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TOPICAL REVIEW

Purinergic regulation of epithelial transport

R. Elaine Bucheimer and Joel Linden

Cardiovascular Research Center, University of Virginia, PO Box 801394, MR5 Room 1214, Charlottesville, VA 22908, USA

Purinergic receptors are a family of ubiquitous transmembrane receptors comprising two
classes, P1 and P2 receptors, which are activated by adenosine and extracellular nucleotides
(i.e. ATP, ADP, UTP and UDP), respectively. These receptors play a significant role in regulating
ion transport in epithelial tissues through a variety of intracellular signalling pathways.
Activation of these receptors is partially dependent on ATP (or UTP) release from cells and
its subsequent metabolism, and this release can be triggered by a number of stimuli, often
in the setting of cellular damage. The function of P2Y receptor stimulation is primarily via
signalling through the Gq/PLC-β pathway and subsequent activation of Ca2+-dependent ion
channels. P1 signalling is complex, with each of the four P1 receptors A1, A2A, A2B, and A3

having a unique role in different epithelial tissue types. In colonic epithelium the A2B receptor
plays a prominent role in regulating Cl− and water secretion. In airway epithelium, A2B and
A1 receptors are implicated in the control of Cl− and other currents. In the renal tubular
epithelium, A1, A2A, and A3 receptors have all been identified as playing a role in controlling the
ionic composition of the lumenal fluid. Here we discuss the intracellular signalling pathways
for each of these receptors in various epithelial tissues and their roles in pathophysiological
conditions such as cystic fibrosis.
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Extracellular purines such as ATP and adenosine
signal through membrane-associated purinergic receptors
as autocrine and paracrine substances as well as
neurotransmitters. The ubiquitous nature of these ligands
as well as the abundance of expression of purinergic
receptors account for purinergic control of diverse effects
in many tissue types. Control of ion and fluid transport
across epithelia is one such system in which purinergic
regulation is highly significant, even considering the
variety of hormones and other regulators that are
well known to regulate epithelial transport. Purinergic
receptors have been identified in most epithelial tissues
and have been well characterized, specifically in the
gastrointestinal, airway and kidney epithelia.

This large family of purinergic receptors has been
subdivided into two major classes, P1 and P2, that have
preferential affinity for adenosine and ATP, respectively.
Figure 1 gives an overview of these receptors and their
role in regulation of ion transport. The P1 receptors
are a family of G protein-coupled receptors that signal
through multiple intracellular effectors in response to
nucleoside activation, primarily with adenosine. There

are four known subtypes of P1 receptors, A1, A2A, A2B,
and A3, each of which has been cloned and characterized
biochemically and pharmacologically. The A1 receptor
signals through the Gi/o family of G proteins, resulting
most significantly in an inhibition of adenylyl cyclase but
also, via βγ subunits, in the activation of phospholipase C-
β (PLC-β), the activation of several K+ channels, and the
inactivation of Ca2+ channels, among others. The A2A and
A2B receptors classically signal primarily via Gs, resulting
in activation of adenylyl cyclase, an increase in cAMP
production, and subsequent activation of protein kinase
A (PKA). In some cases activation of the A2B receptor
has been documented to signal through other effectors,
specifically mobilization of intracellular calcium, and this
may result from interaction with Gq or other G proteins
(Feoktistov & Biaggioni, 1997; Linden et al. 1999). It
is also possible that in some cells cAMP may mobilize
Ca2+ due to activation of phospho lipase C-ε (PLC-ε) via
EPAC (exchange protein activated by cAMP) and RAP2B
(Evellin et al. 2002). The A3 receptor signals primarily
via Gi/o proteins. The primary downstream effects of A3

activation are inhibition of adenylyl cyclase function and,
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in some cases, activation of phospholipase C to provide an
intracellular calcium signal. Inosine, a purine nucleoside
metabolite of adenosine, has activity at the A3 receptor but
has weak activity at the other P1 receptors (Jin et al. 1997;
Ralevic & Burnstock, 1998; Fredholm et al. 2001).

