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The field of systems biology has attracted the attention of biologists, engineers,
mathematicians, physicists, chemists and others in an endeavour to create systems-level
understanding of complex biological networks. In particular, systems engineering methods
are finding unique opportunities in characterizing the rich behaviour exhibited by biological
systems. In the same manner, these new classes of biological problems are motivating novel
developments in theoretical systems approaches. Hence, the interface between systems and
biology is of mutual benefit to both disciplines.
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1. INTRODUCTION

The term ‘complexity’ is often invoked in the descrip-
tion of biophysical networks that underlie gene
regulation, protein interactions and metabolic net-
works in biological organisms. There are categorically
two distinct characterizations of complexity: (i) the
classical notion of behaviour associated with the
mathematical properties of chaos and bifurcations,
and (ii) the descriptive or topological notion of a large
number of constitutive elements with non-trivial
connectivity. In both biological and more general
contexts, a key implication of complexity is that the
underlying system is difficult to understand and verify
(Wen et al. 1998). Simple low-order mathematical
models can be constructed that yield chaotic behaviour,
and yet rich complex biophysical networks may be
designed to reinforce reliable execution of simple tasks
or behaviours (Lauffenburger 2000).

A systematic approach for analysing complexity in
biophysical networks was previously untenable owing
to the lack of suitable measurements and the limitations
imposed in simulating complex mathematical models.
Advances in molecular biology over the past decade
have made it possible to probe experimentally the
causal relationships between microscopic processes
initiated by individual molecules within a cell and
their macroscopic phenotypic effects on cells and
organisms. These studies provide increasingly detailed
insights into the underlying networks, circuits and
pathways responsible for the basic functionality
and robustness of biological systems and create new
and exciting opportunities for the development of
quantitative and predictive modelling and simulation
orrespondence (frank.doyle@icb.ucsb.edu).
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tools. Model development involves the translation of
identified biological processes to coupled dynamical
equations, which are amenable to numerical simulation
and analysis. These equations describe the interactions
between various constituents and the environment, and
involve multiple feedback loops responsible for system
regulation and noise attenuation and amplification.

The discipline of Systems Biology has emerged in
response to the challenges mentioned earlier (Kitano
2002b), and combines approaches and methods from
systems engineering, computational biology, statistics,
genomics, molecular biology, biophysics and other
fields (Klipp et al. 2005; Palsson 2006; Szallasi et al.
2006). The recurring themes include: (i) integrative
viewpoints towards unravelling complex dynamical
systems, and (ii) tight iterations between experiments,
modelling and hypothesis generation (figure 1).

The central thesis of this paper is that systems
engineering methods are finding unique opportunities
in characterizing the rich behaviour exhibited by
biological systems. In the same manner, these new
classes of biological problems are motivating novel
developments in theoretical systems approaches.
Hence, the interface between systems and biology is
of mutual benefit to both disciplines.
2. ELEMENTS OF SYSTEMS BIOLOGY

2.1. Networks and motifs in gene regulation

Biophysical networks can be decomposed into modular
components that recur across and within given organ-
isms. One hierarchical classification is to label the top
level as a network, which is comprised of interacting
regulatorymotifs consisting of groups of 2–4 genes (Lee
et al. 2002; Shen-Orr et al. 2002; Zak et al. 2003). At the
J. R. Soc. Interface (2006) 3, 603–616
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Figure 1. Systems biology cycle. Interactions between
experimental analysis and theoretical approaches, and the
main tasks for theory at the interfaces.
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lowest level in this hierarchy is the module that
describes transcriptional regulation, of which a nice
example is given in Barkai & Leibler (2000).

At the motif level, one can use pattern searching
techniques to determine the frequency of occurrence of
these simple motifs (Shen-Orr et al. 2002), leading to
the postulation that these are basic building blocks in
biological networks. Of relevance to the present
discussion is the fact that many of these components
have direct analogues in system engineering architec-
tures. Consider the three dominant network motifs
found in Escherichia coli (Shen-Orr et al. 2002):

— coherent feedforward loop: in this, one transcription
factor regulates another factor, and in turn the pair
jointly regulates a third transcription factor,

— single input module (SIM): in systems terminology, a
single-input multiple output block architecture and

— densely overlapping regulons: in systems terminology,
a multiple-input multiple output block architecture.

Similar studies in a completely different organism,
Saccharomyces cerevisiae, yielded six-related or over-
lapping network motifs (Lee et al. 2002):

— autoregulatory motif: in which, a regulator binds to
the promotor region of its own gene,

— feedforward loop: as described earlier,
—multi-component loop. effectively, a closed-loop with

two or more transcription factors,
— regulator chain: a cascade of serial transcription

factor interactions,
— single input module: as described earlier (SIM) and
—multi-input module: a natural extension of preceding

motif.

In effect, these studies prove that, in both eukaryotic
and prokaryotic systems, cell function is controlled by
sophisticated networks of control loops, which are
cascading onto and interconnected with, other (tran-
scriptional) control loops. The noteworthy insight is
that the complex networks, which underlie biological
regulation, appear to be made of elementary systems
components like a digital circuit. This lends credibility
to the notion that analysis tools from systems engin-
eering should find relevance in this problem domain.
J. R. Soc. Interface (2006)
As emphasized in the introduction, an important
point in systems biology is the integrative perspective,
that is to say, the analysis of the system considered as a
whole and across the different levels (gene, protein,
metabolite, etc.), and not the reductionist analysis of
individual components. So while it is useful to
categorize the elements and levels of a hierarchical
regulatory scheme, it is more useful to analyse such
schemes for behaviours that emerge from combinations
of motifs. Some simple examples of canonical regulatory
constructs that yield specific classes of behaviour in
gene networks include (Smolen et al. 2000):

— positive feedback: multistability, oscillations, state-
dependent response,

— integral feedback: robust adaptation,
— negative feedback: steady-state (homeostasis,

adaptation),
— time delay: complex response, oscillations and
— protein oligomerization: multistability, oscillations,

resonant stimulus frequency response.

