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The cell cycle is implicated in diseases that are the leading cause of mortality and morbidity
in the developed world. Until recently, the search for drug targets has focused on relatively
small parts of the regulatory network under the assumption that key events can be controlled
by targeting single pathways. This is valid provided the impact of couplings to the wider scale
context of the network can be ignored. The resulting depth of study has revealed many new
insights; however, these have been won at the expense of breadth and a proper understanding
of the consequences of links between the different parts of the network. Since it is now
becoming clear that these early assumptions may not hold and successful treatments are
likely to employ drugs that simultaneously target a number of different sites in the regulatory
network, it is timely to redress this imbalance. However, the substantial increase in
complexity presents new challenges and necessitates parallel theoretical and experimental
approaches. We review the current status of theoretical models for the cell cycle in light of
these new challenges. Many of the existing approaches are not sufficiently comprehensive to
simultaneously incorporate the required extent of couplings. Where more appropriate levels
of complexity are incorporated, the models are difficult to link directly to currently available
data. Further progress requires a better integration of experiment and theory. New kinds of
data are required that are quantitative, have a higher temporal resolution and that allow
simultaneous quantitative comparison of the concentration of larger numbers of different
proteins. More comprehensive models are required and must accommodate not only
substantial uncertainties in the structure and kinetic parameters of the networks, but also
high levels of ignorance. The most recent results relating network complexity to robustness of
the dynamics provide clues that suggest progress is possible.
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1. INTRODUCTION

The cell cycle is an ordered sequence of events that
involves the process by which a cell grows and then
divides resulting in the production of two daughter cells
that are identical to the original parent cell. The cycle
may be considered in four phases commencing with the
G1-phase (G1) during which the cell undergoes a series
of biochemical and physiological changes, including
sustained growth, all in preparation for the S-phase (S)
that follows. During S, the cell copies its DNA resulting
in the development of duplicate copies of each
chromosome. This is followed by the G2-phase (G2),
a gap phase, prior to M-phase (M), i.e. mitosis, when
the cell divides, with one set of chromosomes being
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allocated to each daughter cell. The process by which
all of this takes place is highly regulated and dependent
on a pre-defined and finely tuned interplay among all of
the proteins involved. The progress through the phases
is governed by a group of cyclin-dependent kinases
(Cdks), the principal members being Cdk4, which is
active in mid-G1, Cdk2 which is active in late G1, S and
M and finally Cdk1, which is active only in M. The
activity of these Cdks is itself controlled by a number of
mechanisms that include association with cyclins, these
being cyclin D in G1, cyclin E in late G1, cyclin A in S,
G2 and M, and cyclin B in M. Activity is also regulated
by phosphorylation and dephosphorylation reactions
as well as association with a number of inhibitors
including P16, which inhibits Cdk4 and also P21
and P27, both of which can inhibit Cdk4 and Cdk2.
J. R. Soc. Interface (2006) 3, 617–627
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This tightly controlled Cdk activity enables the cell not
only to execute the cycle correctly, but also to observe a
number of control checks on its own progress. The first of
these occurs in late G1 and is generally referred to as the
restriction point, a point in time after which the cell
becomes committed to completing its full cycle. There-
after, checkpoint controls exist in relation to DNA
damage andDNA replication, aswell as spindle assembly
and chromosome segregation during M-phase. Any
failure by the cell to fulfil a checkpoint requirement will
result in the arrest of the cell cycle followed either by
abandonment of the cycle, if the restriction point has not
been reached, or alternatively a delay in the cycle while
the relevant error is corrected. In cases of serious error,
the cell may undergo programmed cell death, a suicidal
process usually referred to as apoptosis.

The importance of the cell cycle in relation to cancer
is emphasized by the number of papers setting out the
impact of the cell regulatory proteins on the develop-
ment of this disease. Examples include Collins et al.
(1997) who summarize the cell cycle describing the role
of the cyclins and Cdks as well as that of the tumour
suppressor Rb. Loss of function and gain of function
mutations are discussed as well as their relationship to
particular cancers. Also, Sandal (2002) gives a clear
description of how the cyclins, Cdks, inhibitors and
phosphatases combine to regulate the cell cycle as
well as how the tumour suppressors P53, Rb and P19Arf

keep the system in check. The relationship between
mutations, along with the respective disruption in gene
expression, and specific types of cancer is explained.

One of the major, long-term aims of cell-cycle
research is to develop more effective drug targets and
this review focuses on the potential impact of math-
ematical modelling on such development. Mathemat-
ical modelling may provide a vehicle to synthesize
existing, disparate and heterogeneous datasets and
manage the inherent complexity of the cell cycle. It is
likely that the development of multiple drug target
strategies will be rewarding and mathematics is the
only realistic tool for identifying minimum toxicity
regimes where the concurrent behaviour of several
hundred different protein species have to be considered.
Over the years, there have been various attempts to
model the cell cycle and these vary in their fitness for
the purpose referred to above. This review discusses
these previous approaches and draws conclusions on
their merits as well as identifying gaps and opportu-
nities for the future.
2. EARLY DEVELOPMENTS

Cell-cycle modelling has tended to follow the prevailing
level of the relevant biological knowledge rather than
drive it. Initially, two quite different views prevailed
regarding the control mechanisms underlying the cell
cycle. Prior to 1980, little was known about the
biochemistry or the physical processes of the proteins
that regulate the cell cycle and the fact that cell
reproduction followed a sequential process of growth
and division had led to the idea that the cell cycle could
be modelled as an oscillating system driven by changes
in size and mass (Sachsenmaier et al. 1972; Fantes et al.
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1975; Nurse 1975). This view, taken mainly by
embryologists and physiologists, and focusing speci-
fically on rapidly dividing embryonic cells, saw the cell
cycle as a biochemical machine which oscillated
between two states, namely interface and mitosis.
This view was generally referred to as ‘clock’ theory.