The P2 family of receptors is further divided into
metabotropic (G protein-coupled) P2Y receptors and
ionotropic P2X receptors. There are currently eight known
P2Y receptors (Y1, Y2, Y4, Y6, Y11, Y12, Y13 and Y14) and
eight P2X receptors (P2X1−7 and P2XM). These receptors
are classically activated by purine nucleotides, and the
differing affinities for specific diphosphate or triphosphate
nucleotides help to differentiate among similar receptor
subtypes (Fredholm et al. 1994; Harden et al. 1997).
The P2Y receptor preferences for naturally occurring
ligands are summarized in Table 1 (King et al. 2001;
Communi et al. 2001). A subset of these receptors can
be activated by the pyrimidine nucleotides UTP and
UDP, despite their original classification as ‘purinergic’
receptors. A receptor formally known as the UDP-
glucose receptor has recently been added to the P2Y

Figure 1. Purinergic receptors important in regulating epithelial ion transport
The P1 receptors A2A and A2B classically signal through Gs, resulting in an increase in cAMP and activation of PKA.
A rise in intracellular Ca2+ noted in some cells in response to A2B receptor activation may result from receptor
coupling to Gq and activation of PLC-β or from cAMP-activation of Rap2B that raises intracellular Ca2+ via PLC-
ε. This rise in intracellular Ca2+ by either of these mechanisms likely accounts for the activation of PLA2 that
contributes to the A2B activated Cl− current. The A1 receptor has been shown to be active in airway epithelial
cell lines and evokes a Ca2+ response through the βγ subunits of Gi. This triggers basolateral K+ efflux and may
trigger Cl− release. P2X receptors are ligand-gated ion channels and increase cell permeability to Na+ or Ca2+.
P2Y receptors classically signal through Gq, resulting in an increase in intracellular Ca2+ and activation of Ca2+-
activated Cl− and K+ channels, although a Ca2+-independent Cl− current resulting from P2Y activation has been
identified.

family and designated P2Y14 (Abbracchio et al. 2003).
P2Y receptors classically signal through a Gq-dependent
pathway, activating phospholipase C and mobilizing
intracellular Ca2+, but some can modulate other effector
pathways as well. P2X receptors are all activated by ATP,
and, excepting P2X6, all are also activated by 2-MeSATP.
BzATP is a selective agonist of P2X5 and P2X7 receptors
(Khakh et al. 2001; Bo et al. 2003). P2X receptors are
ligand-gated channels and their activation increases the
permeability of the plasma membrane specifically to Na+

or Ca2+. In some cases antagonists have been developed
which discriminate between P2X and P2Y receptor
subtypes. These include the selective P2Y1 antagonist,
MRS2279 (Boyer et al. 2002), and the selective P2Y12

antagonist AR-C69931 (Simon et al. 2002).
In order to initiate signalling via purinergic receptors,

nucleotides and their metabolites, specifically ATP, UTP,
ADP, UDP, UDP-glucose or adenosine, must be present
in the extracellular fluid at concentrations sufficient to
activate receptors. Within cells, ATP levels are high and
maintained within a narrow range. A variety of stimuli

C© The Physiological Society 2003



J Physiol 555.2 pp 311–321 Purinergic regulation of epithelial transport 313

Table 1. Natural ligands for P2Y receptors

Receptor Preferred natural agonists

P2Y1 ADP > ATP
P2Y2 UTP = ATP
P2Y4 UTP � ATP
P2Y6 UDP > UTP > ADP
P2Y11 ATP
P2Y12 ADP > ATP
P2Y13 ADP > ATP
P2Y14 UDP-glucose > UDP-galactose >

UDP-N-acetylglucosamine

are capable of initiating ATP (or UTP) release from
intact cells including mechanical stimuli, cell swelling,
and inflammatory stimuli (Taylor et al. 1998; Roman &
Fitz, 1999; Harden & Lazarowski, 1999). Once released,
ATP at the luminal surface is able to activate P2 receptors
or be readily converted to ADP and AMP via widely
expressed ecto-nucleotidases present on the surface of cells
(Zimmermann, 1996). AMP is converted to adenosine
via the action of ecto-5′nucleotidase. Adenosine can be
taken up into cells by nucleoside transporters and then
be reconverted to AMP by adenosine kinase. Nucleoside
transporters are thought to play a significant role in
governing the effect of adenosine at the epithelial surface by
controlling the extracellular concentration (Szkotak et al.
2001, 2003). Adenosine can be converted to inosine by the
action of adenosine deaminase, found both inside and on
the surface of cells. This ready release of nucleotides with
a variety of insults and their subsequent metabolism have
coevolved with multiple extracellular nucleotide signalling
pathways that can utilize both ATP (or UTP) and adenosine
and can efficiently work together to regulate ion transport
across the epithelial surface. One commonly held belief
is that, in many tissue types, this stimulation of ion
transport and the flux of water that accompanies it are
a natural defense system that functions to effectively
wash away noxious stimuli in the setting of cellular
damage or inflammation (Lazarowski & Boucher, 2001;
Leipziger, 2003).