In addition, stochastic fluctuations can induce
random response to stimuli, random outcomes, as well
as stochastic focusing. Such properties are charac-
teristic of general networks, including social networks,
communication networks and biological networks
(Committee on Network Science for Future Army
Applications 2006).
2.2. Dynamic models

While the consideration of motifs and network topology
is essential for unravelling design principles in complex
biophysical networks, it is necessary to understand the
role of dynamic behaviour in ascribing meaning to the
rich hierarchies of regulation. Some of the intrinsically
dynamic features of biophysical networks have been
analysed in a recent paper that shows the close
relationship between dynamic measures of robustness
and the abundance of particular network motifs for a
wide range of organisms (Prill et al. 2005).

Attempts to detail dynamic behaviour in these
networks have fallen into three broad classes of
modelling techniques: (i) first-principles approaches,
(ii) empirical model identification and (iii) a hybrid
approach that combines minimum metabolic network
knowledge with an objective function to yield a
predictive model. In this section, we outline some
key results in the development of mechanistic models,
and in the following sections, we will address the other
two topics as they are related to network inference
and constraints.

Given detailed knowledge of a biological architec-
ture, mathematical models can be constructed to
describe the behaviour of interconnected motifs or
transcriptional units (TUs). A number of excellent
review papers have been detailed in recent years
(Smolen et al. 2000; Hasty et al. 2001). In the majority
of these studies, gene expression is described as a
continuous-time biochemical process, using com-
binations of algebraic and ordinary differential
equations (ODEs; Goldbeter 1996; Cherry & Adler
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2000; Smolen et al. 2000). In a similar manner,
models at the signal transduction pathway level have
been developed in a continuous-time framework,
yielding ODEs (Kholodenko et al. 1999). At the TU
level, a detailed mathematical treatment of transcrip-
tional regulation is described in Barkai & Leibler
(2000). Mechanistic models for a number of specific
biological systems have been reported, including
basic operons and regulons in E. coli (trp, lac
and pho) and bacteriophage systems (T7 and l;
e.g. Gilman & Arkin 2002).

Systems theory has found an enabling role in the
analysis of the complex mathematical structures that
result from the previously described modelling
approaches. The language of systems theory now
dominates the quantitative characterization of biologi-
cal regulation, as robustness, complexity, modularity,
feedback and fragility are invoked to describe these
systems. Even classical control theoretic results, such
as the Bode sensitivity integral, are being applied to
describe the inherent tradeoffs in sensitivity across
frequency (Csete & Doyle 2002). Robustness has been
introduced as both a biological system-specific attri-
bute, as well as a measure of model validity (Ma &
Iglesias 2002). In the sections that follow, brief accounts
of systems-theoretic analysis of biological regulatory
structures are given, emphasizing where new insights
into biological regulation have been uncovered.
3. INTERFACES: EXAMPLES

3.1. Network identification

Currently, our knowledge of essentially all biological
systems is incomplete. Despite genome projects that
allow enumeration—and, to a certain extent,
characterization—of all genes in a system, this does
not imply knowledge about all network components
(for instance, all protein variants that can be derived
from a single gene), interactions, and properties
thereof (Kitano 2002a). Hence, an important task in
systems biology consists of specifying network
interactions, which can concern qualitative or quan-
titative properties (existence and strength of
couplings), or detailed reaction mechanisms, for
genome-based inventories of components.

Essentially, this is a systems identification problem.
Given a set of experimental data and prior knowledge,
the network generating the data is to be determined
(Ljung 1999). Alternatively termed ‘reverse engin-
eering’ (Tegner et al. 2003), ‘network reconstruction’
(MacCarthy et al. 2005) or ‘network inference’
(Gardner et al. 2003), the general network identifi-
cation problem provides a key interface between science
and engineering. Several, qualitatively different
approaches for biological systems have been proposed,
which can be roughly classified into three categories:
data-driven, approximative and mechanistic.
3.1.1. Data-driven methods. Empirical or data-driven
methods rely on large-scale datasets that can be
generated, for instance, through microarray analysis
for gene regulatory networks. They include singular
J. R. Soc. Interface (2006)
value decomposition analysis of microarray data (Alter
et al. 2000; Holter et al. 2000), self-organizing maps
(Tamayo et al. 1990), k-means clustering or hierarchical
clustering (D’haeseleer et al. 2000), protein correlation
and dynamic deviation factors (You & Yin 2000), and
robust statistics approaches (Thomas et al. 2001; Zhao
et al. 2001). For instance, clustering methods are
routinely applied for identifying groups of co-regulated
genes from microarray data. The interpretation of
clustering results employs (implicit) models such as ‘co-
expressed genes are likely to have a common regulator’.
Data quality and algorithmic choices (for instance, of
distance measures) critically influence the clustering
results; in addition, validation of clustering results and
techniques is an open issue (Datta & Datta 2003; Handl
et al. 2005; Allison et al. 2006).

In contrast to the mechanistic approaches discussed
later, most empirical approaches employ discrete-time
grey box models (D’haeseleer et al. 1999; Weaver et al.
1999; Wessels et al. 2001; Hartemink et al. 2002). For
instance, inference methods based on probabilistic
graphical (e.g. BAYESIAN) models help to elucidate
causal couplings between the network components
(Friedman 2004). Their scalability for large systems
and the ability to integrate heterogeneous datasets
make them attractive (Lee et al. 2004; Klipp et al.
2005). Yet, these approaches deliver only qualitative
descriptions of network function, and have inherent
limitations. For instance, BAYESIAN models cannot cope
with the ubiquitous feedback in cellular networks, since
causal relationships have to be represented by directed
acyclic graphs (Friedman 2004).

However, a number of challenges are present in
treating experimental data for such problems: (i) the
sampling rate is rarely uniform, and may be exponen-
tially spaced by design, and (ii) data from multiple
research groups are often combined (e.g. from WWW-
posted data) to yield data records with inconsistent
sampling, experimental bias, etc. From a systems
engineering perspective, another critical point is the
potentially divergent qualitative behaviour between
continuous-time and discrete-time models of corre-
sponding order (Pearson 1999). Recent work has shown
the promise of continuous-time formulations of empiri-
cal models using modulating function approaches
(Zak et al. 2003).