However, geneticists focusing on somatic cells held
an alternative view which saw the cell cycle as a series
of independent reactions where the completion of each
reaction was dependent on the previous one. This was
generally referred to as the ‘domino’ theory and
followed experiments by Hartwell (1978) on budding
yeast and Lee & Nurse (1988) on fission yeast, which
gave insight into a number of molecular mechanisms
apparently linked to cell-cycle control. This had a
fundamental effect on how mathematical modelling of
the cell cycle would be approached in future years.
While cell size and mass were still considered import-
ant, molecular interactions became the principle
processes in models that linked the dynamics of
particular protein concentrations to cell-cycle physi-
ology. Initially, knowledge in terms of specific
molecules and their interactions lacked detail.
However, research into the various proteins and
mechanisms that regulate the cell cycle has resulted
in progressively better descriptions of the cell cycle and
in response to this, mathematical models have become
increasingly more detailed.

A unified view of the cell cycle, incorporating both
the ‘domino’ and the ‘clock’ theories, was later
provided by Murray & Kirschner (1989). This was
based on the idea that key components of the cell cycle,
both in rapidly dividing embryonic cells and in growing
somatic cells, each appeared to be the products of
homologous genes.

One of the earliest models depicting cell physiology
in terms of molecular concentrations is due to Tyson
(1991). Using differential equations, he modelled the
cell-division cycle on the basis of the concentration of
the proteins cdc2 and cyclin, allied to their ability to
form complexes and to modify their function through
phosphorylation and dephosphorylation. He demon-
strated that, by varying the parameter values control-
ling the maximum rate of activation of the cyclin : Cdc2
complex in its active form, referred to as maturation-
promoting factor (MPF), and also its rate of disassocia-
tion, the model was capable of demonstrating three
separate modes of behaviour. These consisted firstly a
steady state with high levels of MPF, which could be
taken to represent metaphase arrest in an unfertilized
egg, secondly, spontaneous oscillations representing
rapid division cycles in embryonic cells and finally an
excitable switch representing growth-controlled
division in growing cells. During the same period, a
similar model was constructed by Goldbeter (1991).
Following previous work on oscillatory phenomena in
biological systems (Goldbeter 1985; Goldbeter et al.
1988, 1990; Goldbeter & Dupont 1990; Goldbeter &
Wolpert 1990), that included both an empirical
approach and a study of the relevance of allosteric
regulation, this model drew on the work that had been
carried out up to that time on yeasts and embryonic
cells (Murray &Kirschner 1989; Nurse 1990), and again
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modelled the cell cycle in terms of the post-translational
modification of the cyclin-dependent kinase cdc2. For
certain parameter sets, the model demonstrated oscil-
lations and accorded well with the experimental data.

During the 1990s, Thron (1991, 1994, 1996, 1999)
provided a series of models and analyses covering the
mitotic clock, the dynamics of the cyclin B–MPF
system, a bistable trigger for mitosis and a model of
the activation of a cell-cycle kinase which downregu-
lates its own inhibitor. Romond et al. (1999) considered
the cell cycle in a skeletal model comprising two coupled
biochemical oscillators under mutually negative con-
trol. By modelling the dynamic behaviour as a function
of the strength of mutual inhibition, the model demon-
strated that alternating oscillations are the result when
mutual inhibition is strong and that these oscillations
can be interpreted in terms of the cell in S-phase when
DNA is copied and, alternately, in M-phase when the
cell divides. With weak inhibition, however, the model
exhibits complex dynamical behaviour including
complex periodic oscillations, chaos and coexistence
between multiple periodic or chaotic attractors.

However, the methodology used throughout this
period of early development was perhaps of more
significance than the results themselves; this included
the combined use of network diagrams to show protein
interactions, description of the model using differential
equations and the use of phase plane analysis and
bifurcation theory for interpretation purposes. These
have become the preferred tools ofmost subsequent work.
3. CELL-CYCLE MODELS BASED ON YEASTS

Perhaps, the most consistent and progressive work on
cell-cycle modelling over the last decade or so has been
that presented by the group headed by J. J. Tyson and
B. Novak. Based on many experimental papers on the
fission yeast cycle, Novak & Tyson (1995) constructed a
model that simulated the results to date relating to
mitotic control as well as providing a number of
predictions relating to future experimental work. This
was followed over the next 4 years by several papers
including (Novak & Tyson 1997; Novak et al. 1997),
mainly on yeasts, and looking at S-phase and check-
point control as well as the cell cycle itself. Novak et al.
(1999) produced a model focusing on mitosis and
demonstrating that the cell could exit from mitosis in
the absence of cyclin degradation. The methodology,
including the reduction in complexity of the cell cycle
into manageable parts is explained in detail in Tyson &
Novak (2001), where arguments are also presented for
the cell cycle taking the form of a hysteresis loop rather
than a limit cycle. Cell-cycle dynamics and the
methodology used in its derivation are developed in
Tyson et al. (2001, 2002). While much of Tyson and
Novak’s work specifically showed that the cell cycle
could be modelled as an irreversible sequence of changes
between successive steady states, all driven by changes
in the cyclin levels, it also demonstrates a methodology
capable of addressing future increases in the levels of
complexity that would inevitably develop.