P2 receptors in epithelial transport

The role of P2 receptors in regulating epithelial transport
has been recently reviewed by Leipziger (2003), and for
that reason the majority of this review will focus instead
on the role of P1 receptors in regulating secretion across
the epithelium. It is worthwhile, however, discussing the
basic signalling via P2 receptors in major tissue epithelia
since extracellular adenosine is thought to arise from the
breakdown of extracellular ATP, and therefore P1 and P2
signalling events are often triggered simultaneously by
concurrent increases in extracellular ATP and adenosine.

P2 receptor signalling in gastrointestinal epithelia

P2 signalling is important in the gastrointestinal tract,
where, in summary, P2 activation leads to activation
of K+, HCO3

−, and Cl− secretion and inhibition of
Na+ reabsorption at various locations in the gallbladder,
pancreas, small intestine, and colon (Roman & Fitz,
1999; Leipziger, 2003). There are a variety of P2
receptors implicated in regulating transport along the
gastrointestinal tract, including some that have been well
characterized: the P2Y6 receptor in the mouse gallbladder,
the P2Y4 receptor in mouse jejunum, the P2Y1 and P2Y6

receptors in rat distal colon, the P2Y4 receptor in rat
pancreas, and the P2Y2 receptor in guinea-pig pancreas
(Leipziger et al. 1997; Cressman et al. 1999; Ishiguro
et al. 1999; Hede et al. 1999; Kottgen et al. 2003). In
gastrointestinal epithelial tissue, ATP does not directly
activate Cl− secretion via P2 receptors since the cAMP-
dependent cystic fibrosis transmembrane conductance
regulator (CFTR) Cl− channel is thought to be the only
chloride channel expressed, although there is longstanding
debate on the existence of a Ca2+-dependent Cl− channel
in the colonic epithelium (Anderson et al. 1992; Wagner
et al. 1992; Rozmahel et al. 1996; Grubb & Gabriel, 1997;
Barrett & Keely, 2000). Much of the controversy around
this topic originates from the use of colonic epithelial cell
lines such as T84 cells that express Ca2+-activated Cl−

channels in their undifferentiated state, but down-regulate
them upon forming differentiated monolayers (Anderson
& Welsh, 1991; Morris et al. 1992). Despite the presumed
absence of a Ca2+-activated Cl− channel in differentiated
cell lines and in in vivo epithelial tissue, activation of
P2 receptors can still lead to lumenal fluid accumulation
via stimulation of K+ secretion and inhibition of Na+

reabsorption (Leipziger, 2003). Thus, the action of ATP in
the colon is thought to stimulate water efflux as a protective
response, as in other secretory epithelia. In the case of the
colon, this would present clinically as secretory diarrhoea
in response to an inflammatory stimulus.

P2 receptor signalling in respiratory epithelia

In bronchial epithelium, signalling via P2 receptors
has received much attention because of the possible
therapeutic potential in treating cystic fibrosis. The
predominant P2 receptor in respiratory epithelium is the
P2Y2 receptor that classically couples to Gq, increases
intracellular Ca2+, and activates Ca2+-dependent Cl−

channels, although other pathways for Cl− secretion
in airways have been identified. Specifically, a Ca2+-
independent and adenosine receptor independent Cl−

