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Five basic muscle activation patterns account for muscle
activity during human locomotion

Y. P. Ivanenko1, R. E. Poppele2 and F. Lacquaniti1,3

1Human Physiology Section, Scientific Institute Santa Lucia, Rome, Italy
2Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
3Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy

An electromyographic (EMG) activity pattern for individual muscles in the gait cycle exhibits
a great deal of intersubject, intermuscle and context-dependent variability. Here we examined
the issue of common underlying patterns by applying factor analysis to the set of EMG records
obtained at different walking speeds and gravitational loads. To this end healthy subjects were
asked to walk on a treadmill at speeds of 1, 2, 3 and 5 km h−1 as well as when 35–95% of the body
weightwassupportedusingaharness.Werecordedfrom12–16ipsilateral legandtrunkmuscles
using both surface and intramuscular recording and determined the average, normalized EMG
of each record for 10–15 consecutive step cycles. We identified five basic underlying factors or
component waveforms that can account for about 90% of the total waveform variance across
different muscles during normal gait. Furthermore, while activation patterns of individual
muscles could vary dramatically with speed and gravitational load, both the limb kinematics
and the basic EMG components displayed only limited changes. Thus, we found a systematic
phase shift of all five factors with speed in the same direction as the shift in the onset of the swing
phase. This tendency for the factors to be timed according to the lift-off event supports the idea
that the origin of the gait cycle generation is the propulsion rather than heel strike event. The
basic invariance of the factors with walking speed and with body weight unloading implies
that a few oscillating circuits drive the active muscles to produce the locomotion kinematics.
A flexible and dynamic distribution of these basic components to the muscles may result
from various descending and proprioceptive signals that depend on the kinematic and kinetic
demands of the movements.

(Resubmitted 22 October 2003; accepted after revision 5 January 2004; first published online 14 January 2004)
Corresponding author Y. P. Ivanenko: Human Physiology Section, Fondazione Santa Lucia, 306 via Ardeatina, 00179
Rome, Italy. Email: y.ivanenko@hsantalucia.it

Electromyograph (EMG) recordings have shown that the
patterns of activity in various muscles that are active
in locomotion may exhibit high step-by-step variability.
Nevertheless, when activity is ensemble-averaged over
a number of steps, each of 25 lower limb and trunk
muscles has a characteristic average activity pattern over
a locomotion step cycle, and it is similar across normal
subjects (Winter, 1991). These average activity patterns
appear to be different for each muscle (see Fig. 2), although
certain features, like a burst of activity at heel strike,
are common to many muscles. In fact there is analytical
evidence that many muscles may share certain activity
patterns (Shiavi & Griffin, 1981; Wootten et al. 1990;
Winter, 1991; Yakovenko et al. 2002).

This was investigated by Patla (1985) and later by
Vaughan and colleagues (Davis & Vaughan, 1993; Olree

& Vaughan, 1995) in studies that applied principal
component analysis (PCA) to determine whether the main
features of the EMG patterns could be described by a few
underlying components. Patla applied the technique to
EMG recordings from six limb muscles and one trunk
muscle. The result implied that relatively few activity
patterns could, in appropriate combination, lead to the
observed motor activity. Davis & Vaughan (1993) later
applied the technique to the average intersubject data of
Winter (1991), and showed that various combinations
of four underlying basic patterns could account for the
EMG activity of 16 leg muscles during locomotion. Olree
& Vaughan (1995) recorded EMGs bilaterally from eight
leg muscles, and showed that three basic patterns could
account for the locomotion activity of these muscles.
They suggested therefore that the complex muscle activity
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patterns observed during locomotion may be controlled
by just a few underlying activity pattern generators.

This interpretation seems to support the popular idea
that a central pattern generator (CPG) circuitry acting
on each limb during locomotion activates the flexor and
extensor muscles alternately. The underlying mechanisms
of locomotion are undoubtedly more complex than this
because the CPG alone cannot account for the variety of
EMG patterns noted above, nor can it account for reflex
or triggered activity occurring in response to peripheral
stimuli during locomotion (Grillner, 1981; Winter, 1989;
Rossignol, 1996; Duysens & Van de Crommert, 1998;
Pearson et al. 1998; Barbeau et al. 1999; Orlovsky et al.
1999).