A comprehensive model of the cell cycle was provided
by Chen et al. (2000). This model of the budding yeast
J. R. Soc. Interface (2006)
cycle uses previously developed methods, including the
use of differential equations, and draws on the extensive
data available. Cell growth is taken into account and a
number of model parameters are derived from experi-
mental data. Most importantly, this model is able to
reproduce the observed physiology of real cells. In
particular, they predict that the cell cycle demonstrates
bistability and hysteresis. They propose that the
G1-phase and the S/M-phase are the two alternative
self-maintaining steady states generated as a result of
mutual antagonism between the cyclin-dependent
kinases and Sic1 and Hct1 which oppose the enzyme
activity. These predictions were tested by Cross et al.
(2002) and agreement was found in relation to predicted
cyclin and Sic1 inhibitor quantities, and also with
regard to the relationship between cell size and Cln3
gene dosage. Although the predictions about the
interaction between Cdh1 and the G1 cyclins were
found to be inaccurate, the model was capable of
reproducing many of the real events of the cell cycle.

Sveiczer et al. (2000), building on previous work by
Novak et al. (1997, 1999), modelled the fission yeast cell
cycle using differential equations and included mass in
the equations as a variable controlling the kinetics of
the number of proteins involved in the regulation of the
cell cycle. The topology of this model includes positive
and negative feedback loops leading to the self-
activation and deactivation of Cdc2. Positive feedbacks
arise from Cdc2 inactivating its negative regulator as
well as activating Cdc25, its positive regulator.
Negative feedback is due to the reactivation of the
negative regulators leading to a reduction in Cdc2
activity. In addition to modelling the cell cycle, the
model identified a potential resetting mechanism for
the G2/M transition when the positive feedback loops
were weak. Sveiczer et al. (2002) followed this work
with a stochastic model where the known asymmetry of
cell division in fission yeast and differing nuclear
volumes at birth were used as the basis for cyclin
accumulation. Results accorded well with experimental
observations. In the following year, Sveiczer et al.
(2003) produced another deterministic model that was
able to describe the behaviour of wild-type cells as well
as a number of mutants. This model also explained why
both Rum1 and Ste9 are essential for blocking cells in
G1 when the transcription protein Cdc10 is mutated.

Chen et al. (2004) have produced further work on
budding yeast which probably represents the most
comprehensive model of the cell cycle to date. This
substantial work demonstrates a complete method-
ology for modelling molecular regulatory networks. The
model conforms to the phenotypes of more than 100
mutant strains and is capable of predicting further
mutant phenotypes as well as predicting values for
kinetic constants. The model is also shown to be
extremely robust in terms of parameter variation.
4. MODELLING KEY TRANSITIONS IN
THE CELL CYCLE

As biological research has continued to reveal ever
more complex descriptions of cell-cycle regulation,
holism has been sacrificed for increased levels of
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biological detail and, in many instances, particularly in
regard to mammalian cells, modelling has frequently
been focused on specific key transition points within the
cycle rather than on the cycle itself.
4.1. The G1/S transition

Hatzimanikatis et al. (1999) modelled this period in the
cell cycle, concluding that the cell’s progress through
the transition could be represented by a limit cycle.
Thron (1999) produced a model that simulated the
reactions between the heterodimeric kinase cyclin
E : Cdk2 and the inhibitor P27. By mathematical
analysis, he was able to demonstrate the conditions
for a bistable biochemical system whereby cyclin
E : Cdk2 switches from a low-activity state inhibited
by P27 to a high-activity state resulting from the rapid
degradation of P27. Qu et al. (2003a,b) modelled the
G1/S transition in terms of a limit cycle resulting from
the positive feedback between Cdk2 and the CKI
inhibitor. However, they were also able to demonstrate
that the positive feedback between cyclin E and E2F
could result in a bistable state. They showed that
dynamical behaviour was dependent on parameter
choice and therefore ambiguous. However, the model
did show that the number of phosphorylation sites
activated in the case of Cdc25A, Rb and CKI, was
critical to cell-cycle progression.