current can be triggered by ATP or UTP in airway epithelia
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(Stutts et al. 1994; Inglis et al. 1999). The importance of
the P2Y2 receptor in the mouse tracheal epithelium was
confirmed in a knockout study in which mice deficient
in this receptor lost 85–95% of the nucleotide-stimulated
Cl− secretion in this tissue (Cressman et al. 1999). The net
effect of P2Y2 activation is to increase Cl− secretion and
K+ secretion and inhibit electrogenic Na+ absorption, all
of which lead to water secretion (Mason et al. 1991; Clarke
et al. 1997; Inglis et al. 1999; Leipziger, 2003). Because
this pathway involves Ca2+-dependent Cl− channels rather
than the cAMP-dependent cystic fibrosis transmembrane
conductance regulator (CFTR) Cl− channel, activation of
the P2Y2 receptor has been explored as a potential method
of overcoming the Cl− secretion defect in cystic fibrosis.

P2 receptor signalling in renal epithelia

P2 signalling along the renal epithelium is similar to that
found in the respiratory epithelium and gastrointestinal
epithelium in that P2 receptor activation causes a rise in
intracellular Ca2+ that initiates ion transport. The renal
epithelium is complicated by the existence of multiple
receptor subtypes and individual variations within each
segment of the nephron. The role of each receptor subtype
remains to be elucidated. In the nephron of both the
rat and mouse, it is currently thought that P2Y1 and
P2Y2 receptors play a primary role in epithelial tissues
along the nephron with the P2Y6 receptor also recently
implicated in the rat proximal collecting duct, thick
ascending limb, and thin descending limb (Bailey et al.
2000; Schwiebert & Kishore, 2001). These receptors are
of interest in this tissue primarily because of their role
in regulating salt and water balance. Salt and water
reabsorption are inhibited by activation of P2 receptors
along the tubular lumen, making manipulation of these
receptors of interest in hypertension (Kishore et al. 1995;
McCoy et al. 1999; Leipziger, 2003). It has also been shown
that P2 receptors play a significant role in regulating water
balance independently of vasopressin. Hypervolaemia and
ischaemic reperfusion injury are known to induce P2
expression along the nephron, while hypovolaemia down-
regulates P2 expression, implicating these receptors in
diuresis or water retention in certain pathophysiological
states (Kishore et al. 1998, 2000; Schwiebert & Kishore,
2001).

P1 receptors in epithelial transport

Adenosine-mediated control of ion transport has been
demonstrated in a variety of epithelial tissues and as a result
of activation of all four P1 receptor subtypes. P1-receptor-

mediated control of Cl− secretion via the cAMP-activated
CFTR Cl− channel is among the most significant and
most studied effects of adenosine on epithelial cells. Ca2+-
activated currents stimulated primarily via the Gi/PLC-β
pathway also play a major role in the diverse effects of P1
receptors in these tissues.

P1 receptor signalling in gastrointestinal epithelia

The best characterized tissue with regard to P1-mediated
ion transport is the colonic epithelium. The interest in
this tissue arises from the potent Cl− and water secretion
stimulated by adenosine via the A2B receptor, which is
clinically relevant as a contributing factor in secretory
diarrhoea in the setting of inflammation and also as
a possible target for treatment of cystic fibrosis. It is
important to note that adenosine, unlike ATP acting
via a P2 receptor, is known to have a direct effect on
Cl− release in the colon via activation of CFTR. The
A2B receptor has been identified on both the mucosal
and basolateral aspects of colonic epithelial cells, and
activation at either site results in Cl− secretion (Barrett
et al. 1989; Strohmeier et al. 1995). A similar effect of
A2B stimulation has been described in isolated rabbit
ileum (Dobbins et al. 1984). A major source of adenosine
in the bacteria-infected gut is neutrophils, which release
adenine nucleotides that are rapidly converted to AMP
and then to adenosine by 5′-nucleotidase, which is highly
expressed on gut epithelium (Madara et al. 1993). The
classical pathway for A2B-mediated Cl− release is via Gs

activation of adenylyl cyclase, with a rise in cAMP that
directly activates the CFTR Cl− channel. It has long
been speculated, however, that another pathway may be
involved based upon the saturation of Cl− secretion at
levels of A2B stimulation that fail to saturate cAMP levels
and the ability of adenosine to stimulate a Cl− efflux equal
to that of forskolin at much lower cAMP levels (Barrett
et al. 1989, 1990; Strohmeier et al. 1995; Clancy et al.
1999; Huang et al. 2001). This effect has been attributed
to increased coupling of the A2B receptor to CFTR as well
as to the existence of an alternative second messenger, and
it now seems that both of these are likely to play a role in
A2B-mediated Cl− secretion. With respect to coupling, A2B

