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1Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road,
Oxford OX1 3PS, UK

2Department of Aerospace, Power and Sensors, University of Cranfield (RMCS Shrivenham),
Swindon SN6 8LA, UK

Previous studies of insect flight control have been statistical in approach, simply correlating
wing kinematics with body kinematics or force production. Kinematics and forces are linked
by Newtonian mechanics, so adopting a dynamics-based approach is necessary if we are to
place the study of insect flight on its proper physical footing. Here we develop semi-empirical
models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. We use
instantaneous force–moment measurements from individual locusts to parametrize the
nonlinear rigid body equations of motion. Since the instantaneous forces are approximately
periodic, we represent them using Fourier series, which are embedded in the equations of
motion to give a nonlinear time-periodic (NLTP) model. This is a proper mathematical
generalization of an earlier linear-time invariant (LTI) model of locust flight dynamics,
developed using previously published time-averaged versions of the instantaneous force
recordings. We perform various numerical simulations, within the fitted range of the model,
and across the range of body angles used by free-flying locusts, to explore the likely behaviour
of the locusts upon release from the tether. Solutions of the NLTP models are compared with
solutions of the nonlinear time-invariant (NLTI) models to which they reduce when the
periodic terms are dropped. Both sets of models are unstable and therefore fail to explain
locust flight stability fully. Nevertheless, whereas the measured forces include statistically
significant harmonic content up to about the eighth harmonic, the simulated flight
trajectories display no harmonic content above the fundamental forcing frequency. Hence,
manoeuvre control in locusts will not directly reflect subtle changes in the higher harmonics
of the wing beat, but must operate on a coarser time-scale. A state-space analysis of the
NLTPmodels reveals orbital trajectories that are impossible to capture in the LTI and NLTI
models, and inspires the hypothesis that asymptotic orbital stability is the proper definition
of stability in flapping flight. Manoeuvre control on the scale of more than one wing beat
would then consist in exciting transients from one asymptotically stable orbit to another. We
summarize these hypotheses by proposing a limit-cycle analogy for flapping flight control and
suggest experiments for verification of the limit-cycle control analogy hypothesis.
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1. INTRODUCTION

We can now claim a reasonable descriptive under-
standing of how insects support themselves in the air.
This has been facilitated in large part by the long-
standing and enthusiastic adoption of techniques and
methodologies first developed in the physical sciences,
from flow visualization (e.g. Magnan 1934) to compu-
tational fluid dynamics (Smith et al. 1996; Liu et al.
1998). In light of this enthusiasm, it is all the more
remarkable that the rich legacy of a century of research
on aircraft flight stability and control has scarcely been
orrespondence (graham.taylor@zoo.ox.ac.uk).
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considered in the study of insect flight control (Taylor
2001; Taylor & Thomas 2003). Rather than paralleling
the aircraft literature in using an approach founded on
dynamics, the insect flight-control literature has gone
its own way in adopting a largely kinematics-based
approach. Whereas a dynamics approach directly links
the motions of a system with the forces that produce
them, a kinematics approach treats motions in isolation
from the forces that produce them. This means that
a kinematics approach is necessarily correlative: we
know how body kinematics correlate with wing
kinematics (Wakeling & Ellington 1997), we know
how aerodynamic force production correlates with wing
kinematics (Lehmann & Dickinson 1998) and we even
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know how wing and body kinematics are correlated
with the firing of individual flight muscles in free flight
(Kutsch et al. 2003)—but our understanding of the
motions nevertheless rests at the level of statistical
correlation, rather than at the level of a physical model
of the underlying mechanics. By providing this func-
tional link between forces and motions, a flight
dynamics approach provides a new, physically proper,
paradigm for understanding insect flight control. The
flight dynamics approach also offers a host of new
techniques for analysing experimental data. Here, we
use a flight dynamics model to predict body kinematics
from empirical measurements of instantaneous force
production.

Placing experimental studies of insect flight control
on a flight dynamics footing is ultimately essential, as it
is otherwise impossible to examine how the system will
respond to control inputs and external disturbances.
This is important, because the end effect of a control
input may be quite different from its initial effect. For
example, whereas the initial effect of increasing the
throttle on an aircraft is a straightforward increase in
flight speed, the consequent increase in lift can cause
the aircraft to climb until it eventually settles (via a
lightly damped oscillation in speed and pitch) to a
steeper flight path in which the flight speed is
unchanged from its initial value (Etkin & Reid 1996).
Such counterintuitive effects as these call for caution in
predicting the function of specific control inputs with-
out a proper model of the flight dynamics. We therefore
think it completely necessary—and, indeed, completely
desirable—that experimental data on insect flight
control should be analysed with the aid of equations
of motion, which lie at the heart of any physically
realistic analysis of flight dynamics. Equations of
motion are the appropriate way to analyse experimen-
tal data on insect flight control when questions of
causation relating to Newtonian mechanics are being
asked, just as statistical techniques are the appropriate
way to analyse experimental data on insect flight
control when questions of correlation are being asked.

Taylor & Thomas (2003) provided the first flight
dynamics analysis of experimental data on insect flight
control, using a classical linearized framework bor-
rowed directly from the aircraft flight literature to
analyse force measurements from tethered locusts.
Sun & Xiong (2005) subsequently used the same
framework to model the flight dynamics of hovering
bumblebees, using a computational fluid dynamics
approach to model the aerodynamic forces and
moments. In both cases the models failed to explain
the insects’ flight stability fully, but a key limitation
was that the models were time-invariant which meant
that the periodic wing beat forces had to be time-
averaged before being used in the analysis. Here, we
present the previously unpublished instantaneous
force–moment data from the experiments by Taylor &
Thomas (2003), and analyse them using equations
of motion with periodic coefficients. Having measured
directly how the instantaneous forces on individual
tethered locusts vary with changes in flight condition,
we use the equations of motion to predict how the
combined passive and active responses, which contribute
J. R. Soc. Interface (2005)
to the total measured response, determine how the
individual insect will respond to disturbance. The
motivations for this analysis are twofold: firstly, by
comparing the nonlinear models we develop with the
earlier linear models of Taylor & Thomas (2003) for
the same individual locusts, we are able to assess the
importance of incorporating periodicity and non-
linearity into our models of insect flight dynamics;
secondly, because the framework we develop is a novel
one, driven by the periodic character of the new
experimental data we present, we provide the most
complete dynamic analysis possible with the available
data. The framework we develop here is as complete as
we think necessary to make major progress in analysing
insect flight dynamics, and by also presenting the
mathematical tools for analysis, we hope to inspire a
new generation of experimental analyses of insect flight
control.

We begin by presenting the Newton–Euler rigid body
equations of motion on which the analysis of the
experimental data is founded (§2). We then describe
briefly how the instantaneous force measurements were
collected and give the rationale behind the experiments
(§3), before analysing these experimental data and using
them to formulate a series of empirical models of force
production (§4). By embedding the empirical models of
force production in the equations of motion, we are then
able to develop a semi-empirical model of the flight
dynamics of each locust, which we analyse numerically
(§5). Finally, we discuss what the models can tell us
about locust flight control, before going on to present
some new hypotheses about flapping flight control and
suggestions for experiments to test them, inspired by the
modelling approach we develop (§6) (table 1).
2. EQUATIONS OF MOTION

We will assume, for the purposes of this analysis, that a
locust can be treated as a bilaterally symmetric body.
Pure longitudinal motions are then possible in which all
of the forces, moments and motions operate parallel to
the plane of symmetry. If we furthermore treat the
locust as a single rigid body (which in effect means that
we assume the centre of gravity to be fixed and the
moment of inertia to be constant), then the Newton–
Euler equations of motion for symmetric flight are

_uZKwqC
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m
Kg sin q; (2.1)

_w Z uqC
Z

m
Cg cos q; (2.2)
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M

Iyy
; (2.3)

_qZ q; (2.4)

where (X, Z, M ) are the force components acting along
the x- and z-axes, and the pitching moment acting about
the transverse axis, respectively (see Taylor & Thomas
2003). The four state variables (u, w, q, q) are,
respectively, the components of translational velocity
along the x- and z-axes, the angular velocity about
the transverse axis and the pitch attitude of the body
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Figure 1. Definition of the state variables u, w, q and q. Each of
the variables is signed positive in the direction shown. The
body axes are centred on the centre of mass and are aligned
with the x-axis, parallel to the ventral surface of the plastron.

Table 1. List of symbols.

Symbol Explanation

an Fourier series cosine coefficient
A constant system matrix in LTI model
bn Fourier series sine coefficient
cn Fourier sine series coefficient
g gravitational acceleration
h number of harmonics in Fourier series
Iyy pitching moment of inertia about y-axis
m body mass
M pitching moment about y-axis
n counting index
p vector giving the coordinates of a point in state

space
p p-value in statistical tests
P vector of system parameters
P(t) periodic function

P̂ðtÞ discrete periodic function

q rotational velocity about y-axis (pitch rate)
t vector giving tangent direction to a curve in

state space
t time
T wing beat period
u translational velocity component in x-direction
U wind tunnel speed
Uref reference tunnel speed (3.50 m sK1)
w velocity in z-direction
x state vector
X vector of total forces due to locust
Xa(t) vector function of change in instantaneous

forces with a

Xref(t) vector function of instantaneous forces in
reference condition

XU(t) vector function of change in instantaneous
forces with U

X force component in x-direction
Z force component in z-direction
a body angle of x-axis to oncoming flow
aref reference body angle (78)
fn phase angle
F(t) phase function
F phase vector
q pitch attitude
u angular frequency of wing beat

Common subscripts and superscripts
�e value of a system state at quasi-static equili-

brium
i counting index
n counting index
q partial derivative with respect to q
Ref variable or function under reference conditions
T vector transposition
u partial derivative with respect to u
U partial derivative with respect to U
w partial derivative with respect to w
0 value of a state variable at time tZ0
a partial derivative with respect to a

overbar quasi-static value of a term
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with respect to the horizontal (figure 1). Body mass m,
pitching moment of inertia Iyy, and gravitational
acceleration gZ9.8066 m sK2 are all assumed to be
constants. Note that in this formulation, the flapping of
the wings can manifest itself only in periodicity of the
forces and moments. This means that the model takes
J. R. Soc. Interface (2005)
account of wing inertial and aerodynamic forces, but
does not account for changes in the moment of inertia
and centre of gravity resulting from the wings’ flapping.
This is not unreasonable, since the wings comprise less
than 4% of the total mass of the insect, and is
unavoidable here, because it was not possible to collect
data on wing kinematics with the experimental setup
used. Equations (2.1)–(2.4) are derived theoretically,
but they are so general as to be meaningless until they
are parametrized empirically. We therefore term the
models we develop ‘semi-empirical’ to indicate that
while the overall form of the equations is derived
theoretically, their parameters are measured
empirically.