Also in the same year, Qu et al. (2003a,b) presented a
generic mathematical model capable, in this instance,
of simulating both the G1/S and G2/M transitions.
This model which demonstrated both bistability (due
to the positive feedback flowing from Wee1 and
Cdc25A) and limit cycle behaviour (due to the negative
feedback formed by SKP2) was also able to accommo-
date checkpoint controls as well as the growth time
involved in the cell cycle prior to duplication of DNA
(referred to as the sizer phase, the period of which is
determined by the birth size of the cell).
4.2. The G2/M transition

In the early 1990s, Thron (1991, 1994, 1996) con-
structed cell-cycle models, which were restricted to
mitosis only and showed some of the conditions
necessary for oscillatory and bistable behaviour.
Aguda (1999) argued that the G2/M checkpoint control
system consisted of a system of phosphorylation–
dephosphorylation (PD) cycles, involving cyclin
B : Cdc2, Cdc25, Wee1 and Myt1, which had inherent
instability. It was argued that this condition could be
exploited by signal-transduction pathways to delay the
cell cycle. In an analysis, Aguda concluded that Cdc25
is in fact the target of the damage checkpoint pathway
in G2/M, a conclusion with which many cell biologists
agree. The generic model by Qu et al. (2003a,b),
previously described under the G1/M transition is
also applicable to G2/M.
4.3. The restriction point

Aguda & Tang (1999) constructed a model of the
restriction point of the mammalian cell cycle based on
J. R. Soc. Interface (2006)
the timing of a rapid increase in the level of active cyclin
E : Cdk2. The sharp switching behaviour of this
complex could be interpreted as emerging from a
positive feedback loop between cyclin E : Cdk2 and
Cdc25A as well as a mutually negative interaction
between cyclin E : Cdk2 and the inhibitor P27. The
timing of the restriction point was also found to depend
on the level of P27 along with its affinity to bind with
the enzyme. Furthermore, they were able to demon-
strate that sharp switching behaviour could still occur
in the absence of pRb participation, perhaps suggesting
that E2F-induced expression of Myc and downgrading
of P27 via the Ras pathway were also involved in
defining the restriction point. A sensitivity analysis of
the model was later carried out by Tashima et al. (2003)
and this suggested, contrary to the generally accepted
view, that the E2 : FRb pathway had little impact on
switching behaviour. They concluded that further
experimental work was required together with the
introduction of additional pathways into the model.
Novak & Tyson (2004) modelled the restriction point in
mammalian cells. Building on their previous work on
yeasts, and including provision for the Rb pathway as
well as cyclins D, E and A, they produced a model
capable of simulating the physiological responses of
cells, including the restriction point and the delayed
timing of cell division, to the transient inhibition of
growth through the inhibition of protein synthesis by
cycloheximide. This model followed on from the
experimental work of Zetterberg & Larsson (1995)
who carried out experiments on cells using growth
factors and cycloheximide. In this way, they located the
restriction point and measured the kinetics of re-entry
to the cell cycle following delay.
5. INCREASING THE COMPLEXITY OF MODELS

Many of the cell-cycle models produced to date tend, for
simplicity, to avoid certain issues such as spatial
considerations, changing shape and volume and the
high levels of complexity involved in signal-transduction
pathways. Some of the work in these areas is not necess-
arily aimed specifically at cell-cycle modelling; however,
it seems likely that future cell-cycle models will be
required to incorporate these additional complexities if
they are to realistically match cell-cycle physiology.

In recent years, there has been significant progress in
number of these areas.
5.1. Spatial considerations

The cell cycle culminates with division andMeinhardt&
de Boer (2001) used pattern formation, resulting from
an activator/depleted substrate mechanism to model
the Min protein dynamics and the localization of
FtsZ, the protein which, by forming a polymeric ring,
determines the cell division plane in the Escherichia coli
bacterium. Their model employs simulations based on a
set of partial differential equations defining the
concentrations of membrane bound and cytoplasmic
MinE, MinD and FtsZ, to model the pole-to-pole
oscillations of MinE and MinD and the localization of
FtsZ. Recently, Yang et al. (2006) developed a
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mathematical model which, as well as describing the
cell-cycle regulatory proteins on a temporal basis also
takes account of protein translocations between the
cytoplasm and the nucleus. In this model, which
accords well with experiments carried out by Clute &
Pines (1999) on cyclin B translocation, they found that
while temporal protein regulation is the primary driver
of cell-cycle dynamics, including limit cycle and
bistable behaviour, these dynamics are significantly
modulated by the incorporation of spatial regulation in
the model. Importantly, their model offers a link
between cell growth and division based on protein
translocation, thus removing any need for phenomen-
ological cell growth-dependent parameters to be
included in the model.
5.2. Changing shape and volume

Morgan et al. (2004) addressed the problem of the
changing shape and volume of the cell structure
occurring during the cycle. They rightly stated that,
other than early work done in the 1970s, models up to
that time had generally been based on a constant
volume reactor operating under steady-state con-
ditions, conditions that were quite contrary to reality,
particularly when growth was integral to the model. In
their formulation, cell volume is modelled as two
separate components, namely the cytoplasm and the
membrane. The two volumes change at different rates,
a situation that imposes periodic or oscillatory
behaviour on all components within the cell. While
this would obviate the need for the cell biochemistry to
generate oscillations itself, it is nevertheless possible
that the volume changes themselves result from the
underlying biochemistry.
5.3. Signal-transduction pathways

