of the network
topology change on time-scales much longer than the epidemiological processes imposed
on them; in such cases, the use of static network models are justified. We show that in

such cases,

static network models may provide excellent approximations to the

underlying spatial contact process through an appropriate choice of the effective
neighbourhood size. We also demonstrate the robustness of this mapping by examining
the equivalence of deterministic approximations to the full spatial and network models
derived under third-order moment closure assumptions. For systems where deviation
from homogeneous mixing is limited, we show that pair equations developed for network
models are at least as good an approximation to the underlying stochastic spatial model
as more complex spatial moment equations, with both classes of approximation becoming

less accurate only for highly localized kernels.
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1. INTRODUCTION

While assuming homogeneous contact processes often
provides a sufficient basis for the simple modelling of
many physical and biological systems, the mean-field
approach becomes less accurate when contact processes
are spatially localized. Spatial effects may have pro-
found impacts on both population and epidemiological
dynamics (Hastings 1990; Kareiva 1994; Bolker &
Grenfell 1995; Lloyd & May 1996; Tilman & Kareiva
1997; Keeling 1999a,b; Dieckmann et al. 2000;
Hagenaars et al. 2004), yet few analytical tools exist
to even qualitatively understand such effects.
Approaches beyond the mean-field approximation
include integro-partial differential equations (PDEs)
and other PDEs based on the reaction—diffusion
equation, patch or metapopulation models, coupled
map lattices and interacting particle systems and these
have been reviewed in some detail elsewhere (Keeling
1999a). Durrett & Levin (1994) have contrasted the
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various approaches to spatial modelling in more depth,
together with a more detailed consideration of the
limits under which the methods coincide. The often
complex nature of models explicitly incorporating
space, however, usually results in simulation or
numerical solution as the only way forward.

A more promising approach to simulation for the
analysis of systems with local interactions is moment
closure methods. These characterize the local and
global dynamics of systems, thus allowing insight into
the establishment of local correlations, by modelling
the dynamics of low-order moments of the system. For
processes continuous in space and time, spatial moment
equations summarize the ensemble behaviour of the
underlying stochastic model (Bolker & Pacala 1997,
1999; Bolker et al. 2000; Bolker 1999, 2003), while
analogous methods (Keeling et al. 1997; Keeling 1999¢;
Rand 1999; Bauch & Rand 2000; Ferguson & Garnett
2000) have been developed for modelling disease spread
on contact networks by capturing how the number of
pairs of connected individuals vary over time.

Space may be included in epidemic models within
continuous or discrete space frameworks and the choice
of model depends on both epidemiological and model-
ling considerations. Infectious diseases may be
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transmitted via airborne agents over a wide range of
spatial scales (e.g. the foot and mouth disease virus has
been shown to travel very long distances over sea
(Hugh-Jones & Wright 1970) and land (Gloster et al.
1981), together with more frequent local transmissions
resulting from the imposition of movement restrictions
and biosecurity measures) and many other viruses may
also have sufficiently long survival times to remain a
threat by this means (Wallinga et al. 1999). Such
systems may lend themselves more naturally to
continuous space modelling due to the wide range of
scales over which transmission may occur. Discrete
space frameworks on the other hand may represent
potentially more convenient frameworks for spatial
processes occurring on much shorter spatial scales and
with a limited number of local contacts. Note, however,
that spatial models may offer a less useful basis for
modelling systems with low host population densities
and that in such cases, individual-based models often
provide a more realistic alternative. In this research, we
exclusively consider models developed in continuous
space to account for transmission over a range of spatial
scales (and a sufficiently high-population density to
justify such an approach), although note that the
techniques and approximations developed are by no
means restricted to this case: similar models may be
readily developed within discrete space frameworks and
an analogous methodology developed.

While network models more generally provide
an intuitive basis for modelling biological interactions,
such approaches typically lack an explicit means of
capturing geographical space. Network approaches may
be particularly appropriate to modelling systems in
which the probability of disease transmission is not
directly related to geographical space (e.g. diseases
spread by extreme close contact only), but is more
dependent and intuitively related to contact space.
Many childhood diseases, sexually transmitted diseases
and other airborne agents such as influenza and
tuberculosis are highly dependent on contact networks
ofindividuals and the change in movement patterns over
time. Modelling the spread of such infectious diseases on
contact networks, either defined by the modeller or more
realistically constructed from contact tracing, therefore
provides an intuitive mathematical framework in which
disease spread may be investigated.