More generally, correctly identifying network topol-
ogies (corresponding to the model structure) clearly
does not suffice for establishing predictive mathemat-
ical models. Experiences with engineered genetic
circuits illustrate this point: with identical topology,
qualitatively different behaviour can result and vice
versa (Guet et al. 2002). Hence, quantitative charac-
teristics, which are usually incorporated through model
parameters in deterministic models, are also required.
Corresponding identification methods are rooted in
systems and information theory and, thereby, also
provide the largest intersection among biology, other
sciences and engineering.
3.1.2. Linear approximations. The identification of
dynamically changing interactions requires
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corresponding dynamic models. In a first approxi-
mation, we can consider linear systems, i.e. systems
with additive responses to perturbations. In systems
engineering, a standard form for linear time-invariant
(where the shape of the output does not change with a
delay in the input) systems with n states andm inputs is
given by

dxðtÞ
dt

Z f ðx;p; tÞzAxðtÞCBuðtÞ; ð3:1Þ

with n!1 state vector x(t), n!n system matrix A,
n!m input matrix B and m!1 input vector u(t).
Linearization of the general dynamic system dx(t)/dtZ
f (x, p, t) with parameter p provides first approxi-
mations to the network dynamics, even for highly
nonlinear systems such as those encountered in biologi-
cal networks. Linear models capture the local dynamics,
for instance, in the vicinity of a steady state, instead
of aiming at more complicated global behaviours.

Mathematically, most methods reconstruct the
system matrix A, which corresponds to the Jacobian
matrix JZvf(x, p)/vx, from the measured effects of
(sufficiently small) perturbations. However, direct
recovery of the system matrix A will be unreliable
with noisy data and inputs. In one of the studies using
linear models and perturbation experiments to identify
the structure of genetic networks, Tegner et al. (2003)
therefore proposed an iterative algorithm that uses
rational choices of perturbations to improve the
identification quality. For a developmental circuit,
despite high nonlinearities in the system, the reverse
engineering algorithm, which involves building and
refining an ‘average’ connectivity matrix in successive
steps, recovered all genetic interactions (Tegner et al.
2003). A related approach that uses linear models and
multiple linear regression showed similar performance.
The algorithm attempts to exploit the sparsity of
systems matrices for biological networks owing to, for
example, (estimated) upper bounds on the number of
connections per node (Gardner et al. 2003; Bansal et al.
2006). Both algorithms are scalable—a central concept
in engineering, but until recently considered of less
importance in biology.

Newer approaches to systems identification aim at
exploiting modularity in biological networks. For a
modular system with one output per module, the
method employs inversion of the global response matrix
for identification of network connectivities and of local
responses from perturbation experiments (Kholodenko
et al. 2002). It requires a reduced number of measure-
ments compared with other methods because only
changes in so-called ‘communicating intermediates’
have to be recorded. Apparently, some simplifying
assumptions have to be made; for example, modules are
coupled by information flow only, and mass flow is
negligible (Kholodenko et al. 2002). An important
result of extending the modular identification to time-
series data is that, for identifying all connections of a
node, it is not necessary to perturb this node
directly—inference can rely on detecting the network
responses to remote perturbations (Sontag et al. 2004).
Extensions to include the effects of uncertainties in
experimental data and prior knowledge (Andrec et al.
J. R. Soc. Interface (2006)
2005), as well as the possibility of a unified mathemat-
ical framework (Cho et al. 2005) make modular
identification methods particularly promising.
3.1.3. Mechanistic models, identifiability and experi-
mental design. Mechanistic models, owing to effects
such as saturation in enzymatic reactions, pose
particular challenges because they involve identifi-
cation of nonlinear systems. Depending on whether
model structure and parameters, or only the
parameters have to be identified, the problems fall
into the classes of mixed-integer nonlinear programs
or nonlinear programs, respectively. As a clear limi-
tation, finding a unique global optimum in the
estimation, or convergence of the algorithms cannot
be guaranteed. In addition, model identification comes
at high computational costs owing to numerous model
simulations (Maria 2004).

In terms of parameter estimation, which is a
common problem in different scientific domains
(Ljung 1999), realistic modelling of complex, nonlinear
dynamics of biological networks has given new impulses
for the evaluation of existing methods and development
of new methods. For instance, though stochastic
algorithms show superior performance over determi-
nistic methods for parameter optimization in these
systems, they are computationally expensive (Moles
et al. 2003). Novel hybrid methods try to exploit
synergies between both approaches in order to increase
robustness and efficiency (e.g. Rodriguez-Fernandez
et al. 2006 and references therein).

More fundamentally, ‘identifiability’ and design of
informative experiments need to be addressed.
Unstructured approaches to model identification are
completely ill-posed when faced with, for instance,
modelling a yeast cell with 6200 genes and four possible
states per gene; we obtain an overall expression state
dimension in excess of 1015 (Lockhart & Winzler 2000)!
Clearly a number of a priori constraints and corre-
lations must be exploited. For discrete models, usage of
the experimentally observed upper bound on the
number of interactions per species brings the amount
of data needed for identification into realistic dimen-
sions (Selinger et al. 2003). However, mere extrapol-
ation of current high-throughput technology will not
solve these high dimensional data issues. Several recent
studies have highlighted the importance of proper
design of perturbations to reveal the logical connec-
tivity of gene networks (Wagner 2004; MacCarthy et al.
2005). Systems engineering concepts of experimental
design to provide ‘rich’ datasets can be exploited to
develop predictive mechanistic models.