adenosine receptors are known to couple tightly to CFTR
as well as adenylyl cyclase and PKA in airway epithelial
cell models, as will be discussed later (Huang et al. 2001).
With respect to an additional second messenger, a pathway
that has recently been implicated in A2B-mediated Cl−

secretion is the activation of phospholipase A2 (PLA2) in
parallel with the activation of adenylyl cyclase (Barrett
& Bigby, 1993; Bouritius et al. 1999; Cobb et al. 2002).
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It has been proposed that activation of PLA2 contributes
to Cl− secretion via the effects of arachadonic acid (AA)
or its metabolites, the precise mechanism of action of
which is unknown but may be through effects on the
electrochemical driving force for ion transport through
CFTR (i.e. by activation of K+ channels), through direct
effects of lipid species on CFTR or associated factors, or
by locally increasing cAMP production in the vicinity of
CFTR, an effect which may not be recognized with total
cellular cAMP assays (Cobb et al. 2002).

P1 receptor signalling in airway epithelia

A2B activation of Cl− secretion at the lung epithelium
is similar to that found in the colon, in which an
increase in apical membrane Cl− conductance is produced
through a Gs pathway activating adenylyl cyclase and
raising cAMP (Lazarowski et al. 1992; Huang et al. 2001).
This has been found in a transformed cell line from
normal human airway epithelia (BEAS39), in a model
for polarized serous cells thought to play a critical role in
liquid secretion in cystic fibrosis (Calu-3), and in primary
cultures of human nasal epithelium (Lazarowski et al. 1992;
Huang et al. 2001). The stimulated secretory response
was pharmacologically identified to be the result of A2B

receptor activation and was lost in a cell line derived from
a cystic fibrosis patient with a defect in ion transport
at CFTR (CF/T43), implying that this ion channel is
the one responsible for the A2B-mediated Cl− secretion
(Lazarowski et al. 1992). It is worth noting that Calu-3 cells
lack P2Y2 receptors, the primary P2 receptor controlling
ion transport in lung epithelium, which further implicates
adenosine, and not ATP, as an important player in ion
secretion. When this A2B secretory response was compared
to direct forskolin treatment, similar to what was found in
the colonic epithelium, the A2B pathway produced the same
level of Cl− secretion but a 9-fold lower level of cellular
cAMP. This effect was attributed to tight colocalization of
A2B, adenylyl cyclase, PKA and CFTR (Huang et al. 2001).
Further characterization of this mechanism revealed that
the A2B receptor is recruited to the plasma membrane
upon stimulation and interacts with E3KARP (NHE3
kinase A regulatory protein) and ezrin (Sitaraman et al.
2002). Ezrin is a known PKA anchoring protein, and
E3KARP associates with the COOH terminus of CFTR
(Sun et al. 2000). These interactions may stabilize the
receptor and downstream effector molecules in a signalling
complex at the membrane. This compartmentalization of
cAMP signalling challenges the idea of a readily diffusible
second messenger and offers some understanding of
how activation of pathways that utilize ubiquitous

second messengers can function without global cellular
activation.

While the A2B-stimulated Cl− secretory response was
lost in the cystic fibrosis cell line CF/T43 specifically
deficient in ion transport, manipulation of this receptor
is still a consideration in treating cystic fibrosis patients
with alternative CFTR mutations that preserve cAMP–
PKA signalling and ion transport to some degree. For
example, activation of the A2B receptor can augment
impaired Cl− conductance at the R117H mutant CFTR,
a channel which is known to localize to the cell surface and
maintain normal PKA-dependent activation but which
has reduced Cl− conductance (Clancy et al. 1999). A2B