Kholodenko (2003) considered this problem in his
review of the roles of diffusion, endocytosis and
molecular motors in the MAPK signal-transduction
pathways. In support of previous results (Kholodenko
et al. 2000a,b; Kholodenko 2002), he confirmed that
membrane recruitment of specific cytostolic proteins
could enhance receptor-induced activation of a mem-
brane anchored target such as Ras by a factor of 1000.
By analysing the spatial gradient of phosphor-proteins
from the membrane inward through the cytosol,
Kholodenko concluded that diffusion in the cytoplasm
could not be the sole agent responsible for propagating
a signal from the membrane to the nucleus. In this
regard, Kholodenko concluded that endocytosis, scaf-
folding, molecular motors and travelling waves of
phosphor-proteins may all be involved in the propa-
gation of signals to different cell locations and that
simple diffusion alone has a very limited role. If this is
correct, it seems that the complexity of cell-cycle
models will increase substantially in the future.
6. WHAT HAS MODELLING DELIVERED?

A number of authors have presented an overview of the
modelling process, some more optimistic than others.
J. R. Soc. Interface (2006)
Tyson (1999) puts a strong case for mathematical
modelling, setting out the view that the cell cycle
should be modelled as a series of steady states
(representing the checkpoint controls) and linking cell
growth to the cycle. In addition to describing math-
ematical modelling methods, Tyson also sets out the
differing arguments for modelling the cell cycle includ-
ing the limit cycle oscillator. Most importantly, Tyson
stresses the need for researchers, as well as producing
mechanistic data, to give due recognition to the
dynamics of the system.

A slightly pessimistic view of cell-cycle modelling is
offered by Ingolia & Murray (2004). While identifying
some of the successes, including the modelling of
oscillatory behaviour and the discovery of bistability
and hysteresis, the review concludes that the modelling
process has added little or no understanding to the
biological processes of the cell cycle. The review
suggests that models need to stimulate rather than
simulate experiment and points to the fact that, since
mathematical models to date are intended to be
interpreted qualitatively they can never be proved
right or wrong at least in quantitative terms. While this
may be true in general, there have nevertheless been
some instances where the predictions of models have
been tested. In addition to Cross et al. (as mentioned
earlier), Sha et al. (2003) carried out experiments with
Xenopus laevis egg extracts to test the predictions of
two separate models. First, they tested the Novak
Tyson model (Novak & Tyson 1993) that predicts that
the cell cycle is in the form of a hysteresis loop governed
by positive feedback loops between cyclin B : Cdc2 and
Cdc25 and between cyclin B : Cdc2 and the inhibitors
Myt1 and Wee1, together with a negative interaction
between cyclin B : Cdc2 and Fizzy, a protein which
activates cyclin B degradation. Second, as an alterna-
tive to this they considered the Goldbeter (1991) model
where the sharp switching behaviour of cyclin B : Cdc2,
which heralds entry into mitosis, is explained by a
delayed negative feedback loop involving Cdc2 and
Fizzy without the involvement of Cdc25 andWee1. The
experiments sought to confirm which of these models, if
any, was correct and found that the levels of cyclin B
displayed in various experiments was best predicted by
the hysteresis loop model. Pomerening et al. (2003)
carried out similar experiments and concluded that the
bistable positive feedback system allied to the negative
feedback loop demonstrated self-sustaining undamped
spike-like oscillations.

Models have not yet reached a level of accuracy and
completeness required to engage effectively with
clinical research relevant to diseases of the cell cycle.
The real success of cell-cycle modelling to date is rather
in the methodology which has been developed as part of
the modelling process, and which is now available for
the future construction of full predictive models. In
addition to the use of graphical networks, differential
equations and bifurcation theory, there are the novel
functional forms describing the regulation of cell cycle
protein interactions. One of the most useful functions
for mathematical modelling of biological systems was
established by Goldbeter & Koshland (1981, 1984).
Here, the authors were able to demonstrate that
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ultrasensitive switching behaviour can arise from
covalent modifications for certain values of the con-
stants. Along similar lines, Ferrell (1996) investigated
the biological mechanisms behind the conversion of
graded inputs into switch-like outputs, such as that
occurring in the MAP kinase signal-transduction
pathway. Ferrel identified amplification, multi-step
phosphorylation, dual phosphorylation, enzyme satu-
ration and stoichiometric inhibition as the main
mechanisms that operate either singly or in concert to
ensure that certain cellular activities are implemented
decisively. Ferrell (2002) had previously looked at
bistable switches detailing the required properties for
this phenomenon, which included positive or double
negative feedback, nonlinearity in the system, and
balanced kinetics. This followed on from the work of
Monod & Jacob (1961), whose view was that these
bistable switches were the preferred mechanism by
which cells were able to perform irreversible processes
such as cell-cycle progression and differentiation. Tyson
et al. (2003), summarizing much of their previous work,
explained the various signal and response mechanisms
that can occur as part of a biological control system,
including sigmoidal response, positive and negative
feedback, hysteresis, oscillations and homeostasis, and
also described the mathematical structures in each
case. They also reiterated their argument that these
relatively simple structures could be combined for use
in modelling much more complex systems and, as
an example offered a generic wiring diagram of the
Cdk network.