Another recent body of evidence supports the idea that
global limb kinematics are controlled during locomotion
(Shen & Poppele, 1995; Borghese et al. 1996; Grasso et al.
1998; Lacquaniti et al. 1999, 2002). Limb kinematics are
relatively invariant in various modes of locomotion, while
the muscle activity patterns required to produce those
kinematic patterns can vary considerably (Winter & Yack,
1987; Trank et al. 1996; Grasso et al. 1998, 2000; Ivanenko
et al. 2002). Such results have led to the suggestion that
the neural circuitry may in some way specify the limb
kinematics (Lacquaniti et al. 1999, 2002). If so, the muscle
activation patterns must be derived in some way from a
kinematics control signal in accordance with the kinetic
requirements of the biomechanical system. That is, a
basic kinematics control signal may exert its action via
an appropriate ‘inverse dynamics model’ and peripheral
feedback that determines the muscle torques required to
achieve the kinematic goals.

There is ample evidence favouring the existence of some
form of inverse model in motor control (Kawato, 1999)
and there are various proposals regarding the location of
the circuitry that may carry out this function. It is clear
however, that if a form of inverse model is operating during
locomotion, then the underlying circuitry must be located
in the spinal cord, at least in the cat. Spinalized cats are
capable of supported locomotion on a treadmill, while
exhibiting quasi-normal kinematic movement patterns
(Belanger et al. 1996; de Leon et al. 1998). Thus the
same kind of kinematic invariance noted above for human
locomotion is found to be a property of the spinal circuitry
in the cat. There are also some indications that the isolated
human spinal cord can interpret both foot loading and
translation during walking (Harkema et al. 1997; Duysens
et al. 2000).

The results presented in earlier human locomotion
studies (Patla, 1985; Davis & Vaughan, 1993; Olree &
Vaughan, 1995), and also the results regarding limb

movements in frogs (Bizzi et al. 2000; Kargo & Giszter,
2000; d’Avella et al. 2003), could provide a basis for
understanding the relationship between kinematics and
kinetics in locomotion. The results of both types of study
suggest that a few basic muscle activity patterns, referred
to as motor primitives in the frog, may be distributed to
the motoneurones with different weightings. In the case
of locomotion, the basic patterns may be distributed to
all the muscles activated during locomotion and therefore
represent a global control signal. It should be noted that
individual EMG patterns are likely to contain components
reflecting global control variables as well as local feed-
back, whereas the activity patterns that are common across
muscles are more likely to reflect the global aspects. If the
basic patterns are also invariant under conditions in which
global kinematics are invariant, and muscle activation
patterns are not, then it may indicate a possible link to
kinematics control.

We investigated this possibility by extending the work
of Patla, and Vaughan and colleagues, to include a larger
sample of muscles. We also examined muscle activation
in conditions where muscle activation patterns can be
different from those observed in normal walking, yet the
limb kinematics are similar. We found that five component
activity patterns could fully account for the patterns seen
in up to 25 limb and trunk muscles during locomotion,
and similar component patterns were observed with
different locomotion speeds and under weight-supported
conditions. A preliminary report of these findings has been
presented (Poppele et al. 2002).

Methods

Subjects

Six healthy subjects (4 males and 2 females, between 26 and
42 years of age, 66 ± 12 kg (mean ± s.d.), 1.70 ± 0.08 m)
volunteered for the experiments. The studies conformed
to the Declaration of Helsinki, and informed consent was
obtained from all participants according to the protocol of
the Ethics Committee of the Santa Lucia Institute.