stimulation can also induce Cl− secretion through the
�F508 CFTR, where the defect is in trafficking to the
membrane and in which Cl− transport is preserved as long
as the receptor spontaneously localizes to the cell surface a
small percentage of the time or can be induced to localize
by corrective molecules (Cobb et al. 2002). In Calu-3 cell
monolayers, it was recently shown that phosphodiesterase
inhibitors, specifically cilostazol, a phosphodiesterase 3
(PDE3) inhibitor, and papaverine, a non-specific PDE
inhibitor, could induce a Cl− current that was additive
when combined with adenosine. This effect is presumably
obtained by the elevation of intracellular cAMP. The
concentration of cilostazol that increased chloride current
was below therapeutic plasma levels achieved during the
treatment of peripheral vascular disease (Cobb et al. 2003).
While this has yet to be studied in cell lines with mutated
CFTR channels, it raises the possibility that PDE inhibitor
therapy alone or in conjunction with pharmacological
manipulation of A2B receptors could be of potential
therapeutic benefit in cystic fibrosis.

A2B receptors are not the only P1 receptors implicated in
controlling ion transport across airway epithelium. Some
literature also implicates the A1 receptor, although the
evidence for the role of this receptor has recently been
called into question. RT-PCR studies have identified the
A1 receptor in the airway epithelial cell line A549, a normal
tracheal cell line (9HTEo-), and a CF submucosal cell line
(2CFSMEo-), distinguishing these epithelial lines from the
Calu-3 cell line in which the A1 receptor mRNA was not
detected (McCoy et al. 1995; Szkotak et al. 2001, 2003).
Antagonism at the A1 receptor is thought to stimulate Cl−

efflux, as shown by the activity of the adenosine antagonist
CPX in a variety of model systems (Schwiebert et al. 1992;
McCoy et al. 1995; Haws et al. 1996). Importantly, the
mechanism of action at this receptor seems to function
even in the presence of a mutant CFTR gene, as shown
by the ability of CPX to activate outward Cl− currents
in primary nasal epithelial cells from wild-type as well as
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homozygous �F508 CF patients (Schwiebert et al. 1992).
This was confirmed by showing that CPX could induce
iodide efflux from recombinant cells expressing �F508
CFTR (Haws et al. 1996). To explain this effect in cells that
are otherwise impaired in Cl− conductance, CPX must
therefore work either to increase the Cl− conductance of
mutant CFTR channels that manage to reach the plasma
membrane or augment impaired membrane trafficking in
these cells to increase accumulation of these channels at the
cell membrane. It has recently been shown that, despite
the common assumption that CPX is an A1 antagonist,
this effect is probably due more to a direct interaction
of CPX with CFTR than with the A1 receptor. CPX has
been shown to bind directly to the first nucleotide-binding
fold domain (NBF-1) of wild-type CFTR and with even
higher affinity to the NBF-1 of the �F508 CFTR, and
recent evidence shows that CPX can activate wild-type
recombinant CFTR chloride channels in an isolated lipid
bilayer system (Cohen et al. 1997; Arispe et al. 1998). This
evidence supports the idea that, despite the long-standing
belief that A1 antagonism activates cAMP-mediated Cl−

efflux via CFTR, the more important signalling event
may actually be via a direct interaction of the antagonist
with CFTR. The validity of CPX for use in treating CF
patients has been preliminarily explored, specifically in
two phase I clinical trials that tested the safety of CPX
administration, although the efficacy of this treatment has
yet to be determined (Noone et al. 2001; McCarty et al.
2002).

Although the A1 receptor may not play a major role in
regulating the cAMP-dependent CFTR chloride channel,
it has been shown to regulate Ca2+-dependent processes
in airway epithelial models. Specifically, in the wild-type
human tracheal epithelial cell line 9HTEo-, the wild-type
fetal trachea cell line 56FHTEo-, and the cystic fibrosis
airway epithelial lines CFNPE9o- and CFPEo-, adenosine
agonists have been shown to activate Ca2+-dependent K+

and Cl− currents, similar to the action of ATP at P2Y2

receptors in airway epithelia (Galietta et al. 1992; Rugolo
et al. 1993). More recent work with the A549 airway
epithelial cell line has confirmed the effect of A1 activation
on Ca2+-activated K+ channels, although the effect on
Cl− conductance has been questioned (McCoy et al. 1995;
Szkotak et al. 2001).