Parameter estimation accuracies are central to
measuring identifiability of mechanistic models. Low
accuracies mean that the corresponding parameters
may be varied to a greater extent—and still describe
the data—than it is possible for parameters with high
estimation accuracy (low associated error). They
combine information on model sensitivities with
experimental data (figure 2). More specifically, the
Fisher information matrix (FIM) F(p) (Emery &
Nenarokomov 1998), for a point in parameter space p,
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Figure 2. FIM and identification quality. The lower bound for
the estimation error of parameter i, si, is derived from the
inverse of the main diagonal of the FIM. See main text for
details.
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links model and experiment via state sensitivities
S(t)Zvx/vp (see §3.4.1) and measurement covariance
matrix for a discrete sampling time ti, C(ti). For an
unbiased estimator, the Cramér–Rao theorem then
gives a lower bound for the estimation error.

FIM-based approaches, for instance, yielded insight
into the importance of suitable design of input
perturbations for signalling networks (Zak et al.
2003), optimality criteria for the design of such inputs
(Faller et al. 2003) and algorithms for the optimization
of sampling times for dynamic experiments (Kutalik
et al. 2004). New hybrid parameter estimation methods
(Rodriguez-Fernandez et al. 2006) and closed-loop (i.e.
integrating iterations between estimation, evaluation of
the identifiability and experimental design) optimal
identification procedures (Feng et al. 2004) rely on the
FIM formalism. Note, however, that while these proof-
of-concept studies with small models and synthetic data
are valuable, the performance for real biological
problems awaits assessment.

Information-rich datasets for integrative models will
have to be derived from sources across all levels of
biological regulation, such as the transcriptome,
proteome and metabolic fluxes. Concomitantly, we
need novel statistical frameworks for data integration
(Hwang 2005). Systems identification would greatly
benefit from the direct in vivo determination of kinetic
parameters; the work by Ronen et al. (2002) for
transcriptional control is a first step into this direction.
As a complement, synthetic genetic circuits could
provide means for controlled excitation of the system,
for instance, by inducible genetic switches (Tegner et al.
2003), or through genetic oscillators to incorporate
analysis methods in the frequency domain (Ljung
1999). Novel methods could also take known uncertain-
ties associated with measurements—such as
experimentally determined characteristics of stochastic
noise (see §3.3)—explicitly into account. Finally,
identification depends on adequate specification of the
system and model (e.g. Kim & Tidor 2003). While
models are currently either set up ad hoc, or through
manual comparison of few alternative structures
(including kinetic terms in the equations), uncertainties
in biology pose a major challenge for systems sciences:
J. R. Soc. Interface (2006)
deriving advanced approaches to model discrimination
for the simultaneous identification of model structures
and parameters.
3.2. Constraints and optimality

To understand complex biological systems, instead of
starting from actual implementations and obser-
vations, one can reduce the problem by first separating
the possible from the impossible, such as configu-
rations and behaviours that would violate constraints.
Systems approaches try to exploit three broad classes
of constraints:

— empirical: large-scale experimental analysis can
provide constraints on possible network structures,
such as the average or maximal number of
interactions per component (see §3.1),

— physico-chemical: laws of physics such as conserva-
tion of mass and thermodynamics impose con-
straints on cellular and network behaviours. These
are used, in particular, for structural network
analysis (SNA) with roots in the analysis of chemical
reaction networks (Clarke 1988) and

— functional: biological systems perform certain func-
tions and their building blocks are confined to a
large, yet finite set. Network structures and
behaviours have to conform with both aspects.

Functional constraints constitute the main
differences between complex physics and biology. In
physics, they do not exist. Biological (as well as
engineered) systems evolve to fulfil functions, and are
constantly evaluated for their performance. Insufficient
performance will lead to extinction, and better
solutions are likely to survive. Hence, it is reasonable
to assume some kind of optimality in biological
systems. The immediate consequence of a purpose is a
considerably smaller design space, in which effective
and reliable network are rare and presumably highly
structured. Understanding complexity in biology could,
thus, employ a ‘calculus of purpose’—by asking
teleological questions such as why cellular networks
are organized as observed, given their known or
assumed function (Lander 2004).
3.2.1. Physico-chemical constraints in metabolism.
Essential constraints for the operation of metabolic
networks are imposed by (i) reaction stoichiometries,
(ii) thermodynamics that restrict flow directions
through enzymatic reactions and (iii) maximal fluxes
for individual reactions. For instance, metabolism
usually involves fast reactions and high turnover of
substances when compared with regulatory events.
Therefore, on longer time-scales, it can be regarded as
being in quasi-steady state. The metabolite balancing
equation for a system of m internal metabolites and q
reactions

dxðtÞ
dt

ZN$r Z 0; ð3:2Þ

with the m!q stoichiometric matrix N and the q!1
vector of reaction rates (fluxes) r formalizes this main
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constraint in SNA. As for most real networks q[m,
the system of linear equation in equation (3.2) is
underdetermined. However, all possible solutions are
contained in a convex vector space, or flux cone
(figure 3). Methods from convex analysis allow to
investigate this space (Rockafellar 1970; Heinrich &
Schuster 1996).