In this paper, we consider the extent to which the
ensemble behaviour of stochastic spatial epidemic
models may be captured by modelling disease
processes as occurring on networks derived from
the underlying spatial model and therefore the degree
to which the two approaches provide comparable
frameworks for epidemic modelling. We consider here
a mapping of spatial epidemic models parameterized
by a spatial contact kernel onto network models, an
exact representation of spatial systems in the limit-
ing case where the dynamics of the network are
much faster than the time-scale of disease dynamics.
Freezing the network results in a static network
model, and we discuss the conditions under
which this provides a good approximation to the
original spatial process. We then demonstrate
that third-order ODE-based moment closure
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approximations to spatial and static network models
are comparable, thus demonstrating the equivalence
of network and spatial models in the limit where
mixing is close to mass-action.

2. A GENERAL MAPPING

A simple means of modelling spatially localized
transmission processes is to introduce a function U(r)
to capture the decreasing probability of disease
transmission with increasing distance r= |r| between
individuals. U(r) is commonly referred to as a contact
kernel and is normalized so that for any one individual
in a population of size N

JQ U(rydr =1,

where Q is the area within which transmission occurs
and U(r) is averaged over all other individuals in this
area. For simplicity, consider a population uniformly
distributed in Q with unit density. We define the
infection hazard posed by an infectious individual 7 at
location y; to a susceptible host j at location x; to be
BU(x;—y;), where B is the contact rate between
infectious and susceptible individuals. Additionally,
defining the hazard that an infected individual recovers
from infection to be vy defines a simple, spatially
localized, closed epidemic process.

A contact network can also be defined using the same
kernel U(r). We link all pairs of individuals (3, j) with
probability ¢(4,j) = nU(x; —y,;)/(N —1), resulting in a
network where the number of connections of any given
node is Bernoulli distributed with a mean degree or
neighbourhood size n. The spatial locality captured by
the kernel of the original process is encoded in this
network by the higher probability of links existing
between nearby compared with distant individuals.
There is a degree of arbitrariness however: how do we
choose n such that contact processes occurring on the
network resemble those occurring in the original
spatially explicit model? Clearly, as n—N—1, all
spatial information is lost and the model reverts to
assuming homogeneous mixing.

One way of overcoming this arbitrariness is to
consider a defining characteristic of local contact
processes, namely the saturation in the number of
potential contacts. When contacts are mostly local, the
probability that two contacts drawn at random from
the population will be with the same individual is much
higher than the 1/(N—1) expected with homogeneous
mixing. For a network model, the probability ps that
two contacts will be with the same individual is simply
po=1/n. For the spatial contact process, the prob-
ability of finding an individual in the infinitesimal area
dr around an arbitrary location r is just dr given our
assumption of unit density. The probability of contact-
ing an individual in the area dr if contacts are picked
randomly from the population using the kernel U(r) is
then U(r)dr and the probability of picking that same
individual twice is just U(r)?dr. Integrating over all
space gives po=1/A where 1/A is defined as

Z= JQ U(r)dr.

(2.1)

(2.2)
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Figure 1. Infectious individuals i in the spatial model pose an infection hazard 8 U(x;—y;) to susceptible neighbours j, with the
dependence on distance being determined by the kernel U(r) (here schematically represented by the greyscale shading around
each individual). Linking all (4, j) pairs according to this spatial kernel allows one to define an equivalent contact network with a
fixed infection hazard between pairs of 7=(8/n), where the mean neighbourhood size n=1/ [ U(r)’dr and the network
connectivity ¢ = 2zn [[[ U(R)U(r') U(r)r’ dr'r dr d6, so that the corresponding network may be parameterized directly from

knowledge of U(r) (see §2).

Demanding that p, is equal for the spatial and network
contact processes gives

-t
JoU(r)*dr’

n=A4

(2.3)

and generalizing to non-unit density p merely involves
multiplying the RHS of (2.3) by p. This expression for
the effective neighbourhood size A is identical to that
derived heuristically by Bolker (1999), yet we motivate
its use here not only dimensionally, but by demonstrat-
ing that this definition of the neighbourhood size
quantifies the degree of contact saturation generated
by a particular kernel.

The clustering or connectivity coefficient ¢ is often
additionally defined for contact networks and captures
the average local density of connections of any given
individual. In the sociology literature, ¢ is commonly
referred to as the network transitivity, reflecting the
likelihood that two contacts of a given individual are
themselves contacts of each other. If we therefore define
¢ as the proportion of all triples that form triangles
(Keeling et al. 1997), it is shown in the electronic
supplementary material, section 2, that for a contact
network defined from a spatial kernel U(r)

¢ = 2mn J “ UR)U() U(r) dr'r drdf, (2.4

where R= |r—7'|= V72 + 1> =277 cos fand 0< ¢ <1
by definition.