Experimental setup

The experiments were carried out on a treadmill
(EN-Mill 3446.527, Bonte Zwolle BV, The Netherlands)
at different speeds. The walking surface of the treadmill
is 1.5 m long, 0.6 m wide, and 0.15 m above the ground.
Body weight support (BWS) was obtained by supporting
the subjects in a harness connected to a pneumatic device
that applied a controlled upward force (Ivanenko et al.
2002). The overall constant error in the force applied to a
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Table 1. Muscles recorded for each subject

Muscle GB LE GC GM RL YI

Tibialis anterior (TA) X X X X X X
Gastrocnemius lateralis (LG) X X X X X X
Peroneus longus (PERL) X X X X X X
Vastus lateralis (VL) X X X X X X
Rectus femoris (RF) X X X X X X
Sartorius (SART) X X X X X X
Biceps femoris (BF) X X X X X X
Semitendinosus (ST) X X X X X X
Tensor fascia latae (TFL) X X X X X X
Adductor longus (ADD) X X X X X
Gluteus maximus (GM) X X X X X
Erector spinae (ES) X X X X X
Soleus (Sol) X X X
Rectus abdominis (superior) (RAS) X X X X
External oblique (OE) X X X
Gastrocnemius medialis (MG) X X X
Gluteus medius (Gmed) X X X
Rectus abdominis (middle) (RAM) X X
Latissimus dorsi (LD) X X X
Trapezius (TRAP) X

subject and dynamic force fluctuations monitored by the
load cell have been estimated to be less than 5% of body
weight (Gazzani et al. 2000).

Kinematic data were recorded at 100 Hz by means
of the Vicon-612 system. The spatial accuracy of the
system is better than 1 mm (root mean square). Nine TV
cameras were spaced around the treadmill. Five infrared
reflective markers were attached on the right side of the
subject to the skin overlying the following landmarks: the
midpoint between the anterior and the posterior superior
iliac spine (ilium, IL), greater trochanter (GT), lateral
femur epicondyle (LE), lateral malleolus (LM), and fifth
metatarso-phalangeal joint (VM).

We recorded from 12–16 muscles in each of six normal
subjects. We recorded from slightly different sets of
muscles in the six subjects (see Table 1). The following
nine muscles were recorded from all six subjects: tibialis
anterior (TA), gastrocnemius lateralis (LG), peroneus
longus (PERL), vastus lateralis (VL), rectus femoris
(RF), sartorius (SART), biceps femoris (long head, BF),
semitendinosus (ST), tensor fascia latae (TFL). The
following three muscles were recorded from five subjects:
adductor longus (ADD), gluteus maximus (GM), and
erector spinae (ES, recorded at L1–L2). Rectus abdominis,
middle and superior portions (RAM or RAS, respectively)
was recorded in four subjects, and the following five
muscles were recorded from three subjects: soleus (Sol),
gastrocnemius medialis (MG), external oblique (OE),
gluteus medius (Gmed) and latissimus dorsi (LD);
trapezius (TRAP) was recorded in one subject. The activity

was recorded using active Delsys electrodes (model DE2.1,
Delsys Inc., Boston, MA, USA) applied to lightly abraded
skin over the respective muscle belly. Electrode placement
was carefully chosen so as to minimize cross-talk from
adjacent muscles during maximal isometric contractions.
The signals were amplified (× 10 000), filtered (20–
450 Hz) (Bagnoli 16, Delsys Inc.) and sampled at 1000 Hz.
Sampling of kinematic and EMG data were synchronized.

In addition we recorded intramuscular EMGs in one
subject (YI) to control the effectiveness of cross-talk
rejection by our surface recordings (see below). We used
a single-needle technique (Basmajian & De Luca, 1985)
to record activity within the following nine muscles:
LG, TA, PERL, VL, RF, SART, BF, ST and TFL. Surface
EMG electrodes were also placed within 2–3 cm of the
intramuscular insertion points along the direction of
muscle fibres. Before the wire electrodes were inserted, the
subject was instructed about how to selectively activate
each muscle (Kendall et al. 1993), while EMG signals were
monitored.