Two broad classes of methods for SNA have been
developed: metabolic pathway analysis (MPA) and flux
balance analysis (FBA; see (Papin et al. 2004; Price et al.
2004; Borodina & Nielsen 2005) for recent reviews).
MPA computes and uses the set of independent
pathways—generating rays in figure 3—that uniquely
describe the entire flux space; owing to the algorithmic
complexity, it can currently only handle networks of
moderate size. FBA, in contrast, determines a single flux
solution through linear optimization (Varma & Palsson
1993c), often assuming that cells try to achieve optimal
growth rates. The computational costs are modest, even
for genome-scale models. The approach was successful,
for instance, in predicting the effects of gene deletions
and the outcomes of convergent evolution in micro-
organisms (Fong et al. 2003; Fong & Palsson 2004; Price
et al. 2004). FBA, however, has to reverse-engineer and
operate with an essentially unknown objective function.
While maximal growth proved a reasonable assumption
for lower organisms, higher cells may tend to minimize
overall fluxes in the network (Holzhütter 2004). In
general, FBA has proven effective for simpler organisms,
and when the steady-state assumption is valid. However,
there are many situations where these conditions do not
apply, many of which are biophysically meaningful, such
as the dynamic diauxic shift in E. coli.
3.2.2. Extensions: dynamics and control. Stoichio-
metric constraints restrict the systems dynamics.
Thus, the stoichiometric matrix N is fundamental,
not only for SNA, but also for dynamic processes in
reaction networks, in which the reaction rates r in
equation (3.2) are time-dependent. For biological
systems, the conservation of total amounts of certain
molecular subgroups (‘conserved moieties’ such as
J. R. Soc. Interface (2006)
ATP, ADP and AMP) is characteristic, and can be
exploited for systems analysis. Classical work in
chemical engineering addressed this topic for chemical
reaction networks. For instance, Feinberg derived
theorems to determine the possible dynamic regimes,
such as multistability and oscillations, based on net-
work structure alone (Feinberg 1987, 1988). Challenges
posed by biological systems lead to renewed interest in
these approaches and induced further theory develop-
ment (Sontag 2001). Application areas in biology
include stability analysis (Sontag 2001) and model
discrimination by safely rejecting hypotheses on
reaction mechanisms, thus, identifying crucial reaction
steps (Conradi et al. 2005). Algorithms for the
identification of dependent species in large biochemical
systems—to be employed, for instance, in model
reduction—have recently become available (Vallabha-
josyula et al. 2006).

Enabling FBA to deal with dynamics and
regulation proceeded by incorporating additional
time-dependent constraints that reflect knowledge on
the operation of cellular control circuits—an approach
termed ‘regulatory FBA’ (Covert et al. 2001). For
instance, using superimposed Boolean logic models to
capture transcriptional regulatory events has extended
the validity of the methodology for a number of
complex dynamic system responses (Covert et al.
2001) and for data integration (Covert et al. 2004).
Other dynamic extensions of the FBA algorithm have
been proposed in Mahadevan et al. (2002). With these
more detailed models, steady-state analysis suggested
that the complex transcriptional control networks
operate in a few dominant states, i.e. generate simple
behaviour (Barrett et al. 2005). Finally, pathway
analysis also allows to approach features of intrinsi-
cally dynamic systems: for instance, it helps to identify
feedback loops in cellular signal processing (Klamt
et al. 2006). Hence, SNA-related approaches are about
to extend to non-classical domains, in particular,
through theory development induced by new chal-
lenges in systems biology.
3.2.3. Functional constraints, optimality and design. In
analysing living systems, one possibility is to start from
the assumption that they have to fulfil certain
functions, and that cells have been organized over
evolutionary time-scales to optimize their operations in
a manner consistent with mathematical principles of
optimality. FBA demonstrates the utility of this
assumption; note that its implicit functional constraint,
i.e. steady-state operation of metabolic networks, is not
self-explanatory. Similarly, other approaches invoking
principles of optimal control theory have opened new
avenues for systems analysis in biology.

The cybernetic approach developed by Ramkrishna
& co-workers (Kompala et al. 1986; Varner & Ramk-
rishna 1998) is based on a simple principle: evolution
has programmed or conditioned biological systems to
optimally achieve physiological objectives. This
straightforward concept can be translated into a set of
optimal resource allocation problems that are solved at
every time-step in parallel with the model mass
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balances (basic metabolic network model). Thus, at
every instant in time, gene expression and enzyme
activity are rationalized as choice between sets of
competing alternatives, each with a relative cost and
benefit for the organism. Mathematically, this can be
translated into an instantaneous objective function.
The researchers in this area have defined several
postulates for specific pathway architectures, and the
result is a computationally tractable (i.e. analytical)
model structure. The potential shortcoming is a limited
handling of more flexible objective functions that are
commonly observed in biological systems (Savinell &
Palsson 1992a,b; Varma & Palsson 1993a,b; Bonarious
et al. 1997).

Instead of focusing on a single objective function,
mathematical models and experimental data can be
used to test hypotheses on optimality principles, given
a specific cellular function to be fulfilled. For instance,
extensions of FBA suggested that E. coli optimizes the
tradeoff between achieving high growth rates and
maintaining wild-type metabolic fluxes after gene
deletions (Segre et al. 2002). MPA showed that the
interplay between the metabolic network (the con-
trolled plant) and gene regulation (the controller) in
E. coli might be designed to achieve optimal tradeoffs
between long-term objectives, such as metabolic
flexibility, and short-term adjustment for metabolic
efficiency (Stelling et al. 2002). Optimal production
pipelines for biomass components, with fast responses
to environmental changes and minimal additional
efforts for enzyme synthesis, were predicted in detail
to employ wave-like gene expression programs, which
was later confirmed experimentally (Klipp et al. 2002;
Zaslaver et al. 2004). Hence, at least certain cellular
design principles can be revealed by evaluating
assumptions on cellular optimality principles.

Finally, without assuming optimality, we can ask
how functions in biological systems could be established
in principle. Among others, drawing from analogies
with engineered systems helps to understand more
general design principles in biology. From nonlinear
dynamics, for instance, it is well-known that functions
such as oscillators and switches require some source of
nonlinearity. Establishing such a function with biologi-
cal building blocks, thus, allows only for certain circuit
designs (Tyson et al. 2003; Kholodenko 2006). Similar
ideas can prove powerful at different levels of abstrac-
tion. For instance, highly structured ‘bow-ties’ with
multiple inputs, channelled through a core with
standardized components and protocols to multiple
outputs, could be the common organizational principles
to establish complex production systems in engineering
and biology (Csete & Doyle 2004). On the other hand,
El-Samad & colleagues studied the bacterial heat-shock
response, pointing out that the intertwined feedback
and feedforward loops present can be assigned individ-
ual functions parallel to those loops in designed control
circuits that have to yield fast responses in highly
fluctuating environments (El-Samad et al. 2005).
Notably, most of the examples discussed here involved
new developments in theory to address challenges
posed by biology; with respect to robustness as an
J. R. Soc. Interface (2006)
important functional constraint, we will discuss these
interfaces in more detail in §3.4.
3.3. Stochastic systems

Discrete stochastic modelling has recently gained
popularity owing to its relevance in biological processes
(McAdams & Arkin 1997; Arkin et al. 1998) that
achieve their functions with low copy numbers of some
key chemical species. Unlike the solutions to stochastic
differential equations, the states/outputs of discrete
stochastic systems evolve according to discrete jump
Markov processes, which naturally lead to a probabil-
istic description of the system dynamics. A Markov
process is a random process in which the future
probabilities are dependent only on the present value,
and not on past values. Such descriptions can find
relevance in systems biology when the magnitude of the
fluctuations in a stochastic system approaches the
levels of the actual variables (e.g. protein concen-
trations). In addition, there are qualitative phenomena
that are intrinsic to such descriptions that arise in
biological systems, as mentioned later.