So far, we have only considered general contact
processes occurring either spatially or on the network.
If we consider the spatial transmission process defined
above, the hazard of infection between two
individuals was defined to be g U(x;—y;). Writing this
as (8/n)nU(a; —y:) = (8/n)q(i,j) (where q(i,j) is the
probability of (4, j) being connected in the network), it
is clear that the equivalent network transmission
process is defined by a constant hazard of infection
between connected individuals of 7= (8/n). The result-
ant mapping from a spatial transmission model to
a network representation is shown schematically in
figure 1.
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The question then arises as to the conditions under
which the dynamics of the network transmission
process thus defined are equivalent to the original
spatial model. If we consider the contact network to be
static during the entire epidemic process occurring on
the network, it is clear that the dynamics are not
necessarily equivalent. For the spatial model, the basic
reproduction number Ry (the mean number of second-
ary infections generated by a single primary infection in
an infinite population) is shown in the electronic
supplementary material, section 3, to be given by

Bo = L(l ‘W)d’”

while for the network model, Ry=n(1—1/(1+7/7)).
(Note, however, that in highly heterogeneous neigh-
bourhood distributions, the effective number of
contacts, defined as the mean number of contacts plus
the variance-to-mean ratio of this distribution, is the
more epidemiologically relevant quantity (Anderson &
May 1992). A more general receipe for calculating the
basic reproduction number in heterogeneous popu-
lations defines Ry as the dominant eigenvalue of the
linear next-generation operator, so that iteratively
applying this operator gives the expected number of
infected individuals in successive generations
(Diekmann & Heesterbeek 2000)). Expanding to second
order in 8/ gives

RO :E <1_£)7
Y rn

for both the network and spatial models and this
expression converges to the mass-action result Ry=0/v
as n— % as required.

The two models diverge, however, as §— o since
Ry— n for the network model, while Ry— o for the
spatial model. This reflects a fundamental difference
between the two approaches: in the spatial model, each
contact is picked at random from the entire population
(meaning that an infinite number of individuals can in
principle be contacted), while for the static network
model, a finite set of possible contacts is picked for each

(2.5)

(2.6)
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individual prior to the start of the epidemic. The only
network representation, which is therefore formally
equivalent to a spatial model is a dynamic network
model in which new links are made (and old ones
destroyed) at a rate much faster than the epidemic
process, meaning in essence that each new contact is
picked from the entire population. It should be stressed
however that this problem as §— o is characteristic of
the approach we adopt here for mapping the two
models. Alternative approaches, for example based on
the finite number of secondary infections caused per
generation (quantified by Rg), may not suffer this
problem, representing an interesting problem for future
research. The mapping we propose here is likely to
represent only one of a number of possible mappings
between the two approaches, although we argue that
the basis of the mapping here represents one of the
simplest possible translations based on an important
distinction between the two models.

Equation (2.6) gives us some insight into when we
might expect the static network model to be a good
approximation to the spatial epidemic process, namely
when 7/v=/(yn) < 1, or when there is only limited
saturation of susceptibles in the local contact neigh-
bourhood of an infected individual. When saturation is
limited, the finite maximum on the number of
individuals connected to any one infected individual
in the network model no longer has a significant
dynamical effect, meaning in essence that prior selec-
tion of a finite number of contacts is expected to be
equivalent to dynamical selection of a new contact prior
to each transmission event.

While simulation represents one means of examining
the degree of correspondence between network and
spatial models (and indeed considerations based on R,
another), we focus here on using the mapping described
above to motivate the derivation of an analytical
framework based on moment closure methods for
modelling spatial epidemic processes. As a demon-
stration of the robustness of the above mapping, we
derive moment closure approximations to spatial and
network models separately before demonstrating their
dynamical equivalence.

3. SPATTIAL CONTACT MODELS AND
MOMENT METHODS IN CONTINUOUS
SPACE AND TIME

Although the development of spatial contact models for
ecological and epidemiological systems is well estab-
lished (Mollison 1972, 1977), convolutions of the kernel
often lead to analytical intractability. While such
integro-differential equations may be approximated
by diffusion models, the need to obtain insight into a
wider range of spatial models has led to the recent
development of spatial moment methods, predomi-
nantly applied to the study of plant disease epidemiol-
ogy (Bolker & Pacala 1997, 1999; Bolker et al. 2000;
Bolker 1999, 2003). As well as implicitly accounting for
stochasticity and the discreteness of individuals,
moment equations are, in general, easily parameteriz-
able with field data, provide a more accessible and
transparent analytical framework for investigating
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disease spread and allow for heterogeneous mixing via
the inclusion of a contact kernel (or dispersal kernel in
plant systems). Contact kernels, in general, reflect the
decreasing probability of disease transmission with
increasing distance from the source and a variety of
functional forms may be considered.