In addition to the demonstrated importance of the
functional relations among components of the network,
detailed modelling of the cell cycle requires an account
of the time delays that occur as a result of certain
reactions, particularly in relation to transcription,
transport of mRNA from the nucleus, transport of
proteins to the nucleus as well as certain diffusion
processes. This problem was considered by Wang et al.
(2004a,b). In a theoretical study, they set out a
methodology for modelling periodic oscillations in
biochemical systems with time delays using multiple
time-scale networks (MTNs). The method involved
considering the system in two time-scales, a cyclic
feedback loop (CFN) to deal with slow reactions, such
as gene transcription, and multiple positive feedback
loops (PFNs) to cover the fast reactions such as
phosphorylation. As it has been previously established
that a PFN has no dynamic attractor other than stable
equilibrium (Kobayashi et al. 2003), and a CFN has
omega limit sets with periodic orbits and equilibrium
(Wang et al. 2004a,b), they proved that a MTN has no
stable equilibrium other than periodic oscillations that
depend on the total time delay of the CFN.

The methodology continues to develop and recently
Csikasz-Nagy et al. (2006) carried out an analysis using
a generic model of eukaryotic cell-cycle regulation and
showed, using parameters specific to the cells of
budding yeast, fission yeast, frog eggs and mammals,
how monotonically increasing mass drives the cell
regulation dynamics through a succession of bifur-
cations that govern the events of the cell cycle. Their
view is that genetic mutations are connected to cell
J. R. Soc. Interface (2006)
phenotypes through bifurcation diagrams. On this
basis, and using one and two parameter bifurcations,
they show how their model can be used to explore the
range of phenotypes, which can result from variation of
gene expression from a deleted mutant through to some
high level of overexpression.

Whether the success in methodological development
can be capitalized on to build increasingly relevant and
biologically useful models will depend as much on cell
biology as on modelling. Provided experimental biology
is strongly enough linked to theory to provide relevant
and quantitative data, the theoretical methodologies
are largely in place to develop models with real clinical
applications.
7. LINKS TO BIOLOGY

Any cell-cycle model must be founded on the under-
lying biology, and in particular the various scientific
papers covering the experimental cell biology that has
been carried out in relation to those proteins involved in
cell-cycle regulation. The scientific literature on the
subject is vast, complex, subject to continual review
and, at times, ambiguous. However, a degree of
consensus does exist, and an initial basis for math-
ematical modelling can be found by referring to a
generally accepted paper such as Kohn (1999) and
updating it where necessary. Kohn’s paper, the inten-
tion of which is to describe protein interactions relevant
to the cell cycle and relevant to DNA repair in a
diagrammatic fashion, is essentially a review that
selects from the vast library of biological data and
then imposes structure on the data selected. Since
Kohn’s original publication, as new or revised infor-
mation has become available, updates and additions are
clearly necessary and further reviews have become
available. Excellent examples specifically useful to cell-
cycle modelling include Aguda (2001) who described
the pathways involved in the G1-phase of the cell cycle
including activation of Cdk4/6 and activation of Cdk2
via the E2F : Rb pathway. Sears & Nevins (2002) who
summarize the role of the Ras pathway in E2F and Myc
transcription, and Liang & Slingerland (2003) who
provide a detailed description of the role of the PI-3K
pathway in cell-cycle progression. This pathway, it
seems, is essential for the degradation of P21 and P27
prior to the G1/M transition via upregulation of SKP2.
It also seems to have a role in the G2/M checkpoint
control system by changing the transcriptional regula-
tion of Gadd45a and modulation of Chk1 activity.

For a mathematical model of the complete cell cycle
to hold credibility with the biology community, it
should be of sufficient complexity to incorporate a
minimum number of processes known to be involved in
cell-cycle regulation, including growth and division,
growth restriction, survival, programmed cell death,
DNA checkpoint control and cellular damage response.
To model these behaviours, it is necessary to include in
the model those proteins related to the Ras and Akt
pathways, proteins involved in the activation of the
Myc and E2F transcription factors and all of the
cyclins, Cdks, inhibitors and phosphatases involved in
each of the four main phases of the cell cycle. Also to be
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included are those proteins involved in survival via the
PI-3K pathway, growth restriction via the Mad
pathway and proteins involved in apoptosis resulting
from both mitogenic and intra-cellular processes.
Further, those proteins involved in DNA checkpoint
and cellular damage control are required. This necessi-
tates a minimum level model including some 150
proteins to demonstrate the regulatory processes.
Much of the biological knowledge defining the
interaction of these proteins is summarized in the
papers referred to above but, from a modelling
perspective, the knowledge is representative rather
than definitive. This arises from the nature of experi-
mental cell biology research. In relation to the various
regulatory pathways to be included in any realistic
model, experiments have been, and continue to be,
carried out under a variety of conditions throughout the
world, on many species including insects, fish, reptiles,
rodents and humans, in vivo and in vitro, on many
different cell lines, on different tissues and on stem,
embryonic and somatic cells. Thousands of different cell
types are used and while this vast range of experi-
mentation contributes to a greater understanding of the
cell-regulatory mechanisms, many of which are con-
served, it is nevertheless the case that in respect of
definitive modelling progress is currently restricted.
While many processes are conserved among cell types,
there is little relationship between the experiments for
modelling purposes, since any quantitative data arising
can only be considered relevant to one specific cell type.
Thus, while a vast number of papers are available in
relation to cell-cycle regulation, the molecular basis for
whole cycle modelling remains representative.