The intramuscular electrodes consisted of two 50 µm-
diameter, heavy polyamide-coated, nickel–chromium
alloy wires (Stablohm 800B + ML insulation; California
Fine Wire, Grover Beach, CA, USA) connected to Delsys
differential preamplifiers taped to the adjacent skin.
Twisted wire pairs were threaded through a 27 gauge
hypodermic needle that was used to insert the wires, and
subsequently withdrawn to leave the wires in place. Each
wire extended several millimeters beyond the tip of the
needle, and the insulation was removed from the terminal
1.5–2 mm of each wire. The wires were bent back to form
hooks on the opposite sites of the shaft in order to prevent
their direct contact and to provide a desirable orientation
of the electrodes along the muscle fibres. The recording
system bandwidth was 20–1000 Hz with an overall gain of
1000; signals were digitized at 2000 Hz.

Protocol

Subjects were required to walk on a treadmill, which was
driven at four different speeds: 1, 2, 3 and 5 km h−1.
Presentation order was randomized across experiments.
They were also placed in a harness so that 35, 50, 75
or 95% of their body weight could be supported by
a pneumatic lift. At 95% BWS, subjects were almost
completely unloaded but still able to step on the treadmill
during the stance phase though measurable contact forces
could only be detected at the forefoot (Ivanenko et al.
2002). Before the recording session, subjects practiced for
a few minutes in walking on the treadmill at different
speeds and BWS levels. Subjects were asked to place the
abducted arms on horizontal rollbars located at the side
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of the treadmill, at breast height. Each trial for a given
condition included 10–15 consecutive gait cycles.

Data analysis

The body was modelled as an interconnected chain of rigid
segments: IL–GT for the pelvis, GT–LE for the thigh, LE–
LM for the shank, and LM–VM for the foot. The elevation
angle of each segment in the sagittal plane corresponds to
the angle between the projected segment and the vertical.
These angles are positive in the forward direction (i.e.
when the distal marker is located anterior to the proximal
marker). The limb axis was defined as GT–LM. Gait cycle
was defined as the time between two successive maxima of
the limb axis elevation angle. The time of maximum and
minimum elevation of the limb axis roughly corresponds
to heel contact and toe-off (stance to swing transition),
respectively (Borghese et al. 1996). They were used to
identify ‘stance’ and ‘swing’ phases.

We determined the average, normalized EMG of each
record for 10–15 consecutive step cycles. The rectified
EMG records were low-pass filtered using a zero-lag
Butterworth filter with a cut-off of 15 Hz. Data were time-
interpolated over individual gait cycles to fit a normalized
200-point time base.

Factor analysis

We applied a principal component analysis to each of
several data sets consisting of normalized EMG patterns
over a step cycle (using the ipsilateral heel strike as the
origin). In factor analysis, the basic waveforms are not
specified in advance as in a Fourier series expansion.
Instead they are determined by the structure of the data
waveforms. The steps involve calculation of the correlation
matrix, extraction of the initial principal components,
application of the varimax rotation, calculation of factor
scores and interpretation of the results. The principal
components (PCs) were expressed using a varimax
rotation in order to minimize the number of variables
with high loadings on each component factor (Kaiser,
1974). This has the effect of simplifying the interpretation
of the PCs since the waveforms of the rotated factors are
more similar to those of the EMGs than are the basic PC
waveforms (Davis & Vaughan, 1993; Chau, 2001). While
the first PC in each case accounted for between 30 and
45% of the total waveform variance in the data set, the
most significant varimax factors in each case explained
between 20 and 30%.

The appropriate application of factor analysis involves
an initial estimate of (a) the extent to which each
data waveform is composed of components common to

other data waves, the communality, and (b) the extent
to which activity is specific to each wave alone, the
uniqueness (Glaser & Ruchkin, 1976). We can think of
EMG waveforms as being dependent on two aspects. First,
there are some underlying common waveforms shared by
the muscles. Second, each muscle also captures a unique
aspect of activation that is not addressed by any other
muscle.