This deceptively simple set of four coupled nonlinear
ordinary differential equations ((2.1)–(2.4)) is not
amenable to analytical solution, and conceals a host
of complexities since the three force–moment com-
ponents X, Z and M are in general functionals of the
state variables u, w and q (Tobak & Schiff 1981), and
may also depend explicitly on time (in which case the
system is said to be non-autonomous, in contradistinc-
tion to autonomous systems, which are time-invariant).
In Taylor & Thomas (2003), equations (2.1)–(2.4) were
simplified to express the flight dynamics of desert
locusts Schistocerca gregaria (Forskål) using the linear
time-invariant (LTI) model:

_x ZAx; (2.5)

where the state vector xZ ½du dw dq dq�T comprised
small deviations from the equilibrium values of the
state variables (the superscript ‘T’ denotes vector
transposition). The constant 4!4 system matrix A
was given by

AZ

Xu=m Xw=m Xq=mKw�e Kg cos q�e

Zu=m Zw=m Zq=mCu�e Kg sin q�e

Mu=Iyy Mw=Iyy Mq=Iyy 0

0 0 1 0

2
66664

3
77775
;

(2.5a)

where the subscript ‘�e’ denotes a state of the system at
equilibrium and where (Xi, Zi, Mi), i2{u, w, q} are
partial derivatives of the time-averaged forces and
moments with respect to the state variables, and are
therefore time-invariant. The derivatives express how
the time-averaged forces and moments vary with
changes in the state variables and, thus, describe
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the combined effects of passive aerodynamic reactions
and active control responses. Owing to experimental
constraints, the q-derivatives were not measured so
they were dropped from the model. Since the deriva-
tives are constants, the LTI model ignores the strong
oscillatory character of the flight forces and the possible
influence this may have on the longitudinal flight
dynamics. The LTI model is also unable to capture
possible nonlinear effects in the flight dynamics over the
range of values of the state variables to which the linear
derivatives were fitted.

Since instantaneous measurements were obtained for
XZX(t), ZZZ(t) and MZM(t), it is possible to
improve upon the LTI model analysed by Taylor &
Thomas (2003), by representing the forces and
moments in equations (2.1)–(2.4) using time-variant
functions instead of time-invariant ones. Given that the
instantaneous forces have strong oscillatory character,
it is natural to represent them as periodic functions of
the form X(t)ZX(tCT ), Z(t)ZZ(tCT ), M(t)Z
M(tCT ) where T is the wing beat period. When
these periodic functions are embedded in equations
(2.1)–(2.4), the result is a nonlinear time-periodic
(NLTP) model, which is the most general mathematical
representation of the data available. These NLTP
models are proper mathematical generalizations of the
linear-time invariant (LTI) models of Taylor & Thomas
(2003) and a corresponding set of nonlinear time-
invariant (NLTI) models in which the full nonlinear
equations of motion (equations (2.1)–(2.4)) are used
with time-invariant functions. By ‘proper mathema-
tical generalizations’, we mean that the NLTP models
reduce to the NLTI and LTI models on time averaging
and linearization, respectively. Naturally, the NLTP
models capture more of the true dynamical behaviour of
locusts without these reductions. We therefore compare
the dynamics of the NLTP and NLTI models developed
here to assess how periodic forcing and periodicity in
the responses affect locust flight dynamics.
3. EXPERIMENTAL METHODS

This paper analyses previously unpublished instan-
taneous force–moment measurements collected in the
experiments described by Taylor & Thomas (2003; for
full detail of experimental methods). In brief, three
desert locusts, S. gregaria, were flown in a wind tunnel,
rigidly tethered by the plastron of the pterothorax to a
six-component force–moment balance, under dim over-
head lighting supplied by a red-filtered slide projector
with a tungsten lamp. It was not possible to record the
locusts’ wing kinematics under these lighting con-
ditions. The body angle (a) of the insects, defined as
the angle between the plastron and the oncoming flow,
was first adjusted in 18 increments from 0 to 148, in an
order designed to ensure complete orthogonality
between body angle and time (we hereafter refer to
these measurements as the ‘angle series’). Note that
since the flow of the tunnel was horizontal, body angle
a, with respect to the relative flow, is equivalent to
pitch attitude q, with respect to the horizontal in this
setup, although this is not generally true for free
flight. The forces were recorded for 15 s at a sampling
J. R. Soc. Interface (2005)
frequency of 10 kHz at each body angle, at the reference
wind tunnel speed UrefZ3.50 m sK1. Immediately
following each recording, the locust was returned to
its reference body angle (arefZ78), at which a
reference force recording was made to quantify
temporal variation in flight performance. Immediately
following the angle series measurements, the locust
was fixed at aref and the speed of the wind tunnel
adjusted to seven different speeds within the range
2.00 m sK1%U%5.50 m sK1, alternating speeds above
and below Uref where possible (we hereafter refer to
these measurements as the ‘speed series’). It was not
possible to achieve complete orthogonality of speed and
time because it was not always practical to vary tunnel
speed symmetrically about Uref during the speed-series
measurements. The locusts were weighed before and
after each experiment, and were frozen immediately
after at K40 8C to allow them to be sectioned
longitudinally and then weighed to determine the
pitching moment of inertia.

Although the locusts were flying tethered in a wind
tunnel, it is important to note that they were
continuously exposed to all of the sensory stimuli
known to be necessary for stable free flight. Image
formation by the compound eyes is certainly important
in optomotor flight control (Taylor 1981), but cannot
be necessary for stable flight since locusts are able to fly
stably in conditions of almost complete darkness
(Weis-Fogh 1956), in which suitable images are
unlikely to be formed. The use of dim overhead lighting
in our experiments deliberately minimizes optomotor
stimuli, but provides the requisite dorsoventral vari-
ation in light intensity for the ‘dorsal light reaction’ of
the compound eyes and ocelli, which locusts are known
to stabilize themselves in rotations about the roll axis
(Goodman 1965; Taylor 1981). The only mechanical
stimuli which locusts are known to sense and use in
flight control are wing twist (sensed by campaniform
sensillae on the wings; Gettrup 1966), airspeed (sensed
by trichoid sensillae on the frontal region of the head
and also by the antennae; Camhi 1969a,b; Gewecke
1975), sideslip angle (sensed by trichoid sensillae on the
frontal region of the head; Weis-Fogh 1949; Camhi
1969a,b, 1970; Gewecke & Philippen 1978) and rate of
change of the sideslip angle (also sensed by the trichoid
sensillae; Camhi 1970). The trichoid sensillae are also
known to sense acceleration of the relative wind, but to
date this appears to have been measured only in
relation to the onset of wind under initially still
conditions (Camhi 1969b). There is some indirect
physiological evidence to suggest that locusts may be
sensitive to pitch rate (Möhl & Zarnack 1977), but it is
not clear whether this is necessary for stable flight.
Hence, since sideslip angle and rate of change thereof
are asymmetric stimuli not involved in symmetric flight
control, the locusts were presented with all of the
mechanical and visual stimuli currently known to be
essential for stable symmetric free flight, and further-
more were tested for their response to changes in each of
these stimuli. While the locusts were indeed tethered, it
ought to be possible to derive a model sufficient to
explain the stability of free-flying locusts (see §6.2).
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Consistent with our aim of investigating the
importance of incorporating periodicity and nonlinear-
ity into our models of insect flight dynamics, we have
chosen to analyse only data from the same three locusts
analysed previously by Taylor & Thomas (2003) in
order to maximize comparability. The three individual
locusts are identified by the qualifiers ‘R’, ‘G’ and ‘B’
as in Taylor & Thomas (2003), where morphological
data for the three individuals can also be found. All
two-dimensional graphs in this paper follow the same
convention of using red, green and blue lines to denote
locusts R, G and B, respectively. The small number of
individuals was enforced principally by the difficulty
involved in getting an individual locust to fly consist-
ently and without stopping for the 2–3 h needed to
make a complete set of measurements; the three locusts
from which we obtained the data presented here are a
small subset of the total number of individuals with
which we attempted to make recordings. This rigour in
rejecting incomplete measurement sets is consistent
with the nature of the analysis. Since the measured
quantities of force, moment, body mass and moment of
inertia are expected to scale allometrically, it is
inappropriate to combine or average data from
different individuals for dynamical analysis unless
enough individuals can be sampled to control for this
allometry. With current methodology, the experiments
are too time-consuming for this to be practical.
Subsequent averaging of the results of the dynamic
analysis across individuals would also not be very
informative, because the results are unique flight
trajectories simulated for an individual locust and
given initial conditions on the basis of the forces it
generated in tethered flight. The single most important
sampling issue therefore relates to the quality and
reliability of the measurements for each individual
locust. Our consequent emphasis upon quality of
measurement and adequacy of sampling at the level
of the individual is reflected in both the experimental
and analytical design of this study.
4. RESULTS: EMPIRICAL MODELS OF FORCE
PRODUCTION

4.1. Instantaneous force recordings

The instantaneous force–moment data we present here
are among the most comprehensive force–moment
recordings collected experimentally from insects, and
are the first to measure the systematic effects of flight
attitude and velocity. Naturally, because we have
measured the changes in the flight forces directly, the
systematic effects we measure lump passive aerody-
namic effects together with the effects of active changes
in the wing kinematics. We make no further attempt to
distinguish the two here, and instead treat the causes
of the changes in the measured forces as a sort of
‘black box’ (Taylor & Thomas 2003). In addition to the
pivotal role played by these force measurements in the
present flight dynamics analysis, we hope that biol-
ogists will also find them of use in validating theoretical
models of force production in flapping flight. With both
ends in mind, we begin by developing empirical models
J. R. Soc. Interface (2005)
of force production fitted directly to the experimental
data. The original data comprise some 108 data points
and therefore have to be condensed in this way for
presentation and analysis. All of the following analysis
was performed using custom-written programmes in
MATLAB 6.5 (The MathWorks, Inc., 2002).
4.2. Fourier series representations
of original force traces

Although we measured all six components of force and
moment, further analysis of the force traces considers
only the longitudinal forces (X, Z ) and moments (M )
needed to parametrize the equations of longitudinal
motion empirically. In contrast to the analysis pre-
sented in Taylor & Thomas (2003), it proved more
practical to resolve the X and Z forces in the force
balance axes (i.e. with the x-axis horizontal when aZ0)
rather than in stability axes (i.e. with the x-axis parallel
to the equilibrium line of flight). No attempt was made
to resolve the forces into lift and thrust–drag com-
ponents, because it was not possible to separate out the
wing inertial and aerodynamic contributions to the
total instantaneous force. Each 15 s force recording was
then trimmed in the recording programme CHART 3.6
(AD Instruments, 1998) to contain an integer number
of complete stroke cycles (ca 250). Various corrections
for measurement error and temporal variation in flight
performance had already been made to the time-
averaged data presented by Taylor & Thomas (2003),
but a more involved error analysis was required to deal
with the dynamic force–moment data presented here.
These error corrections play an important role in
ensuring the quality of the data, and are described
fully in the Electronic Appendix.