The essence of spatial moment equations for systems
continuous in space and time is to derive differential
equations for the first m spatial moments of the
underlying spatial distribution of individuals. In this
paper, we adopt a second-order approach and derive
equations for the mean number density X = X(¢), the
average expected number of individuals of type X per
unit area, and covariance density cyy = cxy(r, t), cap-
turing the degree of association or correlation between
hosts of type X and Y separated by a distance r. The
covariance is used as a quantitative measure of the
spatial component of the system and the autocova-
riance (when X=1Y) and cross-covariance (X#Y)
measure the degree of aggregation within and between
species respectively. Positive, negative and zero covari-
ances, respectively, correspond to clustered, evenly
spaced and randomly distributed individuals.

While moment equations provide a deterministic
approximation to ensemble behaviour by averaging the
underlying model over all stochastic realizations, a key
drawback lies in the inability to obtain a closed set of
equations since the evolution of mth-order moments
depends on moments of order m+1. Defining a model
by mth-order moments therefore requires a suitable
moment closure assumption to define higher-order
moments in terms of those of interest (of order m),
and this is often determined either by desirable or
intuitive physical or mathematical properties of the
closure or from best-fit to simulation (Dieckmann &
Law 2000). We adopt here the so-called power-1
closure, formally derived by setting third-order central
spatial moments to zero, and moment equations under
this closure have been shown to match simulation
extremely well for spatial scales other than the very
short (Bolker 1999; Filipe et al. 2004). Filipe et al.
(2004) have recently shown that threshold conditions
exist on the initial density of infectives below which
power-1 closure breaks down and demonstrate that
power-3 closure does not suffer this drawback, accu-
rately matching simulation for all initial conditions and
a wider range of spatial scales. However, we focus here
on power-1 closure since our results are independent of
the closure we adopt and provide a simpler set of
equations to illustrate the methodology.

While power-1 closure originates from setting third-
order moments to zero, the symmetric power-2 closure
attaches equal importance to all pairs of individuals in
triples and can be justified on probabilistic grounds
(Dieckmann & Law 2000). The asymmetric power-2
closure, on the other hand, may be more appropriate in
low clustering regimes, since it assumes that one of the
pairs in a triple contributes far less to the dynamics
than the other two pairs. Combinations of asymmetric
power-2 closures may also be developed (with different
weightings on each pair), and have been applied to a
number of ecological problems (Murrell & Law 2000;
Law et al. 2003). Power-3 closure has been applied
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extensively in the statistical mechanics literature in the
context of disorder in spatially homogeneous systems
(Ziman 1979), and is often known as the Kirkwood
superposition approximation (Kirkwood 1935).

Consider the simple SIR epidemic model proposed in
§2 and let S(x) and I(y) be the probability that patches
centred at x and y contain a susceptible and infected
individual respectively at time ¢, with associated mean
densities S= S(t) and I = I(t). For a fixed contact rate
B, average infectious period 1/y and a normalized
spatial transmission kernel U(r), let

dS(x)
dt

- —6S(m)J U(z—y)I(y)dy

and

dI(x)
dt

- as<m>J Uz —)I(y)dy—vI(z).

Taking the expectation over all stochastic realizations
and defining spatial averages (denoted f for a function
f(x, y)) to be weighted across all non-uniform spatial
probability distributions p(z, y) so that

7 = Elf(z,y,1)] = jjp<as, W@y Hdzdy  (3.1)

(where p(x, y) = U(z—y) here), the moment equations
under power-1 closure are shown in Bolker (1999) to be
given by

B — (51 +240).

% = B(5T + cgr) ],
ac%([’t) =—28(Icgg + S(Uxcg)),
W = 28(Tcsy + S(Uxcyy) + STU) —2vyeyy,
‘965167([’0 =—B(S(Uxcy) + SIU—S(Uxcg)

+1Icgr—Icgs) —vesr,
(3.2)

where we assume a spatially homogeneous and isotropic
landscape, (AxB)(r) denotes a convolution between
functions A and B and ¢yy = ¢xy(t) is simply
exy(f) = J U(r)exy (r, Hdr. (3.3)

Note that the equivalent moment equations under
power-2 and power-3 closures simply consist of the
linear covariance terms in (3.2) plus higher-order
covariances dependent on the exact form of the closure.
Since we are looking to map the spatially averaged
behaviour of (3.2) onto a network representation,
taking 0/0t of (3.3) and substituting in (3.2) elimin-
ates the explicit spatial dependence of the covariances
by averaging each term over all space. While this
reduces the covariances to their weighted averages
and the weighted average of the kernel itself is simply
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related to the effective neighbourhood size A (see
equation (2.3)), averaging the convolution terms
presents a problem since we cannot express the result
in terms of the state variables of interest. In fact, (3.2)
can only be reduced to a set of ordinary differential
equations (ODEs) for all U(r) if we approximate the
convolution such that