There are different methods to assess whether the
dataset is adequate for factor analysis: communalities, the
Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin
(KMO) measure. In the language of factor analysis, the
communality is the proportion of variance of a particular
variable that is due to common factors shared with other
variables. Therefore, a common starting point to the
application of factor analysis is to use the squared multiple
correlation of an item with all other items as an estimate
of the communality. For the data to be adequate for
factor analysis, the mean communality should be quite
high. The Bartlett’s test of sphericity tests the hypothesis
that the correlation matrix comes from a population
in which the variables are independent (i.e. an identity
matrix). Rejection of the independence hypothesis is an
indication that the data are adequate to factor analysis. The
KMO measure compares the magnitudes of the observed
correlation coefficients to the magnitudes of the partial
correlation coefficients. This indicator should be 0.5 or
greater. Smaller values indicate that factor analysis is not
a good choice (Kaiser, 1974; Merkle et al. 1998; Sabatini,
2002).

Another aspect of factor analysis is how much of
the variance in the data set has to be accounted for.
Eigenvectors with the corresponding eigenvalues less than
unity are usually considered to describe noise (Davis &
Vaughan, 1993; Sabatini, 2002). Therefore, we can retain
only factors with eigenvalues greater than 1. In essence this
is like saying that, unless a factor extracts at least as much
as the equivalent of one original variable, we drop it. This
criterion was proposed by Kaiser (1974), and is probably
the one most widely used. In practice, an additional
important aspect is the extent to which a solution is
interpretable. Therefore, one usually examines several
solutions with more or fewer factors, and chooses the one
that makes the best ‘sense’. In our study, for principal
component analysis we accepted eigenvectors with the
corresponding eigenvalues higher than 0.5. This criterion
increased slightly the number of extracted components,
but we preferred to make a final ranking and selection of the
number of basic waveforms after the procedure of varimax
rotation. Otherwise, we could have missed an important
factor (factor 5) in some of the data sets. We will discuss
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this issue later in the context of the factors found by Davis
& Vaughan (1993).

Since this analysis technique employs a cross-correlation
of muscle activation patterns, it could theoretically be
compromised by electrical cross-talk among adjacent
muscle recordings. We controlled for this possibility
in one subject by comparing the surface EMGs with
intramuscularly recorded EMGs in nine muscles for
which cross-talk contamination might be most likely
(see above). The result presented in Fig. 1 was that the
surface electrodes registered activity that was generally well
correlated with the intramuscular recordings (waveform
correlation coefficients ranged from 0.45 in SART to 0.96
in TA).

Calculation of time shifts of the factors with speed

The cross-correlation function between pairs of
normalized waveforms was computed to quantify
temporal offsets of the varimax factors with speed by
means of the following formula (Orfanidis, 1996):

Rxy(�) =
∫

x(t)y(t + �)dt√∫
x2(t)dt

∫
y2(t)dt

where x and y are the two waveforms (after subtraction of
the respective means) and � is the time lag between the
two signals. The numerator corresponds to the power of
the common signal in x and y, and it is scaled to the product
of total signal power (i.e. the autocovariance at 0 lag, the
denominator) so that the cross-correlation ranges from
−1 to 1. A peak detection algorithm was used to determine
the highest positive correlation peak and its corresponding
time lag. Using this method, we calculated time delays
of the varimax factors at 1, 2 and 3 km h−1 with respect to
those at 5 km h−1 and expressed them as a percentage of
gait cycle.

Published data

Published graphs were each scanned, digitized manually
(in about 30–50 points) and time-interpolated to fit a
normalized 200 points time base. This included the average
EMG records published in Winter (1991), referred to as
the Winter data, and the PCA factors published in Davis
& Vaughan (1993) and in Olree & Vaughan (1995).

The Winter data included average EMG recordings from
the following muscles (Fig. 2): adductor longus (ADDL),
adductor magnus (ADDM), BF, extensor digitorum longus
(EDL), erector spinae (lumbar) (ES; L4), erector spinae
(thoracic) (ES; T9), LG, MG, GM, Gmed, external
oblique lateralis (OEL), external oblique medialis (OEM),

peroneus brevis (PERB), PERL, rectus abdominus (RA),
RF, SART, ST, Sol, splenius (SPLEN), TA, TFL, TRAP, VL
and VM. Davis & Vaughan (1993) reported the results of
a PCA of EMG recordings of 16 muscles of the Winter
data list (less ES, OEL, OEM, PERB, TFL, TRAP, VM and
SPLEN). Olree & Vaughan (1995) reported their results for
the following muscles recorded bilaterally: ES, GM, Gmed,
RF, ADDM, BF, TA, LG.