The traces are strongly periodic, so any non-
harmonic spectral content may be treated as noise
(subject to the caveat that, as with almost any finite
length signal, the main spectral peaks show some
smearing). The most natural mode of analysis is
therefore to fit the first h harmonics of a Fourier series
of the form

PðtÞZ
Xh
nZ0

ðan cos nutCbn sin nutÞ; (4.1)

where P(t) is a periodic function, u is the angular
frequency of the wing beat and an and bn are real
coefficients. This has the effect of removing any non-
harmonic content due, for example, to wind tunnel
turbulence. Unfortunately, u varied slightly through
each 15 s recording, causing phase shifts that resulted in
an unacceptable smoothing when u was treated as
constant, as in equation (4.1). Although variation in u

was trivial between wingbeats, the cumulative phase
shift over a 15 s recording could be quite large.
Conceptually, this can be dealt with by replacing the
linear function ut with a nonlinear phase function F(t)
that takes account of variations in u. In practice,
because the data are discrete, the continuous function
F(t) was replaced by a phase vector F, unique to each
recording, and generated by assigning a phase angle to
every point in the discrete time domain.



202 Locust flight dynamics G. K. Taylor and R. Żbikowski
We began by identifying the approximate start and
endpoints of successive wing beats by noting when the
Z-component crossed its mean datum line with
negative slope, having first down-sampled the data
at 0.5 kHz to remove spurious mean-crossings due to
higher spectral content. We then reverted to the
original data sampled at 10 kHz and used an
exhaustive search procedure to optimize sequentially
the exact start and endpoints of successive wing beats
within the 0.002 s window set by the resolution of the
mean-crossing analysis, minimizing the absolute
difference between the first and last Z-components
of each successive wing beat. We then generated F as
a piecewise linear series, varying linearly from 0 to 2p
over the course of each wing beat. Having generated
F for each recording, we next used MATLAB’s general
linear model (GLM) ‘glmfit’ function (Model I
regression, e.g. Sokal & Rohlf 1995) to fit a model
of the form

P̂ðtÞZ a0 C
Xh
nZ1

ðan cos nFCbn sin nFÞ; (4.2)

where P̂ðtÞ is discrete. Practically, this amounts to
fitting a separate additive GLM for each force–
moment component, with predictor variables cos nF
and sin nF where nZ1.8. Using a GLM offers the
best possible fit to the data, in the sense of
minimizing the residual sum of squares, and has the
additional advantage of automatically providing
p-values and confidence limits for the Fourier
coefficients. Care is needed in the interpretation of
the p-values because the an and bn coefficients
describe the same nth harmonic; therefore, the
harmonic should be considered significant if either
coefficient is significant, irrespective of the signi-
ficance of the other. For example, if the nth harmonic
of a Fourier series is an even function of t—i.e. if
P(t)ZP(Kt)—then only the cosine coefficient an will
be significant. We initially fitted models with hZ10
harmonics but since usually only the first seven,
or sometimes eight, harmonics were significant
(p!0.05), we subsequently fitted a new set of models
with only hZ8 harmonics, thereby condensing each
force–moment component of each 15 s recording into
a Fourier series with eight harmonics.
4.3. Alignment of Fourier series phase angles

Since the phase vectorsF were generated separately for
each recording, the phasing of the Fourier series
coefficients is exactly consistent between the various
force–moment components of a single recording, but
only approximately so between recordings. In the
absence of any external reference, the phase of the first
harmonic of a Fourier series is arbitrary, and we
therefore aligned the overall phase of the various Fourier
series by adjusting their phase so that their respective
first Z-harmonic had zero phase angle. To do this, we
first converted each series to the form

P̂ðtÞZ
X8
nZ0

cn sinðnFCfnÞ; (4.3)
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where the phase angles fn are in radians and the
coefficients cn are real numbers. We then subtracted f1

for the Z-component from all of the fn for each force–
moment component of each recording, so that the
phasing of every Fourier series was consistent with
that of every other.
4.4. Correction of zeroth coefficients

The locusts exhibited large temporal variation in their
quasi-static force production through the course of the
experiments. This was controlled for in the previous
LTI analysis by pairing each recording made at a
perturbed body angle with a recording made under
reference conditions immediately after, and using this
to correct for temporal variation in quasi-static force
production (Taylor & Thomas 2003). This method of
correction was found to be highly effective, so we
essentially used the same method again here. The
zeroth coefficients of the Fourier series correspond to
the mean level of force production, and we therefore
corrected each c0 term corresponding to a perturbed
body angle by subtracting the c0 term of the respective
paired reference and adding the mean of all the c0
reference terms. Unfortunately, no such correction was
possible for the recordings in which speed was varied.
4.5. Reduction of multiple reference recordings
to single Fourier series

In the previous LTI analysis, the multiple reference
recordings were simply averaged for each locust to give
a single mean level of force production under the
reference conditions (Taylor & Thomas 2003). Averag-
ing the dynamic forces in the time domain results in an
unacceptable smoothing of the data, but averaging in
the frequency domain is equally problematic in the
issues it introduces in averaging the phase angles. To
overcome these problems, we fitted a single Fourier
series to all of the reference recordings, having used the
phase angle adjustments of the previous section to align
the phase vectors F of the various recordings. To do
this, we simply subtracted f1 for the Z-component from
the respective phase vector F, thereby aligning all of
the reference F with the first Z-harmonic. We then
concatenated each of the F, Z, X and M vectors for the
various reference recordings, and used a GLM to fit a
single Fourier series to the concatenated data for each
of the force–moment components.
4.6. Periodic models of force production

We used the Fourier series fitted in §§4.2–4.5 to
reconstruct the instantaneous forces through a single
wing beat for each flight condition. We fitted 500 points
per cycle, which equates approximately with the
original sampling frequency. The resulting time domain
reconstructions are plotted in figures 2–7 as functions of
wing beat phase to show the effects of speed and body
angle on each instantaneous force–moment component.
These reconstructed force traces not only condense the
original recordings into a manageable form, but also
offer as clean a signal as possible for fitting the



40

20

0

– 20

10
5

0

2 p
p

X
 (

10
–3

 N
)

a b (deg) f (rad)

40

20

0

– 20

10
5

0

2 p
p

X
 (

10
–3

 N
)

a b (deg) f (rad)

40

20

0

– 20
10

5
0

2 p
p

X
 (

10
–3

 N
)

a b (deg) f (rad)

(a)

(b)

(c)

40

20

0

– 20

10
5

0

2 p
p

X
 (

10
–3

 N
)

a b (deg) f (rad)

40

20

0

– 20

10
5

0

2 p
p

X
 (

10
–3

 N
)

a b (deg) f (rad)

40

20

0

– 20
10

5
0

2 p
p

X
 (

10
-3

 N
)

a b (deg) f (rad)

(d )

(e)

( f )

Figure 2. Surface plots of X force, reconstructed from Fourier series analysis as functions of body angle a and phase f through
wing beat. (a–c) Forces reconstructed from Fourier series GLM fitted separately for each flight condition; (d–f ) linearized
approximation thereof from single Fourier series GLM. The three rows correspond to data from locusts R, G and B, respectively.
The same look-up table is used to plot colour as a function of X within a row, but the look-up tables generally vary among rows.

40

20

0

– 20

4
2 0

2p
p

X
 (

10
–3

 N
)

U (m s–1)
4

2U (m s–1)

4
2U (m s–1)

4
2U (m s–1)

4
2U (m s–1)

4
2U (m s–1)

f (rad)

40

20

0

– 20

0

2p
p

X
 (

10
–3

 N
)

f (rad)

40

20

0

– 20

0

2p
p

X
 (

10
–3

 N
)

f (rad)

(a)

(b)

(c)

40

20

0

– 20

0

2p
p

X
 (

10
–3

 N
)

f (rad)

40

20

0

– 20

0

2p
p

X
 (

10
-3

 N
)

f (rad)

40
20

0
– 20

0

2p
p

X
 (

10
–3

 N
)

f (rad)

(d )

(e)

( f )

Figure 3. Surface plots of X force, reconstructed from Fourier series analysis as functions of flight speed U and phase f through
wing beat. (a–c) Forces reconstructed from Fourier series GLM fitted separately for each flight condition; (d–f ) linearized
approximation thereof from single Fourier series GLM. The three rows correspond to data from locusts R, G and B, respectively.
The same look-up table is used to plot colour as a function of X within a row, but the look-up tables generally vary among rows.

Locust flight dynamics G. K. Taylor and R. Żbikowski 203
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coefficients of a periodic model of force production. To
do this, we used separate GLMs to fit the first eight
harmonics of the Fourier series of the form

Pða; tÞZ
X8
nZ0

ða1;n cos nutCb1;n sin nutÞ

CðaKarefÞ
X8
nZ0

ða2;n cos nutCb2;n sin nutÞ

(4.4)

and

PðU ; tÞZ
X8
nZ0

ða3;n cos nutCb3;n sin nutÞ

CðU KUrefÞ
X8
nZ0

ða4;n cos nutCb4;n sin nutÞ

(4.5)

for each force–moment component and locust. Note
that because the empirical models of force production in
equations (4.4) and (4.5) are fitted to force traces
reconstructed over one wingbeat period, they recover
the strictly periodic form of equation (4.1)—cf.
equations (4.2) and (4.3).