Regardless of the particular papers used as a basis for
a model, however, it must be recognized that these
biological papers rarely present information in a form
suitable for mathematical modelling and, when model-
ling is intended, it is usual to refashion the information
graphically in a form as frequently used, for example,
by Hatzimanikatis et al. (1999), Tyson & Novak (2001),
Tyson et al. (2003) and others referred to above. The
next point to be considered is the nature of the data
that can be extracted from biological papers. While
qualitative data are easily available, the quantitative
time-course data that would enable speedy calibration
of cell-cycle models is scarce and, even if available,
rarely published in the literature. The practical
difficulties in obtaining absolute protein and protein
complex concentrations over a time-course linked to
cell-cycle physiology is one of the reasons for this. Also,
the fact that this type of data is generally not required
to establish conclusions from experiments means that
quantification is rarely carried out. Exceptions do exist,
however, and Arooz et al. (2000) and Tomasoni et al.
(2003) have identified time-courses and protein concen-
trations that could be useful in modelling. Most
common, however, are the type of experiments that
seek to define relationships between specific molecular
species where the results are presented in a graphical
and qualitative sense using various blot analyses
to support the conclusions. Taken individually, these
experiments do not assist greatly in the identi-
fication of quantitative data for mathematical models.
J. R. Soc. Interface (2006)
While image analysis may be employed to approximate
the relative quantity changes of individual proteins
over a time-course, the experimental methods usually
employed do not permit quantitative comparison
between different proteins.
8. CURRENT POSITION AND THE FUTURE

From a historical viewpoint, experimental research into
cell-cycle biology has not evolved according to any
selection process in favour of a requirement for the
production of mathematical models.While the extent of
qualitative data is vast, the description of regulatory
mechanisms is still representative and quantitative data
is not available to any significant degree. Mathematical
modelling of the cell cycle has responded to develop-
ments in biology, but the overall development of useful
and applicable models has been restricted by the non-
specificity of biological research allied to an absence of
quantitative data. Undoubtedly, this could be redressed
by better integration of theoretical and experimental
research methodologies. While considerable progress
has been made in modelling methodology, and the
discoveries emanating from the field of experimental
biology are nothing short of remarkable, it is never-
theless the fact that, as things stand at present, there are
very few quantitative models available, and none that
fully describe the cell’s molecular activity in a compre-
hensive way. Perhaps, the closest to this is the colon
cancer model, produced by Gene Network Sciences of
Ithaca New York, which includes some 2000 variables
representing the activities of over 500 genes and
proteins. This work involves a major input of data
from literally thousands of sources and, being specific to
a single cell line, is likely to be the first fully definitive
model to include a level of complexity that matches the
relevant biology. It seems that we are now at a critical
point where progress in experimental cell biology
research, allied to the availability of substantial
computer power, means that we have reached a position
where we can produce mathematical models that
represent the underlying biology sufficiently to make a
contribution to understanding that is at least com-
parable to experimentation on its own.

Mathematical models of the cell cycle have the
potential to assist research into potential drug treat-
ments for certain types of cancers. The dynamics of the
networks involved is complex and highly nonlinear, and
intuition alone is insufficient for a full understanding of
how the various proteins interact. Accurate models
depicting the protein-level dynamics of specific types of
cancer cell can be used in simulation experiments to
investigate the effects of potential drugs, or perhaps
more importantly, combinations of drugs, on many of
the proteins regulating the cell cycle. This procedure
will assist in determining the best drug regimes to treat
specific cancers by running parallel simulations of
cancer and non-cancer cells of similar tissue type to
search for ways of inducing maximum toxicity in cancer
cells and minimum toxicity in non-cancer cells. Such
models, however, would have to be both comprehensive
and quantitatively accurate; a position which current
models have not yet achieved.



624 Role of modelling in identifying drug targets R. G. Clyde and others
One of the main criticisms of increasingly compre-
hensive quantitative models is that the demand on data
is prohibitive given the current evidence of the
contribution that modelling can make to the science.
There would seem to be no logical end to the need to
increase in complexity. As we have already discussed,
there is some merit to these criticisms. However, recent
studies of the behaviour of complex networks suggests
that the introduction of additional complexity to
models might be an essential step to reducing the
demands on data, while also making models more
useful. Recent work on studying the robustness of
complex nonlinear networks strives to find the link
between network topology and macroscopic dynamical
behaviour (Albert & Barabasi 2002; Boccaletti et al.
2006). Depending on the nature of the topology of these
networks, the dynamics can be surprisingly insensitive
to the details of the links and the functions relating the
behaviour of one node to another (Barabasi & Oltvai
2004). In the context of cell networks, this would mean
that in these regimes, it may be sufficient to have
qualitative constraints on couplings between proteins,
and that once a certain level of complexity is
incorporated, ignorance about the existence of
couplings and feedbacks may have little impact on the
dynamics. This would suggest an optimal level of
complexity that should be incorporated in comprehen-
sive models, and therefore that there is a logical end to
the need to increase model complexity. Furthermore,
early results from the study of abstract networks
suggest that major modifications to the macroscopic
behaviour, as might be the goal of therapies, can only be
achieved by targeting several key points in the network
simultaneously. This is certainly consistent with the
prevailing wisdom in relation to cancer therapies.
Cancer cells frequently develop mechanisms of resist-
ance to drugs that target single pathways and to
overcome this multi-drug regimes are necessary. Only
by modelling the system can we determine the relevant
targets. There is good evidence that cell networks have
the properties suggested by these abstract models (e.g.
Resendis-Antonio et al. 2005) and therefore that
progress can be made (Meir et al. 2002). This suggests
that an important priority for future research would be
to incorporate real network topologies in the current
abstract dynamical models (Boccaletti et al. 2006).