(Uxcexy) = kexy, (3.4)
where k is a kernel-dependent factor related to the
moments of U(r) and 0<k<1 by definition (where
the extreme case of U(r)=0(r) exactly corresponds
to k=1 so that increasing kernel locality corre-
sponds to increasing k). Recall that in the full
stochastic model, (U+I) is proportional to the
probability of new S-I pairs forming, so that
(Uxcxy) may therefore be interpreted as pro-
portional to the probability that transmission occurs
between S-X-Y triples where at least one of X and
Y must be of type I for this probability to be non-
zero. With this interpretation of (Uxcxy) and the
fact that cxy in some sense captures the likelihood
of X-Y pair formations, simple rearrangement of
(3.4) leads to an interpretation of k as the
conditional probability that transmission occurs
between a susceptible individual at  and an X-Y
pair given that the X-Y pair is formed. %k is therefore
a connectivity parameter capturing the spatial
clustering associated with a given U(r) (equivalently
the degree to which pairs make up triples), as well
as implicitly capturing the relative importance of
local versus global connections in the network. k is
dependent on a number of factors including the
initial conditions, the moment closure adopted and
the degree of locality in the kernel.

While best-fit k£ may be calculated numerically, an
analytical approach is ideally required. To this end, let
us first propose that the spatial covariances are
separable so that

cxy(r, t) = Axy(r)Bxy(1), (3.5)

implying that the spatial and temporal epidemic
components evolve independently. Numerical investi-
gation has shown this to become unreliable only at very
small r, as it is only in the very early stages of the
epidemic that these components are strongly coupled.
It is shown in the electronic supplementary material,
section 4, that this allows k to be estimated by

k=2mA m UR UG U(r)r dr'rdrds,  (3.6)

where R=|r—r'|= V2 + > =2 cos . Note that
the assumption of separability eliminates the true time-
dependence of k to a constant for a given kernel
(corresponding to a spatially averaged network
connectivity) and that (3.6) is independent of the
kernel scale parameter. Since several expressions for k
may also be derived (electronic supplementary
material, section 5), table 1 compares these with the
average best-fit values for three moment closure
assumptions and contact kernels.
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Table 1. Comparison of the best-fit values of &, obtained by
fitting the moment equations (3.2) with and without the
convolution approximation (3.4), with values obtained
analytically from (3.6), and eqns (8) and (16) in the electronic
supplementary material, for the spatial model under power-1
(P1), symmetric power-2 (P2) and power-3 (P3) closures. We
compare the normalized offset power-law (with exponent 3),
exponential and Gaussian kernels for the case where y=0,
B=1, A~25, and we assume a randomly distributed host
population at =0 of whom 5% are infectious.

best-fit k analytical estimate

contact kernel P1 P2 P3 (3.6) (8) (16)

offset power-law 0.56 0.64 0.66 0.48 0.55 0.61
exponential 0.68 0.77 0.79 0.57 0.59 0.65
Gaussian 0.74 081 0.82 0.67 071 0.77

Having defined the effective uniform neighbourhood
size A and substituted the convolution approximation
(3.4), we can reduce (3.2) to

ds(t a7 .-

B _g(57+24)

dI(t 57 . - 7

T)Zﬁ(S['F (251)_7[7
degg(t ; 5
CL():—Qﬁ(IESI‘FkSEsl),

dt
deg(t i e o S1 e

(Iilt( ) =28\ Icg +kSey; +7 —2ycyp,
deg(t oo S e g g

lelt( ) - kSey +—-—kSeg +Ieg —Iegs | —veg

(3.7)

and figure 2 compares the epidemic curves and spatial
correlations predicted by (3.2) and (3.7) for three
different kernels. We find in general that the ODEs
match the moment equations extremely well through-
out the epidemic for all three kernels, accurately
capturing the dynamics in parameter regimes in
which the moment equations themselves capture the
ensemble behaviour of the underlying stochastic model.
A similar result is obtained for moment equations under
power-2 and power-3 closures.

4. NETWORK MODELS AND CORRELATION
EQUATIONS

The study of complex networks has become a recent
focus across a wide range of scientific disciplines and the
mathematical modelling of physical and biological
systems on networks has received increasing attention
(Albert & Barabasi 2002; Dorogovtsev & Mendes 2002;
Newman 2003). More recent research has also con-
sidered the applicability of contact networks to
epidemiological modelling (Anderson et al. 1990;
Kretzschmar & Morris 1996; May & Lloyd 2001;
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Newman 2002; Read & Keeling 2003; Keeling &
Eames 2005).