Statistics

A principal component analysis was performed using
Statistica v6.0 (StatSoft Inc.) or Systat v9.0 (SPSS Inc.).
Statistics on correlation coefficients were performed on
the normally distributed, Z-transformed values.

Results

Factor analysis

We recorded the patterns of EMG activity in 12–16 leg
and trunk muscles from six normal volunteer subjects

Speed = 5 km/h

Surface EMG
Intramuscular EMG

r=0.96LG

r=0.77PERL

r=0.96TA

r=0.82BF

r=0.62ST

r=0.76RF

r=0.94VL

SART r=0.45

TFL r=0.58

Percent cycle
0 20 40 60 80 100

stance swing

Figure 1. Intramuscular and surface EMG activity of 9 leg
muscles recorded simultaneously in one subject stepping at
5 km h−1 on the treadmill
Correlation coefficients between intramuscular and surface EMG
waveforms are shown on the right.
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during treadmill locomotion at speeds of between 1 and
5 km h−1, and at four different levels of weight support
(see Methods). We found that EMG patterns were often
different for a given muscle in different subjects and
that a given muscle often expressed a different pattern
of activation for a different stepping velocity in the same
subject. Figure 3 shows the normalized EMG records from
two of our subjects (LE and GB) from three muscles (BF, RF
and LG). The activity patterns recorded during 5 km h−1

locomotion (red traces) for BF were different for these
subjects and different from those recorded at 1 km h−1

(orange traces) in the same subjects. The patterns for these
subjects were similar at 5 km h−1 for RF, but different
at 1 km h−1. The patterns recorded from the LG were
similar for the two subjects at both locomotion speeds. The
same muscles showed almost opposite phases of activation
for the two subjects when 95% of the body weight was
supported at 3 km h−1 (blue traces). However, RF showed
almost the same activation pattern for these subjects, and
yet the peaks of activity in BF were different with weight
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Figure 2. Activity patterns during a single locomotion step cycle
Averaged EMG activity recorded from 18 subjects for 25 muscles during a single cycle of over-ground locomotion.
EMG records were filtered with a low-pass cut-off of 3 Hz. Data taken from Winter (1991); abbreviations are
defined in Methods.

support. The BF activity peak for subject LE also occurred
at a different phase from the activity peaks recorded during
unsupported locomotion.

We applied a principal component analysis (see
Methods) to these EMG records to determine whether
such variability could be accounted for by a small set
of basic components. We first pooled the data for all
speeds and all muscles recorded for each of the six subjects
with no weight support. Bartlett’s test of sphericity was
always significant (P < 0.001), KMO = 0.64, and the
communalities were always high (> 0.996) indicating that
a factor analysis was appropriate. Results of the separate
analysis for each subject are illustrated in Fig. 4A (different
colour trace for each). The component factors were quite
similar across subjects, although there were a number of
specific differences. For example, two of the subjects have
a later and less prominent peak in the initial part of factor
2. There was also a spread of about 10% of the step cycle in
the timing of the peak activity among subjects in factors
3, 4 and 5.
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In order to exclude the possibility that electrical cross-
talk in the recordings could substantially influence this
result, which is based on cross-correlation, we recorded
simultaneously from intramuscular and surface electrodes
in nine leg muscles in one subject (see Methods, Fig. 1).
The factors derived from the recordings made from
this subject for the nine leg muscles plus six trunk
muscles at one speed (5 km h−1) are compared in Fig. 4B
using either the intramuscular or surface leg muscle
recordings. It is clear from this result that the recording
site (intramuscular or surface) had no significant effect on
the waveform of the principal component factors (0.91 <

r < 0.99), although in some cases (e.g. TFL and SART) the
intramuscular recordings may have registered components
not present in the surface recordings (Fig. 1). This
difference might represent some kind of intramuscular
compartmentalization that was not seen at the surface
(Windhorst et al. 1989; Chanaud et al. 1991; English et al.
1993).