It is important to note at this juncture that, although
the experiments do not allow us to distinguish between
body angle a with respect to the relative flow and pitch
attitude q with respect to the horizontal, we have
assumed here that the flight forces change only in
response to the former. This is always the case for
passive aerodynamic effects, but need not be the case
for the active control responses of locusts if they can
sense pitch attitude directly (e.g. Taylor & Thomas
2003). However, in the absence of any evidence to the
contrary, we will use the simplest model possible,
treating the flight forces as functions of body angle but
not of pitch attitude.

By inspection, equations (4.4) and (4.5) directly
yield the coefficients of a linear periodic model of force
production of the form

Pða;U ; tÞZPrefðtÞCPaðtÞðaKarefÞ
CPU ðtÞðU KUrefÞ;

(4.6)

where

PrefðtÞZ
X8
nZ0

ða1;n cos nutCb1;n sin nutÞ

z
X8
nZ0

ða3;n cos nutCb3;n sin nutÞ; (4.7)

PaðtÞZ
X8
nZ0

ða2;n cos nutCb2;n sin nutÞ; (4.8)

PU ðtÞZ
X8
nZ0

ða4;n cos nutCb4;n sin nutÞ: (4.9)

It was not possible to test for the existence of possible
interactions between Pa(t) and PU(t) in determining
J. R. Soc. Interface (2005)
the total instantaneous force, because this would have
required collecting a large number of additional force
recordings for each locust which was simply impracti-
cal. The additivity implied by equation (4.6) is there-
fore an assumption of the model, rather than an
empirical conclusion. Furthermore, it is worth noting
that whereas such additivity is also an assumption of
the LTI model of Taylor & Thomas (2003), it is not a
necessary assumption of the nonlinear models pre-
sented here and can be relaxed as necessary in the
future.

Figures 2–7 show the instantaneous forces predicted
by the respective periodic models (equations (4.4) and
(4.5)) alongside the reconstructed empirical force traces
to which they were fitted. In effect, the right-hand
column of the graphs plot the regression surfaces fitted
to the empirical data plotted in the left-hand column of
the graphs. It is immediately clear that the periodic
models fit the reconstructed force traces extremely well.
The Fourier series coefficients themselves are listed in
table 2, converted to (cn, fn) form for convenience.
Coefficients are shown in bold if a harmonic was
statistically significant (p!0.05) in the GLM in which
it was fitted. Two-thirds of the models contained
significant harmonic content up to the seventh or
eighth harmonic, although one (or in one case, two) of
the lower harmonics could occasionally be non-signifi-
cant (see table 2 for details).

The error degrees of freedom were 7466 for the
models of P(a, t) and 3466 for the models of P(U, t).
Histograms of the residuals and plots of residuals
against fitted values showed excellent normality of
error and homogeneity of variance, respectively, for the
angle series data. The corresponding graphs for the
speed series data showed acceptable normality of error,
but displayed strong clumping of the residuals by flight
condition. This heterogeneity indicates that some
component of the systematic variation in the speed
series data remains unexplained. The most likely reason
for this difference is that whereas we corrected the angle
series data for temporal variation in quasi-static force
production (§4.4 above), this could not be done for the
speed series data. Unfortunately, temporal variation
could not be controlled for statistically without
eliminating some of the variation due to speed, because
speed and time are not completely orthogonal vari-
ables. Nevertheless, the clumps of residuals were
reasonably evenly distributed for locusts R and B and
the overall variance was sufficiently homogeneous that
the assumptions of the GLM were broadly satisfied.

In the case of locust G, the residuals of the speed
series data showed further patterning, indicating a
strong nonlinearity in the underlying data. On inspec-
tion of the residuals, this nonlinearity was found to
reflect the outlying value of mean force production at
2.70 m sK1. This is clearly visible in the inflection at
2.70 m sK1 in the surface plot of figure 7b (see also
figures 3b and 5b). The same nonlinearity was also
found in the earlier LTI analysis (Taylor & Thomas
2003), and since the data at 2.70 m sK1 for locust G
therefore lie outside of the range of speeds over which
changes in the forces can be satisfactorily linearized, it
is reasonable to drop these data from the linear periodic
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Table 3. Table of r 2 coefficients from regressions of observed
and predicted instantaneous forces for each force–moment
component.

(Values in bold correspond to the r 2 coefficients for
regressions on forces predicted by the full linear periodic
models (equation (4.10), table 2). Values in roman typeface
correspond to r 2 coefficients for forces predicted by the
equivalent linear time-invariant models, calculated using only
the zeroth harmonics. There are ca 5.25!106 data-points in
each regression.)

locust X Z M

R 0.72 (0.42) 0.86 (0.02) 0.85 (0.76)
G 0.61 (0.47) 0.71 (0.02) 0.73 (0.69)
B 0.45 (0.25) 0.79 (0.03) 0.48 (0.41)

208 Locust flight dynamics G. K. Taylor and R. Żbikowski
model of force production and to fit a new GLM.
This reduced the error degrees of freedom to 2966, but
nevertheless caused several harmonics that had not
previously been significant to become so, which is
further indication of the validity of the procedure.

The analysis provided here assumes that wing-beat
frequency is invariant, taking as its value the mean
wing beat frequency recorded during the angle series
under reference conditions. In fact, the mean of the
wing beat period through a recording (T) varied
slightly with speed or body angle in two of the locusts:
in locust R, T varied as a quadratic of both body angle
(GLM TZaCa2; pZ0.018; F14) and tunnel speed
(GLM TZUCU2; pZ0.005; F6); in locust G, T
increased linearly with flight speed (GLM TZU;
pZ0.013; F14). Nevertheless, the range of variation
was relatively small, and T always fell within 6% of the
mean (usually much less). The opposite dependence of
wing beat period on flight speed has been found
elsewhere for free-flying Locusta migratoria (L.)
(Baker et al. 1981), and we consider the variation in
wing beat period we recorded too slight and inconsist-
ent between individuals to warrant inclusion in our
models. Systematic variation in wing beat frequency
will alter the system dynamics but we leave the
intriguing possibilities this raises for future analyses
to consider.
4.7. Model verification: statistical analysis

The purpose, and end result, of the above analysis is to
condense all of the force recordings for each locust into a
single empirical model of periodic force production:

Xða;U ; tÞZXrefðtÞCXaðtÞðaKarefÞ

CXU ðtÞðU KUrefÞ; (4.10)

where XZ ½X Z M �T and Xref(t), Xa(t) and XU(t) are
periodic analytic functions of time, for which Fourier
series representations are given in table 2. The Fourier
series coefficients for Xref(t) used in the final model
(equation (4.10)) are those from the angle series GLMs
(i.e. fitted to data concatenated from 14 reference
recordings); the equivalent coefficients from the speed
series GLMs are less reliable and were therefore
dropped. Before using this model in simulating locust
flight dynamics, it is necessary to verify how well it
predicts the original instantaneous force–moment data.
To assess the predictive performance of the model, we
first concatenated all of the force traces and phase
vectors F from §4.2 above for each locust. Then, for
consistency with the analysis above, we corrected for
temporal variation in quasi-static force production by
subtracting from the angle series data the mean of the
corresponding paired reference and adding back the
mean of all of the paired references. We then used
equation (4.10) to predict the concatenated instan-
taneous forces and moments using the concatenated
phase vectors. Finally, we fitted a least-squares linear
regression of observed and predicted forces for each
locust.
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The r 2 coefficients of these regressions are all high
(see table 3 for detail), indicating that equation
(4.10) explains a high proportion of the total variance
in the observed forces (never less than 45% but
possibly as high as 86%). By way of comparison,
table 3 also includes r 2 coefficients from the
regression of the observed instantaneous forces on
the predicted quasi-static forces, calculated by
including only zeroth harmonics. The difference
between the r 2 coefficients calculated from this
time-averaged model of force production and those
already calculated using the full periodic model is the
proportion of the total variance explained by the
periodic components of equation (4.10) over and
above any time-invariant component. This difference
is very large for the Z-component of force (69–84%),
moderate for the X-component (14–30%) and small
for the M-component (4–9%). This systematic vari-
ation among force–moment components reflects
differences in the scale of the periodic components
of the signal relative to the variation in quasi-static
force production among recordings. The general
conclusion to be drawn from these regressions,
however, is to verify that our periodic model of
force production performs very well indeed in
predicting the observed instantaneous forces, based
upon the phase data calculated from the initial mean-
crossing and Fourier series analysis of the Z-traces.
Clearly, there is some circularity inherent in this
procedure but this is unavoidable, and the test
involves the smallest possible set of assumptions
needed to test the model given its intrinsic phase
dependence.
4.8. Model verification: conditions for
quasi-static equilibrium

The statistical analysis in §4.7 verifies that the
empirical models of force production we have fitted
predict the experimental data well. In order to verify
whether the empirical models of force production we
have fitted are also consistent with the balance of forces
needed for free flight, we calculated the conditions in
which each of the locusts would be in exact quasi-
static equilibrium. The conditions for quasi-static



Table 4. Conditions for quasi-static equilibrium of each
locust, solved for the zeroth harmonics of their respective
linear periodic models of force production (equation (4.10)).

locust q (deg) a (deg) U (m sK1)

R 26 6 4.48
G 5 12 2.93
B 23 9 4.79
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equilibrium are

�X ref C �Xaða�e KarefÞC �XU ðU�e KUrefÞZmg sin q�e;

(4.11)

�Z ref C �Zaða�e KarefÞC �ZU ðU�e KUrefÞZKmg cos q�e;

(4.12)

�M ref C �Maða�e KarefÞC �MU ðU�e KUrefÞZ 0; (4.13)

where the overbar notation denotes quasi-static terms,
the coefficients of which are given by the zeroth
harmonics in table 2, and where the subscript ‘�e’
denotes the value of an independent variable at quasi-
static equilibrium. Equations (4.11)–(4.13) are formu-
lated by making the quasi-static components of
aerodynamic force in the x-direction (equation (4.11))
and z-direction (equation (4.12)) equal and opposite to
the corresponding weight components, and by setting
the net pitching moment to zero (equation (4.13)). This
set of three algebraic equations contains three indepen-
dent variables: equilibrium body angle a�e, equilibrium
flight speed U�e and equilibrium pitch attitude q�e. Pitch
attitude and body angle are only independent if we
permit the locust to be in ascending or descending flight
at equilibrium. This is a key difference from the LTI
analysis of Taylor & Thomas (2003), in which the
equations of motion were linearized about an equili-
brium condition of steady level flight, leaving only two
independent variables and thereby precluding a con-
sistent solution to equations (4.11)–(4.13) or their
equivalents. Instead, these had to be solved for a
pseudo-equilibrium in which the equilibrium conditions
were almost, but not exactly, satisfied (Taylor &
Thomas 2003).