Networks consist simply of a set of nodes (or
vertices) and the links (or edges) between them and a
wide variety of network architectures may be
constructed. Examples include a static versus growing
population of nodes, weighted-edge networks
(whether or not we attach more importance to certain
links over others), directed and undirected networks
(whether links can exist both ways or in one direction
only), static and dynamically linked networks, and so
on. Such a diverse set of networks are typically
characterized by a number of attributes including the
degree distribution (the probability that a randomly
selected node has a given number of links), average
path length (quantifying the average number of links
required to go between two nodes) and the network
clustering (capturing the cliquishness between
contacts).

Early work focused on random graph models
(Erdés & Rényi 1959) and regular lattices and
much research followed on the existence of percola-
tion phenomena in such systems. More recent
research has focused on intermediate regimes
between randomness and order (Watts & Strogatz
1998) and the dynamics on so-called small-world and
scale-free topologies have been widely investigated.
This has highlighted for example the role of
intervention strategies based on network topologies
(e.g. targeting control efforts at core groups in the
face of limited resources), the stability of biological
networks and the existence of epidemic threshold
phenomena. More recent work has also examined
weighted-edge networks in more detail and their
topological properties in relation to air transpor-
tation and scientific collaboration networks (Barrat
et al. 2004), as well as aiming to develop analytical
tools to investigate the properties of such networks.
The highly complex nature of many real networks
has led to much dependence on computational
insights and more recent research has developed
analytic tools to complement such approaches: the
work by Newman et al. (2001), for example,
considers how probability generating functions may
be used to obtain insight into in-degree and out-
degree distributions and epidemic thresholds for
complex epidemiological models run on directed
networks.

While spatial moment equations provide a means of
capturing the ensemble behaviour of stochastic spatial
models, correlation equations provide an analogous tool
for capturing the role of local correlations in network
models of disease spread (Keeling et al. 1997; Keeling
1999a; Rand 1999). For the simple SIR model
considered in §2 for a population of N individuals, an
analogous set of equations may be derived governing
disease evolution on a static, regular and fixed-edge
contact network (so that links between individuals are
constant in time, occur with a fixed transmissibility
between nodes 7 and all individuals have the same
average number of neighbours n). If we let [X]=[X](¢)
be the expected number of individuals of type X,
[XY]=[XY](¢) the number of X-Y pairs and
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Figure 2. Comparing the moment equations (3.2) and ODEs (3.7) for an offset power-law, exponential and Gaussian kernel for
the mean infective densities I(t) and average S—I covariance ¢g7(t) over time. The ODEs are plotted for best-fit £ and with all

other parameters as per table 1.
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Figure 3. Comparing the SIR dynamics resulting from the average of 100 stochastic realizations of the full spatial model, the
spatial model under power-3 closure and the pair equations derived from the mappings for an offset power-law kernel. Parameters
as per figure 2 except I(¢t=0) = 0.001, the basic reproduction number Ry=4 and the infectious period 1/y=7 days. The pair

equations are plotted for the four relevant k values in table 1.

[XYZ]=[XYZ](t) the number of X-Y-Z triples, it is
readily shown in Rand (1999) that

d[s](®)

= —7[S1],

d[7](?)
dt

d[SS)(¢)
dt

d[IT](¢)
dt

d[ST](t)
dt

= 7[SI] —gl1,

—27[551],

= 27([ISI] + [SI]) —24[11],

= 7([SSI] —[IS1) = [SI]) — g[S1],

where 1/g¢ is the average infectious period. Adopting a
second-order approach explicitly considers only the
number of singles and pairs of each type as dynamical
variables. By employing a moment closure assumption
to close this system of equations, such pair

J. R. Soc. Interface (2006)

approximations make simple assumptions about the
way triples are formed from singles and pairs.