P1 receptor signalling in renal epithelia

With regard to epithelial transport in the kidney, it has been
known that adenosine stimulates sodium transport since
Lang et al. (1985) first described it in Xenopus laevis renal

epithelial A6 cells, a common model of the mammalian
collecting duct. The net effect of adenosine stimulation is
sodium transport from the lumenal to the serosal surface,
making antagonists of these receptors possible candidates
for diuretic therapy. Since this initial discovery, there
has been much discussion about the specific adenosine
receptor subtype involved in this response, with the A1, A2A

and A3 receptors all being implicated. There is evidence
that A1 stimulation, functioning through an increase
in intracellular calcium and PKC activation, is largely
responsible for apical stimulation of Na+ transport across
the epithelial border (Macala & Hayslett, 2002). This
is supported by the observed diuresis resulting from a
decrease in sodium reabsorption thought to primarily
occur in the proximal tubule following A1 receptor
blockade (Wilcox et al. 1999). In direct opposition to
this is the observation that intrarenal delivery of A1

agonists have been shown to induce natriuresis (Yagil,
1994). In addition, A1 activation has been shown to
inhibit the activity of the NHE3 Na+–H+ exchanger when
transfected into A6 cells (Di Sole et al. 1999), and this
effect could decrease net Na+ reabsorption along the renal
tubule. These conflicting results, implicating A1 agonism
and antagonism in diuresis, highlight the ambiguity
associated with P1 activation at the kidney epithelium.
In addition to its effect on Na+ transport, stimulation of
Cl− secretion following A1 receptor activation has been
observed, specifically in the A6C1 subclone of the A6 cell
line, and this secretory stimulation may account for some
of the discrepancies in the observed effects of A1 activation
and antagonism (Casavola et al. 1996; Banderali et al. 1999;
Macala & Hayslett, 2002).

The effects of A2A receptor activation at the renal
epithelium are equally debated. Basolateral A2A activation
is thought to activate transepithelial Na+ transport via
a cAMP–PKA-dependent pathway, although the role of
this receptor has been debated. It has been proposed that
this regulation of Na+ transport occurs through A2A-
mediated control of intracellular pH via activation of the
basolateral Na+–H+ exchanger and subsequent increase
in intracellular pH (Casavola et al. 1997). The relationship
between intracellular pH and Na+ transport is reciprocal
such that the decrease in H+ concentration causes an
increase in transepithelial Na+ transport. In contrast,
A2A agonists have been shown to inhibit the Na+–H+

exchanger NHE3 in transfected A6 cells (Di Sole et al.
1999, 2002).

Finally, it has also been proposed that A3 receptors act
at the apical surface to induce Cl− secretion. This effect is
dependent on a rise in intracellular Ca2+ but is thought to
be via a novel Gs–PKA stimulated increase in calcium entry

C© The Physiological Society 2003



J Physiol 555.2 pp 311–321 Purinergic regulation of epithelial transport 317

rather than the traditional Gi–PLC-β-mediated increase in
intracellular calcium (Reshkin et al. 2000).

Adenosine plays a role in controlling renal function
that is distinct from the direct effect on ion transport in
epithelial cells. It has recently been shown that adenosine is
a key regulator of tubuloglomerular feedback via activation
of A1 receptors on afferent arterioles (Schnermann &
Levine, 2003). Accordingly, an A1 receptor knockout
mouse shows a loss of macula densa control of renal
vascular tone (Sun et al. 2001). Taken together with the
significant effects of adenosine receptors on renal Na+ and
Cl− transport, these data emphasize the importance of
adenosine receptors in controlling the overall function of
the kidney in both normal and pathogenic states, although
further research is needed to resolve the conflicting reports
of P1 function in the kidney.

P1 receptor signalling in other epithelial tissues

As previously discussed, the ubiquitous nature of purine
nucleotide release by all cells in response to a variety of
stimuli and the almost universal expression of purinergic
receptors allows for P1- and P2-mediated control of ion
transport in almost all epithelial subtypes explored. In
accordance with this, P1 receptor control of ion secretion
has been identified in such diverse tissue types as the
non-pigmented ciliary epithelial cells of the retina, the vas
deferens epithelium, and the middle ear epithelium.