Equations (4.11)–(4.13) permit two exact solutions
for each locust, of which only one represents forward
flight. The exact solutions for forward flight are given in
table 4 for each locust, and indicate that the force
measurements for locusts R and G are compatible with
the locusts attempting a steady ascent (qeOae),
whereas the force measurements for locust B
are compatible with it attempting a steady descent
(qe!ae). Note that this result says nothing about the
mode of flight the locusts were attempting at any given
moment; we have controlled for temporal variation in
force production as far as possible, and, therefore, the
equilibria we have solved represent the long-term
average flight mode through the experiment. In any
case, the results indicate, not surprisingly, that the
locusts would not have remained flying in a steady level
flight condition had this not been enforced by the
tether. Nevertheless, it is reassuring that all of the exact
J. R. Soc. Interface (2005)
quasi-static equilibria for forward flight correspond to
lifelike flight conditions, consistent with the ranges of
speed and body angle observed in free-flying locusts in
the wild (S. gregaria: Waloff 1972; L. migratoria: Baker
et al. 1981). There is no intrinsic reason, mathemat-
ically, why this should be the case, and the lifelike
equilibria for which we have solved testify to the
physical realism of the empirical models of force
production embedded in the equations of motion.
5. ANALYSIS: SEMI-EMPIRICAL MODELS
OF FLIGHT DYNAMICS

5.1. NLTI and NLTP models

Substituting equation (4.10) into equations (2.1)–(2.3),
and making use of the identities aZtanK1ðw=uÞ and
UZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Cw2

p
, equations (2.1)–(2.4) expand to give the

following NLTP model:

_u ZKwqC
XrefðtÞ
m

C
XaðtÞ
m

tanK1 w

u
Karef

� �

C
XU ðtÞ
m

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 Cw2

p
KUrefÞKg sin q; (5.1)

_w Z uqC
ZrefðtÞ
m

C
ZaðtÞ
m

tanK1 w

u
Karef

� �

C
ZU ðtÞ
m

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 Cw2

p
KUrefÞCg cos q; (5.2)

_q Z
MrefðtÞ
Iyy

C
MaðtÞ
Iyy

tanK1 w

u
Karef

� �

C
MU ðtÞ
Iyy

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 Cw2

p
KUrefÞ;

(5.3)

_qZ q; (5.4)

where the time-variant coefficients are periodic func-
tions represented analytically by the Fourier series in
table 2. Note that since aref and Uref are constants, the
only dependent variables in the equations are the four
state variables u, w, q and q, and the set of four
equations is therefore complete. Equations (5.1)–(5.4)
can immediately be made time-invariant by including
only the zeroth harmonics of the periodic terms, whence
they provide an NLTI model that is a proper
mathematical generalization of the LTI model devel-
oped by Taylor & Thomas (2003).
5.2. Numerical solutions of the NLTI
and NLTP models

The models we have developed use fundamental New-
tonian mechanics equations (equations (2.1)–(2.4)) to
predict how each locust would have flown, had it been
released momentarily from its tether, with empirical
measurements of the forces generated by the tethered
locusts (figures 2 and 7; table 2; equation (4.10)). The
solutions to equations (5.1)–(5.4) therefore simulate
the free-flight trajectory that the locust would
have followed for given initial conditions. This is
an initial-value problem, in the sense that once
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the initial conditions are specified, equations (5.1)–(5.4)
define a single, unique trajectory. Since equations
(5.1)–(5.4) are nonlinear differential equations, it is
necessary to solve them numerically. We did this using
MATLAB’s ‘ode45’ solver, which is based on an explicit
Runge–Kutta (4,5) formula—the Dormand–Prince pair
(Dormand & Prince 1980). As a check on the numerical
accuracy of the solver, we first solved the NLTI
equations for each locust having set the initial
conditions to be in quasi-static equilibrium (u0Zu�e,
w0Zw�e, q0Z0, q0Zq�e) and confirmed that this
produced a steady solution. A relative error tolerance
of 10K4 and an absolute error tolerance of 10K7 were
quite sufficient for this.

We then solved the NLTI equations for each locust
with slightly perturbed initial conditions (u0Z
u�eG0:001; w0Zw�e, q0Z0 and q0Zq�e). Figure 8
compares the resulting solutions by plotting the
evolution of the four state variables through time for
each individual. The solutions are only plotted for as
long as the speed remains within the interval
2.0 m sK1%U%5.5 m sK1 and the body angle remains
within the interval 08%a%148. These intervals corre-
spond to the range of flight conditions over which the
forces were measured in the experiments by Taylor &
Thomas (2003), and to which the empirical models of
force production are fitted. This is, nevertheless,
J. R. Soc. Interface (2005)
sufficient to indicate the instability of the solutions,
which diverge monotonically in response to these
perturbations over the time-intervals plotted. Note
that the solutions take approximately 0.5 s to diverge
from the range of speed and body angle for which the
forces were measured in the experiments, which is
equivalent to about 10 wing beat periods. The
instability of the NLTI models is consistent with the
instability of the earlier LTI models by Taylor &
Thomas (2003). This is a major failing of the NLTI
models, which we discuss fully in §6.1 below.

We next solved the full NLTP equations for each
locust, including all eight harmonics. We set the initial
values of the state variables to the conditions for quasi-
static equilibrium (u0Zu�e, w0Zw�e, q0Z0, q0Zq�e),
which, nevertheless, results in an unsteady solution
because of the forcing terms. The solutions now depend
also upon the phase of ut, so we solved the equations for
both t0Z0 and t0Zp/u (where p/u is the half-period of
a single wing beat). Figure 9 plots the resulting
solutions through time for as long as the speed remains
within the interval 2.0 m sK1%U%5.5 m sK1 and the
body angle remains within the interval 08%a%148.
Whereas the transients for the NLTI models in figure 8
show monotonic divergence, the combination of peri-
odic forcing and periodic response characteristics in
the NLTP models makes their transients much more
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complicated. This complicates their interpretation, and
in order to reveal the true character of the models, it is
therefore necessary to let the solutions run for longer.
This in turn means relaxing the constraint of plotting
the solutions for only as long as they remain within the
range of flight speed and body angle measured in the
experiments. This is done in figure 10, which extrap-
olates the models for body angles within the interval
K58%a%308. This corresponds approximately to
the range of body angles used by free-flying locusts
(Fischer & Kutsch 2000) and so, while there can be
no guarantee of the validity of extrapolating the
empirical models of force production, the solutions
are nevertheless confined to a biologically relevant
range of speed and body angle (but note that pitch rate
q can be of unrealistically large magnitude).

The solutions in figure 10 show the underlying
dynamics of the NLTP models better than the shorter,
initial sections of those solutions plotted in figure 9.
Oscillations at the wing beat frequency are clearly
visible in all of the solutions, corresponding to the
effects of periodic forcing. This is superimposed upon a
steady drift in u, which causes the systems to diverge
indicating that the NLTP systems—like the NLTI
systems of which they are generalizations—are
unstable (§6.1 below provides a thorough discussion of
this issue). Unfortunately, this divergence means that
even the solutions in figure 10 do not run long enough
for initial transient effects to die out, with the result
J. R. Soc. Interface (2005)
that the solutions for locusts R and B in particular look
rather erratic. However, the solutions for locust G take
longer to diverge, leaving the system long enough to
approach a steady-state oscillation (albeit one super-
imposed on a steady divergence in u).

In all three individuals, the forced oscillations in
dorsoventral velocity w and pitch attitude q are of
similar phase to each other (figure 10), but lag pitch rate
q by approximately p/2 radians and lag forward speed u
by just over p/2 radians. This phasing of the motion
components is very similar to the phasing of the
short period mode found in the earlier LTI analysis by
Taylor&Thomas (2003). Short periodmode oscillations
are not visible in the solutions to the NLTI models
plotted in figure 8, but can be easily induced by
disturbing the dorsoventral velocity component w from
its equilibriumvalue. Figure 11 overlays a solution of the
NLTI model for locust G, exhibiting short period mode
dynamics (solid line) with the solution of the corre-
sponding NLTP model (dotted line) for the same initial
conditions (u0Zu�e, w0Zw�eC0:1, q0Z0, q0Zq�e). As in
figure 10, the solutions are only plotted for as long as
the speed and body angle remain within the ranges
2.0 m sK1%U%5.5 m sK1 and K58%a%308. Whereas
the oscillations in the NLTI case are excited only by the
parameters of the system (like the oscillations of a
pendulum), oscillations in the NLTP case result from a
combination of parametric excitation and forcing. It is
apparent that the short period mode oscillations have
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a slightly higher natural frequency than the externally
imposed frequency of forcing in the NLTP model. We
therefore suggest that periodic forcing excites short
period mode dynamics, but that the short period mode
frequency locks in on the forcing frequency, as is
common in forced systems (Jordan & Smith 1999).