The idea that stochastic phenomena are essential for
understanding complex transcriptional processes was
nicely illustrated by Arkin & co-workers in the analysis
of the phage l lysis–lysogeny decision circuit (Arkin
et al. 1998). The probabilistic division of the initially
homogeneous cell population into subpopulations
corresponding to the two possible fate outcomes was
shown to require stochastic description (and could not
be described with a continuous deterministic model). In
particular, the coexistence of the two subpopulations
necessitated such a formal characterization, and the
relative sensitivity of the subpopulations to model
parameters including external variables could be
analysed with the resulting models. In a more recent
work, Arkin & co-workers (Samoilov et al. 2005) have
shown another example of a biological behaviour that is
intrinsically stochastic in nature—namely the dynamic
switching behaviour in a class of biochemical reactions
(enzymatic futile cycles). In this case, the behaviour is
more subtle than the lysis–lysogeny switch described
earlier, where the existence of a bifurcation was at least
evident in the continuous differential equation model.
In the enzymatic futile cycle problem, the deterministic
model gives no indication of multiplicity, yet the
discrete stochastic model generates behaviours, includ-
ing switching as well as oscillations, that indicate
characteristics of bifurcation regimes. It is suggested
that such noise-induced mechanisms may be respon-
sible for control of switch and cycle behaviour in
regulatory networks.

In the discrete stochastic setting, the states and
outputs are random variables governed by a probability
density function, which follows a chemical master
equation (CME) (Gillespie 1976). The rate of reaction
no longer describes the amount of chemical species being
produced or consumed per unit time in a reaction, but
rather the likelihood of a certain reaction to occur.
Thoughanalytical solution of theCME is rarely available,
the density function can be constructed using the
stochastic simulation algorithm (SSA; Gillespie 1976).
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The discrete stochastic system of interest is
described by a CME (Gillespie 1977)

df ðx; tjx0; t0Þ
dt

Z
Xm

kZ1

akðxKnk ;pÞf ðxKnk ; tjx 0; t 0Þ

Kakðx;pÞf ðx; tjx 0; t 0Þ; ð3:3Þ

where f (x, tjx0, t0) is the conditional probability of the
system to be at state x and time t, given the initial
condition x0 at time t0. Here, ak denotes the propensity
functions, nk denotes the stoichiometric change in x
when the kth reaction occurs andm is the total number of
reactions. The propensity function ak(x, p)dt gives the
probability of the kth reaction to occur between time t
and tCdt, given the parameters p. As the state values
are typically unbounded, theCMEessentially consists of
an infinite number of ODEs, whose analytical solution is
rarely available except for a few simple problems. The
SSA provides an efficient numerical algorithm for
constructing the density function (Gillespie 1976). The
algorithm follows a Monte Carlo approach based on the
joint probability for the time to and the index of the next
reaction, which is a function of the propensities. The
SSA indirectly simulates the CME by generating many
realizations of the states (typically of the order of 104) at
specified time t, given the initial condition and model
parameters, from which the distribution f (x, tjx0, t0)
can be constructed.

This renewed interest in discrete stochastic
simulation has motivated a number of systems engin-
eering developments for the analysis of, and more
efficient computation of, stochastic models. These
include detailed analysis of the underlying assumptions
invoked in using the SSA, with an emphasis on the
distinction between separating fast and slow com-
ponents as opposed to fast and slow reactions (Hasel-
tine & Rawlings 2005). Gillespie has remained active in
this area, and is currently collaborating with Linda
Petzold to develop methods for accelerated tau-leaping
methods, as well as effective numerical methods for step
size selection (Cao et al. 2005, 2006). Kevrekidis &
co-workers have introduced so-called ‘equation-free’
modelling approaches, which avoid the need for
extensive Monte Carlo simulations. In the area of
analysis, methods for formal sensitivity analysis of
discrete stochastic equations enable the character-
ization of robustness properties of biological systems
(Gunawan et al. 2005).

There has been simultaneous advancement in
experimental methods for quantifying the charac-
teristics of biological noise (Elowitz et al. 2002; Swain
et al. 2002; Raser & O’Shea 2004) along with advances
in computing and simulation. A number of groups have
recently used dual reporter methods to track identical
genes in the same cell to measure the impact of noise on
expression. In the work of Elowitz & co-workers, the
separate effects of stochastic behaviour in the tran-
scriptional and translational processes in prokaryotes
(so-called ‘intrinsic’ noise) are distinguished from noise
effects arising from other cellular components that
influence the rate of gene expression (so-called
‘extrinsic’ noise; Elowitz et al. 2002; Swain et al.
J. R. Soc. Interface (2006)
2002). O’Shea analyses eukaryotic systems with both
cis- and trans-acting mutations to distinguish between
the noise effects that are intrinsic to transcription as
opposed to upstream processes that might ultimately
influence expression (Raser & O’Shea 2004).