The development of useful mathematical models is
dependent on greater cooperation between cell
biologists and theoreticians. This has been argued for
many years without much sign of real change and it
seems that significant progress will only occur once cell
biology begins to deliver applications in the way that
other sciences already do. Perhaps, the most important
barrier to progress is the lack of a unifying conceptual
framework in which the mix of experimentalists and
theoreticians can operate. Setting up such a framework,
along with the necessary protocols, would seem to be an
essential prerequisite for full quantitative modelling to
develop.

As a first step, it would be useful to know, in
quantitative terms, the extent to which the level of
proteins involved in the cell cycle are altered by varying
anti-cancer drug regimes. All of the science necessary to
J. R. Soc. Interface (2006)
deliver this knowledge already exists. Many of the
regulatory proteins are known and the technology
exists to carry out quantitative experiments and derive
quantitative data. If these experiments were designed
in conjunction with theoreticians, predictive models
could certainly be constructed and validated.

It must be recognized, however, that the develop-
ment of accurate and comprehensive models capable
of being used for analytical purposes over a range of
different cell types is a substantial task. The level of
complexity is high, as indicated in Kholodenko (2003),
and likely to increase in the future. It will require
considerable resources in the form of teams staffed
jointly by theoreticians and biologists and effective
interdisciplinary teams take many years to establish.

As described earlier, the development of useful
models is not directly coupled to the complexity of
the underlying system. A model that represents the full
cell cycle, taking account of all spatial considerations,
fluid dynamics, electrical activity and every gene
involved in the regulatory network is not possible,
necessary or even desirable. The defining step of the
worth of any model is that, through the minimal
inclusion of detail required, a predictive link may be
established between a known intervention process,
most likely a potential drug regime, and a change in
the regulatory network leading to a particular pheno-
type. Indeed, there may already be sufficient biological
knowledge available to construct such a model. There
exists a considerable bank of data and information
relating to different aspects of the cell cycle and a
scheme able to interrelate this information into an
interdependent, dynamic model structure may be
sufficient to link intervention process and phenotype.
Although the majority of experimental results are
published in qualitative form, this belies the fact that
quantitative data is nevertheless likely to be available.
It may require image analysis together with mathemat-
ical techniques involving inequalities and mathematical
analysis to derive this data but it does, nevertheless,
exist and could be used to model the molecular
concentration dynamics of the relevant proteins. As
simultaneous measurement of a large number of protein
concentrations over time are extremely rare, and non-
simultaneous measurements cannot be quantitatively
compared, the data will be largely semi-quantitative.
This means that one can infer the relative magnitude of
change in the concentration of a particular protein over
time, but not the absolute concentrations, nor the
relative concentration of proteins that have not been
simultaneously measured. Models must therefore be
capable of accommodating these shortcomings.

To derive and organize this data is still a substantial
task, but it is smaller than the task of repeating a large
number of experiments in order to derive numerical
data. There will always remain gaps and therefore
future modelling must accommodate uncertainty and
ignorance. Therefore, models will have to be optimized
against data to infer the properties and associated
parameters in regions of the network where data is
missing. To this end, it is possible to employ evolution-
ary algorithms for parameter searching on a defined
network. There is a vast knowledge base, relevant to
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genetic and evolutionary algorithms, which can be
called on to assist in finding solutions to the models.
Some examples are given by Goldberg (1989) and
Mitchell (1996). Finally, and in a more general sense,
there is the possibility that the types of complex models
referred to here may be of assistance in unravelling the
underlying structure that enables living cells to be so
successful in the biological sense. There may be a
relationship between network complexity and robust-
ness in the relevant dynamical system and this is an
area of research that needs to be pursued.
9. CONCLUSIONS

There is a little doubt that sufficient knowledge exists in
terms of experimental results, experimental methods,
mathematical methods and applied computer science to
enable comprehensive quantitative models of cell-cycle
pathways to be constructed. What seems to be
currently lacking, however, is a unified approach to
the problem and an organizational overlay that could
ensure that relevant research is directed efficiently into
a structured format suitable for modelling. In this
regard, we may be on the verge of making progress that
could result in a revolution in understanding and
application. The urgent need for medical applications,
particularly in regard to certain cancers such as that of
the lung and skin, where new approaches are clearly
needed, will almost certainly dictate this as a future
requirement.
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