With appropriate choice of t0, solutions of the NLTP
model for locust G can remain within tight limits for
over 2 s (figure 12), staying well within the range of
speed and body angle used by free-flying locusts
(2.0 m sK1%U%5.5 m sK1;K58%a%308). This depen-
dence on t0 emphasizes the time-invariant character of
the NLTP model. After the initial transients have died
out, the system converges on an almost steady
oscillation superimposed upon a slow drift in u. This
oscillation is qualitatively similar to the other forced
oscillatory solutions already discussed (figure 10), but is
steady for longer, and therefore easier to interpret.
After the initial transients have died out, the flight
speed oscillates sinusoidally between about 2.80 and
2.95 m sK1, while the body angle oscillates sinusoidally
between about 4 and 228. These values are well within
the range of static speed and body angle used by free-
flying locusts (Fischer & Kutsch 2000) but the
amplitude of oscillation (8.58) is larger than occurs
naturally. The slow drift in u eventually causes the
solution to diverge (after about 2.5 s), and as slight
perturbations to the initial conditions also excite
J. R. Soc. Interface (2005)
divergence (dotted lines in figure 12), the system as a
whole is still unstable.
5.3. Graphical analysis of the NLTI and NLTP
equations

Plotting the state variables against time (figures 8–12)
is a direct way of showing how the solutions to the
equations of motion evolve, but a major limitation of
this approach is the need to plot so many different
solutions; even after this exercise, there is no way of
knowing whether all of the different qualitative
behaviours of the models have been explored. However,
since the solution of equations (5.1)–(5.4) for initial
conditions (u0, w0, q0, q0, t0) comprises the set of four
state variables uZu(t), wZw(t), qZq(t), qZq(t), time
can be eliminated completely in the time-invariant case
by plotting the state variables against each other.
Moreover, because the right-hand side of the equations
defines a unique tangent direction tiZð _ui; _wi; _qi; _qiÞ
at every point piZðui;wi; qi; qiÞ in the state space
{u, w, q, q}, the paths that the system follows are
unique and non-intersecting. This makes it possible to
interpolate between paths, so that the qualitative
behaviour of a time-invariant system can, in principle,
be completely described by plotting a finite number
of paths in state space (Jordan & Smith 1999).
A collection of such curves is called a phase portrait
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because it provides a good indication of the qualitative
character of the system.

Paths through state space can only terminate at
points where the tangent direction tiZð _ui; _wi; _qi; _qiÞ is
singular; paths that do not begin or end at a singular
point must therefore either extend to infinity or form a
closed curve. The most significant salient features of a
phase portrait are therefore its singular points (which
here correspond to fixed points of equilibrium),
together with any closed paths that may be present.
In simple cases, it is often possible to infer the
qualitative behaviour of a system from its fixed points
alone. We therefore include both fixed points of
equilibrium in the phase portrait of each NLTI model
(figure 13a–c); only by including both fixed points are
J. R. Soc. Interface (2005)
we able to characterize the qualitative behaviour of the
equations unambiguously. One of the two fixed points is
always unrealistic for locust flight, but its inclusion
should not be taken to imply that we are inferring
anything about locust flight behaviour outside of the
fitted range of the model. Furthermore, in discussing
globally extrapolated behaviours, we explain what their
physical interpretations would be in order to provide
the physical grounding for the otherwise abstract
mathematics, but these do not reflect on the flight
behaviour of the locusts. The purpose of the state-space
analysis is simply to characterize the equations fully,
which is important because it allows us to answer a key
question: are the dynamics of the NLTI models we
have developed for the three locusts qualitatively the
same?

The phase portraits of the NLTI models for locusts R
and B (figure 13a,c) are structurally similar, in that it is
possible to transform one topology into the other while
preserving the qualitative arrangement of the paths
(Wiggins 2003). This structural similarity implies that
the dynamics of the two systems are qualitatively the
same. Note that we could not reach this conclusion
without plotting all of the fixed points because a
necessary condition for structural similarity is that the
nature and number of the fixed points is the same. In
both cases there are two fixed points of equilibrium
(denoted ‘F1’ and ‘F2’, respectively), each characterized
as an unstable focus because of the system’s tendency to
spiral out through state space when disturbed slightly.
Paths spiralling out from F1 follow a conical-helical
trajectory aligned with the q-direction. This helical
trajectory corresponds physically to an exponentially
accelerating spin in the nose-up direction for paths
above F1 (i.e. for positive q) and in the nose-down
direction for paths below F1 (i.e. for negative q)—note
that this allows us to predict the qualitative behaviour of
solutions in the vicinity of the equilibrium in the fitted
range of the model. Superimposed upon this broad
helical pattern, however, is the influence of the second
fixed point ‘F2’, which imparts a spiral character upon
trajectories in its vicinity. This locally spiralling
trajectory corresponds physically to an unstable pitch
oscillation, with oscillations in q and q growing
exponentially until the system escapes the influence of
F2 and diverges into an exponentially accelerated nose-
down spin. Note, however, that these behaviours occur
outside of the fitted range of the model.

The topology of the phase portrait of the NLTImodel
for locustG (figure 13b) is structurally distinct from that
of the models for locusts R and B, and its dynamics
therefore differ qualitatively from those described
above. There are still two fixed points of equilibrium
but, whereas F1 is still an unstable focus, F2 is now a
stable focus. Paths leading out from F1 for u0!ue
eventually enter a trajectory aligned with the q-axis,
corresponding physically to an exponentially accelerat-
ing spin, which begins only after the trajectory has
followed a divergent path curving asymptotically
towards the u-direction. This steady divergence in u
completely dominates the system dynamics in the
vicinity of the equilibrium in the fitted range of the
model. The transition from a path aligned with
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the u-direction to a path aligned with the q-direction is
very sudden, and is characterized by an inflection
marked ‘I’ in figure 13b. Paths leading out from F1 for
u0Oue also display a steady divergence in u, but the
trajectory curves asymptotically towards the w-direc-
tion and eventually enters F2. Although paths leaving
F1 in either direction undergo monotonic divergence
from the outset, paths passing close to F1 spiral in on
these monotonically divergent trajectories, correspond-
ing physically to a damped pitch oscillation super-
imposed on an overall divergence. These dynamics are
apparent in the time plots of figure 11 (solid lines), in
which short period mode pitch oscillations are super-
imposed upon an overall divergence.

Graphical analysis of differential equations is more
complicated for time-variant systems like the NLTP
models we have developed here. Although equation
(5.1)–(5.4) still defines unique solutions for given initial
conditions, it is possible for the resulting paths to
intersect in state space because the right-hand side of
the equations define a tangent direction tZð _u; _w; _q; _qÞ
to the curve at every point pZ(u, w, q, q), but involves
the time-varying quantities XZX(t), ZZZ(t) and
MZM(t). Merely specifying the coordinates of p is
therefore insufficient to determine the tangent t at that
point: the current time t must also be given to evaluate
X(t), Z(t) andM(t). It follows that at two different time
J. R. Soc. Interface (2005)
instants, t1 and t2, we may have p(t1)Zp(t2) but
t(t1)st(t2) because, for example, X(t1) differs from
X(t2). Hence, we would see two different curves passing
through the same point p. One partial solution to this
problem is to fix t0, so that each point pZ(u, w, q, q) has
one unique tangent tZð _u; _w; _q; _qÞ, though this does not
permit interpretation of the plot as a phase portrait.
We have arbitrarily set t0Z0 in the models for locusts R
and B, which is reasonable because the choice of t0 does
not qualitatively affect their behaviour, but we have set
t0ZK0.003 s in the model for locust B, which is the
value of t0 giving the most persistent oscillations (see
§5.2 above).

The topologies of the NLTP system plots differ from
the NLTI phase portraits in one crucial respect: they
contain no fixed points of equilibrium. Hence, whereas
the NLTI systems need to be disturbed from equili-
brium in order to set them on a trajectory through state
space, the NLTP systems are always transitioning
between states. In other respects, the trajectories
plotted for the NLTP models for locusts R and B are
broadly similar to those of the corresponding NLTI
models (compare figure 13a,d to 13c,f, respectively),
but this superficial similarity is another example of why
it is important to plot any singular points that do exist
in order to characterize the dynamics properly. Like the
corresponding NLTI systems, the NLTP systems for
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Figure 13. (a–c) Phase portraits of the NLTI models for locusts R, G and B, respectively. The state variables u, w and q are
plotted geometrically, with the fourth state variable q shown by line colour. An open black circle denotes a fixed point of unstable
equilibrium; a closed black circle denotes a fixed point of stable equilibrium. The letter ‘F’ denotes a focus; ‘I’ denotes an
inflection in a trajectory. (d–f ) Three-dimensional plots of the state variables u, w and q for the solution to the NLTP models for
locusts R, G and B, respectively, with the fourth state variable q shown by line colour. The initial conditions are u0Zu�e, w0Zw�e,
q0Z0, q0Zq�e and t0Z0, except for locust G for which t0ZK0.003 s. Note the differences in scale between plots; see text for
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locusts R and B have a tendency to enter a helical
trajectory, corresponding physically to an exponen-
tially accelerating spin. Periodic forcing introduces
some new oscillatory character to the NLTP systems
over the corresponding NLTI systems (this is visible in
the initial spiralling of the trajectories in figure 13c,f;
see also figure 11 for locust G), but essentially the same
pitch instabilities dominate the system dynamics as in
the NLTI case. This overall similarity in the trajec-
tories plotted for the NLTI and NLTP models for
locusts R and B makes the contrast between the
trajectories plotted for the NLTI and NLTP models for
locust G all the more marked.

Once again, the state space topology of the NLTP
model for locust G (figure 13b) is structurally distinct
from that of the models for locusts R and B, and its
dynamics therefore differ qualitatively from those
J. R. Soc. Interface (2005)
described above. Figure 13e plots a single trajectory
for the NLTP model for locust G. The trajectory begins
at the point corresponding to the position of F1 in the
NLTI model and the system quickly converges upon an
almost steady state oscillation in pitch (cf. figure 12),
which in the state space representation is manifested in
the orbital character of the trajectory. While we have
not found a closed curve trajectory in this region of the
state space, it is possible that one exists in the vicinity,
in which case it would be an unstable orbit. Super-
imposed upon this almost steady pitch oscillation is a
steady drift in u, which eventually causes the trajectory
to diverge. Nevertheless, the drift is slow enough for the
pitch oscillation to persist in an almost steady state for
more than 2 s (see figure 12). However, once the
trajectory diverges, it does so quickly, spiralling
round to the right-hand side of the plot where
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the trajectory again takes on an orbital character. A
true closed curve trajectory does appear to exist in this
region of state space, characterized as an asymptoti-
cally stable orbit. This orbit falls well outside of the
fitted range of the model, and corresponds physically to
a fast inverted descent accompanied by a steady pitch
oscillation. It is clear enough that the stable orbit in
the NLTP model corresponds to the stable focus F2
in the NLTI model—formally, as the amplitude of
forced oscillation tends to zero a stable orbit will tend to
degenerate to a stable focus. We can therefore make a
reasonably strong case that had the foci F1 been stable
in the NLTI models, we might have expected the same
region of state space in the NLTPmodels to be occupied
by an asymptotically stable orbit. This is an intriguing
possibility that we explore in more general terms in §6.