The interface of discrete stochastic systems and
biology has clearly led to new insights into stochastic
phenomena in biological systems, and has also spurred
the development of more efficient computational
methods for stochastic simulation, as well as analysis
methods for these models. This interface will continue to
motivate developments in systems engineering, with
improved methods for imaging biological systems
that include the ability to resolve spatial behaviours.
Distributed stochastic models will require more
sophisticated algorithmic developments, particularly
as one builds models to truly address ‘systems-scale’
phenomena.
3.4. Robustness

In biology, as in engineering, robust performance refers
to the attainment of a particular behaviour or response
by a system in the presence of uncertainty. This
appears to be a ubiquitous property of biological
processes that are subject to constant uncertainty in
the form of stochastic phenomena (McAdams & Arkin
1999), fluctuating environment and genetic variation
(for a recent review on robustness in cellular functions,
see Stelling et al. 2004b). Biology has adapted a number
of approaches for coping with these sources of
uncertainty, which include:

— back-up systems (redundancy),
— disturbance attenuation through feedback and feed-

forward control,
— structuring of networked systems into semi-autono-

mous functional units (modularity) and
— reliable coordination of network elements through

hierarchies and protocols.

The robustness problems in systems biology have
only begun to yield, in recent years, formal quantitative
analyses, owing largely to their nonlinear (and non-
stationary) nature. As with engineering systems, robust
performance requires the precise specification of both a
performance metric and the type/size of uncertainty.
When both these elements are specified, it may be
possible to analyse biological systems with the engin-
eering tools, as will be shown in this paper. It is
important to note that the performance metric is often
difficult to be defined precisely in biology, as it is an
implicit element of an evolved entity.
3.4.1. Parametric sensitivity approaches to robustness
analysis. Parametric sensitivity has found widespread
application in the analysis and design of both scientific
and engineering systems (Varma et al. 1999). In the
field of systems biology, sensitivity analysis has been
employed in a number of applications, including
optimized design of synthetic circuits (Feng et al.
2004), design of experiment for optimal parameter
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Figure 4. Standard M–D diagram for robustness analysis.
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estimation (Zak et al. 2003; Gadkar et al. 2005) and
robustness analysis to provide insights into design
principles (Stelling et al. 2004a). The sensitivity
operator describes the change in the system’s outputs
owing to variations in the parameters that affect the
system dynamics. High sensitivity to a parameter
suggests that the system’s performance (e.g. growth,
temperature, etc.) can drastically change with small
variations in the parameter. Conversely, a small value
of the sensitivity suggests that the system is not
strongly affected by the parameter.

The classical parametric sensitivity analysis applies
to continuous deterministic systems, e.g. systems
described by differential (or differential-algebraic)
equations. The first order sensitivity coefficients are
given by Varma et al. (1999)

Si;j Z
vyiðtÞ
vpj

; ð3:4Þ

where yi denotes the ith output; t, the time; and pj, the
j th parameter. Equation (3.4) follows directly from the
definition of parametric sensitivity, and assumes
implicitly that the output yi is continuous with respect
to the parameter pj. Sensitivity analysis for stochastic
systems can be applied to problems in which the
stochastic effects enter as additive Gaussian white noise
(e.g. Langevin-type problems; Costanza & Seinfeld
1981; Dacol & Rabitz 1984 or as uncertainty in the
parameters Feng et al. 2004). Recent extensions allow
the treatment of discrete stochastic systems (see §3.3).

Using the sensitivity operator, one can computer
the FIM (§3.1.3), thus indicating robust elements
(large variances) and fragile elements (tight var-
iances). Corresponding to such a characterization are
parametric sensitivities, which are high for fragile
elements and low for robust elements. Previous work
has shown the utility of this approach for analysing
robustness in complex biophysical networks (Stelling
et al. 2004a). The FIM allows flexibility in choosing
the appropriate criterion for optimality depending on
the goal of both robustness and model identification.
D-optimal design aims to maximize the degree of
informativeness in data by maximizing the determi-
nant of the FIM, which corresponds to the area/
volume of an information hyperellipsoid (Emery &
Nenarokomov 1998). On the other hand, A-optimal
design is equivalent to reducing the hyperellipsoid of
uncertainty in parameter estimates.

One limitation to parametric sensitivity for the
analysis of biological systems is the inherently non-
linear character of such systems, while the classical
sensitivity methods yield linear (i.e. local) results. One
can improve upon this by performing analyses in a
neighbourhood of operating points, thus extending the
region of validity of the method.
3.4.2. Systems engineering approaches to robustness. In
control engineering, a standard tool for robustness
analysis is the structured singular value (SSV), which
allows to determine whether a particular dynamical
system, subject to a specified (structured) uncertainty,
is able to remain stable or to achieve a particular
performance metric (e.g. Doyle 1982; Skogestad &
J. R. Soc. Interface (2006)
Postlethwaite 1996; Zhou 1998). The two problems are
known as robust stability and robust performance,
respectively, and there are standard software packages
available to facilitate this computation (e.g. Balas et al.
1995). The key idea is to transform the perturbed
system into a new closed-loop operator, and then to test
the stability of the operator. The basic idea is
illustrated in figure 4, where the M operator denotes a
nominal process system, and the D operator denotes the
uncertainty in the system. Stability of the depicted
system is equivalent to robust stability of the original
problem, and if a feedback loop between suitably
transformed input and output signals is closed, then
an operator whose stability characteristics coincide
with the attainment of robust performance in the
original problem is obtained.

There are straightforward computational algorithms
for determining the solution to the corresponding linear
time-invariant stability problem in figure 4, for
example, MATLAB’s m-Analysis and Synthesis Tool-
box (Balas et al. 1995). Note, however, that extensions
for time-varying and nonlinear uncertainty (Doyle et al.
1989) are necessary before applying the SSV analysis on
nonlinear systems. The SSV-based methods have begun
to find application in biological systems, with recent
papers on ‘robustness’ properties of models (Ma &
Iglesias 2002) and robust performance analysis of a
signal transduction cascade (Doyle & Stelling 2005).
One of the more important messages from the
engineering robust control literature is the notion of
‘performance’, which requires a precise description in
order to calculate the so-called ‘robust performance’.
This idea has important consequences in biology, as
robustness in one performance attribute may be quite
different from the behaviour of another attribute
(Bagheri et al.). The unique attributes of problems
encountered in biology are also motivating the develop-
ment of new algorithms for formal theoretic analysis
(Sontag 2004).