One such assumption is to assume that the number
of neighbours of a given individual is Bernoulli
distributed and this leads to the simple approximation
that

(XYZ] = (";1) (XY][YZ]

¥ (4.2)

This is equivalent in spirit to the asymmetric power-2
spatial moment closure discussed in §3 by considering
only the [XY] and [YZ] pairs as comprising the triple
and neglecting [XZ] pairs by comparison: this has been
shown elsewhere to provide a good approximation to a
wide range of static network models (Rand 1999).
However, this assumption evidently becomes less
accurate for spatially clustered systems in which
transitivity becomes important. In such cases, a
common assumption is to assume that a certain fraction
¢ of triples form triangles and this leads to the
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assumption that
_(n—1\ [XY][YZ] _ N [XZ]
vz = (M) 2 (oo + 55 )
(4.3)

(Keeling et al. 1997), where the network connectivity ¢
plays the role of the clustering coefficient in standard
complex network analysis. With respect to the spatial
moment closures in §3, (4.3) represents the combi-
nation of an asymmetric power-2 and power-3 closure.
Note that correlations Cyy= Cxy{t) between indi-
viduals of type X and Y may be captured by defining

N[XY]

Cxy(t) = Ao (4.4)
n[X][Y]

(Keeling et al. 1997), where Cxy=1 represents mass-
action mixing, C'xy> 1 positive correlations and Cxy<1

avoidance or segregation within or between species.

5. MAPPING UNDER MOMENT CLOSURE

Although §2 considers a more general mapping, we
focus here on demonstrating a correspondence between
spatial and network models under moment closure
approximations to both and investigate the accuracy to
which pair equations capture the dynamics of corre-
sponding spatial models.

To map the first moment in the spatial approach X
onto the number of singles [X] in the network model,
note first that the derivation of (3.2) averages single
probability densities over all stochastic realizations and
then over all space to obtain the expected number of
individuals per unit area. Together with dimensional
arguments, we suggest a priori that an intuitive
mapping of the first moments is provided by

[X] = AX, (5.1)

since A also plays the role of the effective neighbour-
hood area or the uniform transmission neighbourhood
corresponding to a non-uniform transmission kernel,
and furthermore that

[XY] = A°XY = AX(XY +exy)  (52)

follows naturally and maps the second moments. Recall
that the overbar notation denotes a spatial average
with respect to a mnon-uniform spatial probability
distribution (here the transmission kernel) and it is
the effective neighbourhood size A of this kernel that
plays the crucial role in this mapping: this fact is useful
when models become more complex, for example
introducing multiple spatial kernels, although we do
not consider this further here.

Moreover, substituting (5.1) and (5.2) into the
network equations (4.1) demonstrates that both

-3

g=v (5.4)

follow and are necessary for dimensional and model
consistency; the former is precisely the heuristic

(5.3)

and

J. R. Soc. Interface (2006)

mapping derived from first principles in §2 and the
latter provides a trivial mapping between the SIR
models. In addition, adopting the moment closure
approximation (4.3) and substituting (5.1)—(5.4) into
(4.1) allows one to demonstrate that the pair equations
map identically onto the spatially derived ODEs (3.7)
to first order in the covariances providing that the
further mapping

o=k
is made (electronic supplementary material, section 6).
While ¢ captures the degree of local clustering in a
network, £ plays an analogous role in the spatial models
here by reflecting the degree of locality in U(r) and
hence the relative importance of local versus global
connections in affecting the dynamics; in this sense,
(5.5) is unsurprising. Note additionally that the earlier
expressions for ¢ and k (equations (2.4) and (3.6),
respectively) for a given U(r) are identical, although
other expressions for £ may also be derived.

First-order covariances dominate the dynamics
whenever departure from mass-action mixing is
minimized and spatial correlations are fairly weak: it
is in these regimes that we therefore expect pair
correlation equations to accurately capture the essence
of their underlying spatial models. Moreover, the fact
that these terms arise independent of the moment
closure we adopt implies that this result is true more
generally whenever departure from homogeneous mix-
ing is not significant.

These moment and parameter mappings allow us to
investigate the extent to which pair correlation
equations approximate spatial dynamics. Figure 3
illustrates a simple example and compares simulation
of the full spatial model with the spatial moment
equations and pair correlation equations derived from
the mappings above for the simple SIR model. The full
model is simulated using a discrete-time approximation
to the underlying stochastic spatial process run with a
time-step of 0.1 days for a population size of 4 million.
Figure 3 represents the average of 100 stochastic
realizations of the full model. Note that important
computational issues arise in comparing simulations of
such models with deterministic approximations: subtle
variations in model architecture may lead to significant
effects on aspects of temporal dynamics such as R, and
the epidemic generation time, although the importance
of such effects is intimately related to the connectivity
of the contact space considered (Green et al. 2005). We
assume that such effects are unimportant for the
reasonably high effective neighbourhood size illustrated
here.

We consider a reasonably localized offset power-law
kernel, so that heterogeneous mixing is appreciable
compared to mass-action, and parameters well within
the regime in which moment and correlation equations
are most useful. We plot the spatial model under
power-3 closure, since the collapse of power-1 closure
for very small infective densities (Bolker 1999; Filipe
et al. 2004) also extends to the SIR case.