In summary, the techniques of graphical analysis
that we have introduced in this section allow us to
formalize and generalize our descriptions of the
dynamics of the various models we have developed.
This is only possible because the modelling framework
that we use is nonlinear: although the empirical models
of force production are local, the NLTI and NLTP
equations are global, and the graphical analysis is
therefore a mathematically valid technique for explor-
ing the model dynamics. The graphical analysis allows
us to show formally that the dynamics of the NLTI and
NLTP models for locust G differ qualitatively from
those of the models for locusts R and B, in spite of the
broad similarity in their respective empirical periodic
models of force production (figures 2–7). This shows
that relatively small differences in the model para-
meters can have large qualitative effects on the models’
dynamics, and further emphasizes the overriding
importance of adequate sampling at the level of
the individual (see §3). It follows that similarly small
differences in the control responses of insects could have
similarly pronounced effects on their flight dynamics.
We therefore conclude that a proper dynamics analysis
will always be essential to the correct interpretation of
experimental results on insect flight control.
6. DISCUSSION

6.1. Why do the models fail to explain locust
flight stability fully?

Free-flying locusts are stable but, in common with the
LTI models of locust flight dynamics developed by
Taylor & Thomas (2003), all of the models developed
here are unstable and therefore fail to explain locust
flight stability fully. Taylor & Thomas (2003) identified
five reasons why their LTI model could have failed,
which we briefly repeat here: (i) the experimental data
may have been unrepresentative of natural free flight;
(ii) the model assumed that the forces and moments
were functions of body angle with respect to the relative
flow, but locusts may also be able to sense and respond
to pitch attitude with respect to the horizontal; (iii) the
model assumed that the forces and moments were not
functions of pitch rate, which in fact they must be
because of viscous damping; locusts may also be able to
sense and respond to pitch rate; (iv) the model was fully
J. R. Soc. Interface (2005)
linearized, but a linear framework may be inadequate to
describe locust flight dynamics; and (v) the model was
time-invariant, but most of the system parameters are
strongly periodic and the system is characterized by
periodic forcing. A key motivation for developing the
NLTP framework was to eliminate these last two
possibilities.

The nonlinear flight dynamics model remains linear
periodic in the forces, but we have shown empirically
that this is reasonable over the range of values of the
state variables measured. We also continue to treat the
centre of gravity and moment of inertia as time-
invariant, which is a reasonable first approximation as
far as the small oscillating mass of the wings is
concerned (the wings comprise less than 4% of total
body mass; Taylor & Thomas 2003). On the other hand,
our measurements do not take account of possible
changes in the centre of gravity resulting from
abdominal movements (Taylor 2001). While these are
almost certainly too slow to be important on the time-
scale of the periodic flight forces, it is possible that
systematic changes in abdominal position might affect
the quasi-static balance of the forces (tethered locusts
curl the last few abdominal segments upward when the
imposed body angle is low). Nevertheless, with the
introduction of nonlinear dynamics and periodic
forcing, we are now confident that the models’
instability does not result from deficiencies in the
modelling framework. This leaves two distinct groups
of possible explanations for the failure of the models: (i)
failure to measure certain important parameters and
include them in the model and (ii) issues related to how
the experimental data were collected. We deal directly
with the first group of explanations below. The second
group of explanations pertains generally to the question
of whether tethered flight data can be expected to
produce reasonable models of free flight dynamics. This
is such an important issue, and subject to so much
misunderstanding, that we deal with it separately in
§6.2 below.

As was also the case for the LTI model developed by
Taylor & Thomas (2003), the NLTI and NLTP models
developed here do not include the effects of pitch rate
damping and pitch attitude damping. The neglect of
pitch rate damping is especially significant, because it
allows pitch rate to reach unrealistically high levels in
our simulations. The solutions we have plotted are
restricted by placing specified limits on speed and body
angle, but we have placed no limit on pitch rate. Since
pitch rate was zero in the experiments in which the
empirical model of force production was derived, this
rapid growth in pitch rate clearly places further limits
on the validity of the simulations. Neither pitch rate
damping nor pitch attitude damping can be measured
using a conventional wind tunnel setup, and it will not
be possible to develop an improved model of locust
flight control without developing new experimental
techniques and apparatus. This would need to be
capable of measuring the forces and moments on a
tethered locust during pitching (in order to measure
pitch rate damping), and would need to be capable of
rotating the airflow independently of the insect
(in order to separate the effects of pitch attitude
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and body angle). Work is now underway to develop
such a system, similar to the rotary test rigs used by
aircraft engineers to analyse spin dynamics and
unsteady aerodynamic effects (Ericsson 1990). This
presents a considerable technical challenge but illus-
trates a key general point: that placing our under-
standing of insect flight control on a flight dynamics
footing demands that future experimental work is
driven by explicitly specifying the parameters that
need to be measured in order to formulate a proper
physical model.
6.2. Can tethered flight measurements be used
for models of free flight dynamics?

Should we really expect force measurements from
tethered locusts to produce a workable model of their
free flight dynamics? The answer to this question
requires a proper understanding of the issues raised by
tethering. The objection most commonly raised to
tethered flight experiments is that they are made under
‘open-loop’ conditions. Although this terminology is
firmly entrenched in the biological literature (including
the earlier paper by Taylor & Thomas 2003), it is
misleading from the perspective of control theory. We
therefore refer hereon to tethered flight measurements
being made under conditions of ‘broken dynamics’, to
emphasize that the feedback loops of the control system
remain physiologically closed and intact, while
the dynamics of the system are broken physically by
the kinematic constraint of tethering. This is a
crucial distinction, because it is therefore possible—in
principle—to expose a tethered insect to stimuli
identical to those experienced during free flight. To
clarify this further, we will discuss three possible classes
of tethered flight experiment. Only the first class of
experiment has as yet been performed. We discuss the
other two classes as illustrative thought experiments,
but new experimental apparatus may soon allow us to
implement functionally at least the second class.

In the first class of tethered flight experiment—of
which the experiments described here and in Taylor &
Thomas (2003) are an example—the insect is exposed
to systematic changes in flight condition that are
prescribed in advance of the experiment. It is assumed
that the instantaneous values of the state variables are
compatible with free flight, whether steady or acceler-
ated, and it is further assumed that the visual stimuli
can be made indistinguishable from those experienced
naturally (this is not expected to be a problem for the
other sensory modalities). There are then three ways in
which the insect could sense the effects of tethering.
Firstly, the insect could sense the tether directly via
mechanoreceptors in its cuticle. Secondly, the insect
could detect the broken dynamics by comparing the
time-course of the stimuli it receives with the expected
changes in stimuli given the control actions it effects
(note that this implies that the insect possesses some
internal representation of its flight dynamics). Thirdly,
although the instantaneous values of the state variables
may be compatible with free flight, their time-course
may not be, and this may also be detectable by the
insect if it is able to integrate the stimuli it receives
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through time. For example, if the insect tends to
oscillate slightly in free flight (as may be suggested by
the oscillatory trajectories of the NLTP models), then
tethering the insect statically, as we have done here,
will result in an unrealistic stimulus time-series. This
particular issue can be controlled for directly by
oscillating the insect with the appropriate phase,
amplitude and frequency. This would also be important
in correcting for the influence of unsteady aerodynamic
effects, given that accelerations of the body will lead
to some degree of aerodynamic unsteadiness over
and above that caused by the unsteady flapping of
the wings, which might be significant for aerodynamic
force production (Ramamurti et al. 2002).

In the second (currently hypothetical) class of
tethered flight experiment, the insect would be exposed
to stimuli that are again prescribed in advance of the
experiment. This time, however, the motions of the
insect would be recorded in free flight, and the insect
would then be moved along exactly the same trajectory
and through the same visual environment when
tethered. For this kind of experiment to be meaningful,
it is important that a sufficiently strong stimulus is used
that we can reasonably expect the insect to respond to
in a repeatable fashion. For example, the insect could
be blown sharply to elicit a corrective response,
presented with a looming object to elicit an avoidance
response or presented with a moving target to elicit a
chasing response. On the assumption that the insect
responds in a more or less repeatable fashion (which will
be violated if the insect has any tendency to engage in
spontaneous manoeuvres), this experiment ensures
that the stimulus time-series is realistic and at least
approximates the expected changes in stimuli given the
control actions of the insect. It does not eliminate the
possibility that the insect can feel the tether directly
(except in the unlikely situation that the insect
responds in an identical way to that recorded in free
flight, so that the reaction force of the tether remains
zero throughout).

In the third (also currently hypothetical) class of
experiment, the stimuli to which the insect would be
exposed would not be prescribed in advance of the
experiment. Instead, the forces that the insect gener-
ates would be measured, and equations of motion used
to calculate the instantaneous trajectory through which
the insect should be moved. Provided that the time lags
in the apparatus can be kept short enough that they are
undetectable by the insect, the stimuli that the insect
receives should then be indistinguishable from those in
free flight. This is exactly the principle underlying the
mechanical flight simulators used to train pilots to fly
aircraft. Note, once again, that although the insect will
move exactly as it would have done in free flight, the
kinematic constraint of tethering breaks the direct
physical link between forces and kinematics. This
simple thought experiment illustrates very clearly
that the effect of tethering is to break the insect’s own
flight dynamics, not to break its control loops. The
same is true of the other two classes of tethered flight
experiment, and it should therefore be apparent that if
the instantaneous stimuli that the tethered insect
receives are compatible with free flight, the only issue
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that must concern us is whether the insect responds in
the same way to these stimuli as it would if it
experienced them in free flight.