Although the aforementioned engineering methods
outline a formal framework for robustness analysis,
with potential application for simple biological systems,
there are intrinsic scaling problems with such methods.
In particular, in the case of larger and more complex
nonlinear systems, computational tractability of the
corresponding analysis problem is a limiting concern, as
is the fact that the methods are inherently conservative
for nonlinear systems. This suggests that scalability of
methods for robustness analysis is a major opportunity
for future research.
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3.4.3. Robust yet fragile systems. There is a coexistence
of fragility along with robustness in complex networked
systems. This property is observed in a wide variety of
systems that include forest fires, the Internet, metabolic
networks and protein regulatory networks (Carlson &
Doyle 1999, 2000, 2002). A nice treatment of the
theoretical issues and algorithms in analysing robust-
ness in biological networks is provided in the review
paper (El-Samad et al. 2006). The concept of ‘Highly
Optimized Tolerance’ has emerged to describe the
optimal design of such networks in which robustness is
maintained across a wide range of expected pertur-
bations, while fragility (often catastrophic) is observed
for the very rare and unlikely perturbations. This is
accomplished through hierarchies of regulation that are
built to withstand some expected class of disturbances.
As an engineering system ‘evolves’ to incorporate
ancillary layers of stabilizing control, these layers
often expose the system to novel points of fragility,
thus leading to so-called ‘spiralling complexity’.

In simple (linear) engineering systems, such tradeoffs
are analysed using theory such as the Bode sensitivity
integral to calculate the ‘conservation’ of robustness
(captured by the sensitivity operator) across the
frequency domain. This reveals that reduced sensitivity
in some frequency range is exactly balanced by a
heightened sensitivity in another range (i.e. ‘robust yet
fragile’; Csete & Doyle 2004; Doyle & Csete 2005). The
significance of the Bode sensitivity integral for biologi-
cal (nonlinear) dynamics needs to be clarified, as the
result is traditionally applied to linear systems. Yet it is
widely understood that biological networks exhibit the
same robust yet fragile tradeoffs. As an example,
consider the exquisite timekeeping of circadian rhythm
in neuronal cells. These clocks are well known to be
robust to large fluctuations in temperature (Ruoff et al.
2005), and yet recent evidence has shown that time-
keeping in cellular networks is fragile to the blocking of
key receptors for intracellular synchronization (Aton
et al. 2005). The former is an expected disturbance for
which the system is designed to be robust, while the
latter represents a highly unusual and unexpected
disturbance for which the system is ill-equipped to
handle. Furthermore, quantitative studies in systems
such as the Drosophila circadian gene network have
revealed similar tradeoffs between global (core cellular
machinery) and local (circadian specific) functions
(Stelling et al. 2004a).
3.4.4. Two biological examples of robustness. The signal
transduction system that mediates chemotaxis exhibits
a type of adaptation in which the response to a
persistent stimulus is reset to the pre-stimulus value,
thereby enabling an enhanced sensitivity. For a number
of years, researchers speculated a mechanistic expla-
nation for this robust behaviour, and two hypotheses
had emerged: (i) precise fine-tuning of several par-
ameters to yield a consistent (robust) response under
varied conditions, and (ii) structural organization that
yielded this robust behaviour intrinsically (Barkai &
Leibler 1997). The assumptions in this work require a
specific mechanism of fine-tuning of the network
J. R. Soc. Interface (2006)
structure so as to produce integral feedback, which is
sufficient to make ‘adaptation’ perfectly robust to
all remaining network parameters. John Doyle &
co-workers at Caltech were able to use the internal
model principle to demonstrate that the regulatory
system was exploiting integral feedback control to
achieve the robust level of adaptation exhibited in
chemotaxis, and more generally in systems with such
behaviour (Yi et al. 2000; Lander 2004). In other words,
they showed that integral control is a necessary
condition for robust perfect adaptation, and if the
mechanism described in Barkai & Leibler (1997) is
incorrect in some aspects, then some other fine-tuned
structure must be present. This understanding suggests
that many seemingly complex biological networks may
employ redundancy and other structural motifs or
modules (enumerated in an earlier section) to achieve
relatively simple overall system behaviour (Lauffen-
burger 2000).

The gene network underlying circadian rhythm in
flies and mammals has been the focus of detailed
analysis in recent years (Goldbeter 1996; Reppert 2000;
Winfree 2001; Young & Kay 2001; Goldbeter 2002).
The biological details are coming into sharper focus, as
new experiments yield clues to the detailed (and
somewhat overlapping) molecular circuitry of both
flies and mammals (Panda et al. 2002). Building upon
the evolving biological knowledge, there have been
many postulated mathematical models (Leloup &
Goldbeter 1998; Scheper et al. 1999; Tyson et al. 1999;
Lema et al. 2000; Smolen et al. 2001) that range in
complexity from simple two-state oscillators to more
biophysically detailed transcriptional feedback
schemes. As with adaptation in chemotaxis, robustness
is the dominant characteristic often associated with the
circadian rhythm regulatory loop (e.g. Vilar et al.
2002), although formal systems-theoretic treatment of
this behaviour is a notable absence among the
published reports. In recent work, we have shown
that systems engineering tools, notably robustness
analysis, shed light on the underlying design principles
in the gene regulatory architectures (Stelling et al.
2004a). In particular, the organization of fragility and
robustness between global cellular components and
circadian-specific components enables precision in
circadian clock function.
4. SUMMARY

Biological regulation has been reviewed and analysed
from the perspective of systems engineering. Math-
ematical modelling approaches, both empirical and
fundamental, have yielded descriptions of many
complex systems, and systems-theoretic tools have
been employed to provide hypotheses for biological
behaviour, such as system robustness. Open challenges
were described in the areas of network identification,
constraints and optimality, stochastic systems model-
ling and robustness analysis. Synthetic biology rep-
resents one of the more promising future directions in
this field (Arkin 2001; Benner & Sismour 2005), which
requires a fusion of methods from both engineering and
molecular biology in the design of biological circuits in
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order to achieve the aims at the interface of these
disciplines.
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