The non-pigmented ciliary epithelial cells of the retina
are a known location for A3 receptor-mediated control of
epithelial transport. A3 activation causes an increase in
aqueous humor production by increasing Cl− secretion,
leading to an increase in intraocular pressure. This has been
supported by the observed increase in intraocular pressure
following in vivo administration of A3 receptor agonists
as well as in the A3 receptor knockout mouse model in
which the intraocular pressure was reduced (Mitchell et al.
1999; Carre et al. 2000; Avila et al. 2001, 2002). Adenosine
stimulates Cl− channels of the ciliary epithelium,
and this effect can be mimicked by administration
of A3 agonists such as N(6)-(3-iodobenzyl)-5′-N-
methylcarbamoyladenosine (IB-MECA) (Carre et al. 1997,
2000; Mitchell et al. 1999). Transcript of the A3 receptor
has also been positively identified in human and rabbit
ciliary epithelium by RT-PCR (Mitchell et al. 1999). It
is also known that Cl− efflux can be induced by cell
swelling, and this current is dependent on the same
Cl− channels activated by A3 receptor activation. It
was previously thought that these shared a common
downstream signalling pathway, possibly by the volume-
sensitive release of ATP (Carre et al. 2000). The evidence
for this was from rabbit non-pigmented ciliary epithelial

cells in which a volume-sensitive phosphatidylinositol
3-kinase Cl− efflux was dependent on activation of both
PKC and PI3K, a common downstream pathway for Gi

protein-coupled receptors such as the A3 receptor (Selbie &
Hill, 1998; Shi et al. 2002). Recently, this concept of a shared
common pathway for volume-sensitive and A3-induced
Cl− currents has been questioned due to the discovery
that the A3 receptor-induced Cl− current in human ciliary
epithelial cells is independent of PI3K but dependent
on mitogen-activated protein kinase (MAPK) activation
through a Gβγ pathway (Shi et al. 2003). This leads to
the question of whether there are signalling differences
between rabbit and human ciliary epithelium or whether
adenosine induces Cl− efflux signals through a separate
pathway to that involved in volume-sensitive Cl− efflux,
despite being dependent on the same effector Cl− channels
(Shi et al. 2003).

With regard to the vas deferens epithelium, apical
application of adenosine to primary human epithelial
monolayers and freshly excised human vas deferens
resulted in an increase in cAMP and subsequent anion
(Cl− and HCO3

−) release (Carlin et al. 2003). This
recapitulates what has been shown in porcine vas deferens
epithelia (Sedlacek et al. 2001). These results indicate that
adenosine receptors modulate the lumenal environment
of the deferent duct and may therefore play a role in
male fertility. As in other tissue types, this has potential
implications in treating cystic fibrosis, as over 97% of men
with CF have reproductive dysfunction (Dean & Santis,
1994). In cultured gerbil middle ear epithelium, as in other
tissues, adenosine has been shown to activate the cAMP–
PKA system leading to Cl− secretion through the CFTR
Cl− channels, and this effect is likely to be due to A2B

receptor stimulation (Furukawa et al. 1998). In addition
to these tissues in which adenosine receptors have been
directly implicated in the stimulation of anion currents,
cAMP-dependent currents have been identified in many
epithelial tissue types including epithelia from mandibular
and submandibular glands, rectal glands, epididymis,
oviduct, and endometrium, and further research is likely to
indicate that activation of adenosine receptors, particularly
the A2B receptor, can stimulate a cAMP-mediated current
in these tissues (Huang et al. 1993; Dinudom et al. 1995;
Devor et al. 1995; Leung et al. 1995; Lee et al. 1999; Chan
et al. 1999).

The role of P1 and P2 receptors in regulating ion
transport at the epithelium is just one aspect of the
diverse functions of these receptors. Further research needs
to be initiated not only to further explore purinergic
activity in epithelial tissues but also to determine the
interactions between P1 and P2 receptors and between
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receptor functions in alternate tissue types. For example,
the role of the A2B receptor in inducing water secretion in
response to an inflammatory stimulus in the colon may
combine with the A2A response on neutrophils recruited
to the site to limit inflammation (Ohta & Sitkovsky, 2001).
As more research on these receptors becomes available, it
seems likely their manipulation will prove useful in clinical
situations, especially in the treatment of cystic fibrosis and
similar secretory defects.
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