This is certainly an important issue, but it is one that
we have no choice but to accept. There is no avoiding the
need to formulate flight dynamics models using force
measurements, which in turn necessitates the kinematic
constraint of tethering. Measurements of free-flight
kinematics cannot offer a robust substitute for tethered
force measurements because the instantaneous accel-
eration needed to calculate the forces can only be
inferred from direct measurements of position, and
perhaps velocity, but as we have already shown, rapid
changes in the forces may have a negligible
(i.e. practically incalculable) effect on the flight trajec-
tory. For example, the bodies of very small insects do not
oscillate visibly as they beat their wings, yet the forces
acting on the body are undoubtedly periodic. The only
obvious resolution to this problem is to use free flight
data to validate the predictions of models based on
tethered flight data using a system identification
approach (e.g. Klein 1989, for a review of aircraft
parameter estimation from flight data).

The final question we must answer is how measure-
ments from a system with broken dynamics can be used
to model the corresponding dynamic system. The
answer is simple, and forms the basis of the analysis
we have presented here: there is no need to measure
the system with its dynamics intact, provided that all of
the relevant parameters can be measured, because the
broken link between forces and kinematics is intact in
the equations of motions in which the measured
parameters are embedded. This is why we have called
our models ‘semi-empirical’: the parameters are
measured empirically in a system with broken
dynamics, but the dynamical link is specified a priori
by Newtonian mechanics. Tethered flight measure-
ments are not merely suitable for formulating models of
free flight dynamics—they are essential, but only when
combined with equations of motion do they say
anything meaningful about dynamics.
6.3. What do the models tell us about locust
flight control?

Given that the models fail to explain locust flight
stability fully, can they tell us anything useful about
locust flight behaviour? The question of whether a
system is stable or not is just one of many questions
asked in dynamics. Indeed, it is worth pointing out at the
outset, that if the models had actually resulted in being
stable, then this in itself would have told us nothing we
did not already know about locust flight! The more
interesting questions in flight dynamics relate to the
response characteristics of the system—in particular its
inertial response to inputs of different frequencies.While
care must be taken in interpreting a model that fails to
explain the stability of the system it describes, it is
nevertheless possible to draw some robust conclusions
about the response of the systems to inputs of different
frequencies. The response of any system is limited by its
damping and inertia. We are confident that we have
identified the inertial characteristics of the locusts
J. R. Soc. Interface (2005)
correctly because these are mass distribution properties
that can be simply and accurately measured, but we do
not claim that we have measured all of the damping
terms (see §6.1), and the models are therefore expected
to underestimate the system damping. This means that
the inertial response characteristics of theNLTPmodels
can be reliably used to provide an upper bracket on the
input frequencies to which locusts should be able to
respond. Once the initial transients have decayed away,
the forced oscillations of the NLTP models lack higher
harmonic content (note the sinusoidal form of the forced
oscillations in figure 12, and compare this with the
forcing functions in figures 2–7). Themechanical system
is therefore acting like a low-pass filter with a cut-off
frequency below the frequency of the second harmonic.

The cut-off frequency of the inertial response of
locusts is expected to be as low or lower than the
frequency of the second harmonic when the missing
damping terms are included. This implies that subtle
changes to the higher harmonics of the periodic flight
forces will not translate into subtle changes in the
locust’s motion, because the system will effectively
filter out such effects. For example, increasing the lift
generated at the two points of stroke reversal would be
expected to have the same qualitative effect as
increasing the lift evenly throughout the down stroke.
Similarly, although the relative timing of the fore- and
hind-wings may be important to the unsteady aero-
dynamic forces they generate, the timing of the forces
resulting from their interaction is likely to be unim-
portant from a flight dynamics perspective. This is
reassuring; it is impressive enough that four-winged
insects manage to control the aerodynamic forces they
generate by adjusting wing phase (Taylor 2001), but it
is difficult to imagine how they would be able to use this
as a workable system of flight control if the timing of the
resulting forces relative to the motions of the whole
insect also mattered! Manoeuvre control and flight
stabilization in locusts must therefore operate on a
time-scale that is relatively coarse in comparison with
the period of the wing beat. This is, of course,
reasonable for an insect with no great need for agility.
6.4. A limit-cycle analogy for flapping flight
stability and control

Although the graphical analysis of the NLTP models
was aimed at formally describing the dynamics of the
systems we have empirically defined, the state space
approach to analysing flight control leads us to propose
a new hypothesis for flapping flight control in general.
For maximum generality, we will reason this hypothesis
from first principles. By definition, the non-manoeuvr-
ing flight of insects must in some sense be steady. Given
that periodically forced systems, in general, have no
fixed points of equilibrium, the only steady state
towards which flapping flight can evolve is an asymp-
totically periodic oscillation (Jordan & Smith 1999),
forming a closed curve when plotted in state space.
Since flight must also be stable, it follows that the
proper definition of stability in flapping flight is that of
asymptotic orbital stability (Hahn 1967), which means,
loosely speaking, that the system should tend to return
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to this orbit when disturbed slightly from it. Note that
if the amplitude of body oscillation is negligibly small
(as in very small insects), we may approximate the
stability of the system by asymptotic stability with
respect to a fixed point. The dynamics of the NLTP
model for locust G provide a useful illustration of these
general principles: with appropriate initial conditions,
the system initially tends towards a pitch oscillation
that is almost periodic (and also compatible with the
range of speed and body angle used by free-flying
locusts), but which eventually diverges because of its
instability and asymptotes towards a second oscillation
that is truly periodic and asymptotically orbitally
stable (although incompatible with the range of speed
and body angle used by free-flying locusts).

If the proper definition of stability in flapping flight
is that of asymptotic orbital stability, then we may
hypothesize that the problem of actively stabilizing and
controlling flapping flight amounts to stabilizing the
orbit with respect to small disturbances, and moving
from one orbit to another in order to effect manoeuvres
over the course of more than one wing beat. This
hypothesis is reminiscent of a concept commonly
referred to as ‘limit-cycle control’ in the literature on
bipedal walking, although the term is used loosely
because most powered walking systems are forced (i.e.
non-autonomous) systems and limit cycles are only
strictly defined for autonomous systems. The limit-
cycle control approach (Markus 1973; Somasundaran &
Balachandran 1986) has been used to derive control
laws for stabilizing simulated bipedal walking machines
(Katoh & Mori 1984; Hmam & Lawrence 1992; Laszlo
et al. 1996; van de Panne 2000) and has been
implemented physically to stabilize the forced oscil-
lations of an inverted pendulum (R. Q. Van der Linde,
unpublished study). In principle, limit-cycle control
can either enlarge the region of stability around an
already stable limit cycle (Hmam & Lawrence 1992), or
stabilize intrinsically unstable limit cycles (Laszlo et al.
1996; van de Panne 2000). Either way, the key is to
ensure that each cycle is stabilized to such a degree that
the next begins in an appropriate initial state. Provided
that any inherent instability in the system would
normally take several cycles to develop, the addition of
even quite moderate levels of feedback control may then
suffice to stabilize a single limit cycle to the extent that
the next can also be stably maintained. For example,
given that the unstable pitch oscillations in figure 12
already persist for several seconds, it is likely that
adding moderate feedback to counteract the steady
divergence in u would be sufficient to make the system
converge upon a true orbital trajectory.

The limit-cycle control concept is problematic for
non-autonomous (i.e. time-variant) systems because
the system’s trajectory will, in general, depend upon
the value of t0, and this may mean that an asympto-
tically stable orbit is not reached for all values of t0. We
therefore conjecture further that flapping flight cannot
be stable with respect to a steady-state oscillation
unless the system is asymptotically autonomous (i.e.
asymptotically time-invariant), sensu Markus (1956),
meaning that its trajectories converge asymptotically
towards the same orbit irrespective of t0. This offers a
J. R. Soc. Interface (2005)
formal justification for the analogy with stable limit
cycles, which are the stable orbits in the autonomous
system towards which the non-autonomous system
asymptotes. Manoeuvre control would then consist in
moving the system from one asymptotically auton-
omous orbit to another, via non-autonomous transients
which would need to be correctly timed in order to
allow the system to transition from one orbit to another
(Markus 1973). An illustrative example of this kind of
transient behaviour can be seen in figure 13e. This
shows the system initially entering an almost steady
oscillation in pitch (line colour q oscillating through
varying shades of red), which becomes unsteady and
evolves through a transient (line colour q changing
monotonically from red to blue) into a new steady-state
oscillation (line colour q oscillating through varying
shades of blue). We therefore propose that the most
general definition of stability in flapping flight is
that of asymptotically autonomous orbital stability.
Manoeuvre control on the scale of more than one wing
beat would then consist in exciting non-autonomous
transients from one asymptotically autonomous and
stable orbit to another.
6.5. Future directions

Nonlinear time-periodic modelling offers the most
physically realistic framework available for analysing
flapping flight dynamics. The semi-empirical NLTP
models that we develop here are therefore a major
advance on the LTI models developed previously by
Taylor & Thomas (2003). While there is still scope for
improvement—for example, by allowing for the possi-
bility that wing beat frequency itself may also vary
systematically with the state variables, or by allowing
for periodic variations in the centre of gravity and
moment of inertia—we believe that the modelling
framework for analysing experimental data on insect
flight control is now mature. Where, then, should the
flight dynamics paradigm take us next? In unambigu-
ously specifying which parameters are missing and need
to be measured to produce a fully realistic model,
the modelling framework has leapt a step ahead of
experiments on insect flight control (see §§6.1 and 6.2):
the modelling framework drives the experimental data
we collect. This is an excellent example of the reciprocal
relationship between experiment and analysis with
experiment driving analysis and analysis driving
experiment—it is also a good illustration of the
practical value of the flight dynamics approach.

Perhaps more importantly, in inspiring the limit-
cycle control analogy, the state space method of
analysing our models of insect flight dynamics poses
new questions for biologists to consider. Do insects use
limit-cycle control to stabilize their flight? This is a
question that cannot easily be answered without first
understanding the control laws written into the net-
works of sensors, actuators and neurons that constitute
the insect’s sensori-motor system. If insects do indeed
use limit-cycle control of flight, then we should expect
these control laws to display an underlying periodicity
matched to the periodicity of the flight dynamics. We
should also expect to observe switches in the underlying
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control laws during transients from one asymptotically
stable orbit to another (§6.4). Futureworkwill therefore
need to unite external models of flight dynamics with
internal models of sensory and neuromuscular physi-
ology, by combining models of manoeuvre dynamics
with recordings of individual muscles and sensory
neurons responding to stimuli eliciting the manoeuvre.
Only when we link the physics and physiology of flight
directly in this way can we claim an integrated systems
understanding of insect flight control.
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