We find that the pair equations match the spatial
simulation extremely well in the early stages of the
epidemic up to around 15-20 days and in particular

(5.5)



Space and contact networks

P. E. Parham and N. M. Ferguson 491

when k is close to the value predicted by (3.6),
improving significantly on predictions of the non-
spatial model and moment equations. While the
moment and pair equations overestimate exact equili-
brium densities, both capture well the qualitative rate
at which the epidemic declines, although fail to
accurately reproduce the epidemic tail and under-
estimate the number of uninfected individuals remain-
ing at the end of the epidemic (S()). One can
heuristically argue that the stochastic nature of the
full model means that pockets of susceptibles may form
at long distances from epidemic foci, so that the
epidemic may extinguish globally due to a lack of
susceptibles to infect locally at the epidemic ‘wave-
front’: S(e) will be lower in pair equations since they
fail to capture such intermediate scale phenomena.

6. CONCLUSIONS

The use of moment methods to capture spatial and
network epidemic models allows complex stochastic
systems to be more thoroughly and reliably investi-
gated by deriving deterministic equations capturing
ensemble behaviour. Motivated by heuristic consider-
ations of spatial and network models by connecting
individuals according to a spatial kernel, we develop a
useful means of capturing the former by the latter,
demonstrating that pair approximations allow complex
spatial models to be mapped onto more analytically
tractable frameworks.

We show that reducing spatial moment equations to
a set of ODEs allows spatial models to be mapped onto
network approximations by mapping moments of their
respective distributions by

[XYZ...m]| = A"XYZ...m, (6.1)
where A is the effective uniform neighbourhood size of a
given kernel and m refers to the order of the moment of
interest (so that m=1 corresponds to the expected
number of individuals of type X ([X]) and the first
spatial moment X, m=2 the number of X~ Y pairs [X Y]
and second moment XY, and so on). This mapping of
moment closure approximations is also consistent with
the more general mapping derived in §2, demonstrating
that n, 7 and ¢ may be determined directly from the
kernel and hence that field data on U(r) is sufficient to
parameterize an approximating network model.

For systems where mixing is not too divergent from
mass-action, we demonstrate that pair equations
provide an excellent approximation to spatial models.
That this approximation holds independent of the
moment closure we adopt implies that a more general
mapping between full spatial and network models exists
and this is currently being pursued.

Our methodology differs significantly from the
approach of Bauch & Galvani (2003) by capturing the
local saturation of contact processes (as quantified by
the parameters n and ¢), in considering the analytically
more tractable case of equal-weight links in the network
model used and by avoiding the introduction of a cut-off
radius R.

J. R. Soc. Interface (2006)

While we consider a simple SIR model to illustrate
the methodology, the framework we develop is
analytically robust in allowing extensions to more
complex models. This will permit more realistic spatial
models in future to be reduced to more analytically
tractable forms, yet still retaining a fundamental link
with explicit space, and therefore allowing an
improved understanding of key determinants driving
epidemic spread. Omne such application is to the
modelling of foot and mouth disease (FMD) and we
are currently extending the framework developed here
and in past work (Ferguson et al. 2001q,b) to include
spatially targeted control measures (namely vacci-
nation and culling) in a more rigorous manner,
together with a better account of long-distance
jumps in seeding new infection foci. We are also
examining how pair models might be extended to
capture more accurately the dynamics of spatial
processes with short-range kernels.

Note that we do not explicitly consider the relative
appropriateness of spatial and network models with
varying neighbourhood size n here, but consider for
clarity and illustrative purposes only a fairly typical
localized regime in which one expects moment closure
models to be of most use: sufficiently deviant from
homogeneous mixing to motivate a spatial approach,
yet avoiding parameter regimes where the kernel is
highly localized and moment closure approximations
break down due to the increasingly important effect of
higher-order correlations. Future work may therefore
consider the effect of varying m on the translation
between the models.

Note that while a variety of approaches may be
developed for modelling the between-farm spread of
FMD, the multiple potential pathways of infection,
along with aerosol transmission over a wide range of
spatial scales, lends itself particularly well to models
incorporating continuous spatial kernels and indeed
this approach was used in modelling the 2001 epidemic
in the UK (Ferguson et al. 2001a,b; Keeling 2001).
Moreover, while moment closure models represent an
intuitive and analytically simpler approach than more
complex and computationally intensive approaches
(Morris 2001), enabling better real-time use of math-
ematical models to aid policy decisions, further research
is required to compare the validity of different spatial
approaches to modelling FMD and this is also currently
being examined.

This work was funded by BBSRC (P.E.P.) and the Royal
Society (N.M.F.). The authors would like to thank two
anonymous referees for their helpful comments and sugges-
tions for improving the manuscript.
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