The individual factors each explained different amounts
of the total variance in each data set (Fig. 4D). The five
factors together accounted for between 58 and 86% of the
total variance in our data sets. In all cases there were higher
order factors that tended to be idiosyncratic rather than
common across muscles, but they usually accounted for
less than 3–4% of the total variance.

Figure 3. Examples of muscle activity with different locomotion speeds with and without body weight
support
Normalized EMG recordings from two subjects (LE and GB) are compared for 3 muscles (BF, RF and LG) under three
conditions of treadmill locomotion: 5 km h−1 (red), 1 km h−1 (orange) and 3 km h−1 with 95% weight support
(blue). Data are plotted with thick traces, and reconstruction of the data from the weighted varimax factors are
plotted with thin traces. As the relative duration of stance varied with speed and BWS, a hatched region indicates
an amount of variability in the stance phase duration across conditions.

Published data

We also examined the patterns of muscle activation from a
larger set of muscle recordings published by Winter (1991),
in which the average EMG activity from 25 leg and upper
and lower trunk muscles was determined for a standard
step cycle. Data from 18 normal subjects were pooled and
averaged for the data set depicted in Fig. 2. The subjects
walked over ground using a standard cadence of 106 steps
min−1 (Winter, 1991). The published records included the
average and standard deviation of filtered EMG activity
(3 Hz cut-off) for one step cycle beginning with ipsilateral
heel strike.

Although the activation patterns in this data set appear
muscle specific, there do appear to be preferred phases
of activation in the cycle, for instance just following heel
strike (see Fig. 2). The communalities ranged from 0.997 to
0.999, the Bartlett’s test of sphericity was significant (P <

0.001) and the KMO measure was 0.72 (much more than
0.5), indicating that the sample was adequate for factor
analysis. The results of the PCA showed that four factors
or component waveforms accounted for 87% of the total
waveform variance across the 25 different muscles, and
five components accounted for 95% (Fig. 4C and D, black
traces). This result is essentially the same as that reported
by Davis & Vaughan (1993), who analysed only the 16 leg
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Figure 4. Varimax factors derived from muscle activity patterns by principle component analysis (PCA)
during locomotion
A, 5 varimax factors derived for each of 6 subjects (different colours) from the recordings made with 4 different
speeds (1, 2, 3 and 5 km h−1). Stance phase was somewhat different across subjects and speeds as indicated by
hatched area of the stance–swing bar. B, the factors derived from the recordings made from one subject for the 9
leg muscles plus 6 trunk muscles at one speed (5 km h−1) are compared using either the intramuscular or surface
recordings of leg muscle activity (Fig. 1). C, red dashed traces show the factors averaged across the 6 subjects in
A. Results are compared with the Winter factors (derived from the activity of 25 leg and trunk muscles illustrated
in Fig. 2) (black traces) and with the result of a PCA of EMGs recorded from 16 leg muscles (Davis & Vaughan,
1993) (blue traces) and from 8 muscles in each leg (Olree & Vaughan, 1995) (dotted traces). D, the cumulative
percentage of variance explained by each factor is shown for each subject and for the Winter factors.
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muscles from a similar data set (Winter, 1991) and reported
four significant factors (Fig. 4C, blue traces). It is worth
noting that Davis & Vaughan retained only eigenvectors
with the corresponding eigenvalues higher than unity. As
a result, they obtained only four factors: their factor 4 was
somehow a combination of our factors 4 and 5 (Fig. 4C).
Moreover, when we used the same criterion (minimum
eigenvalue ≥ 1 instead of minimum eigenvalue ≥ 0.5) for
the Winter data, we obtained the same four factors as Davis
& Vaughan; that is, we failed to see the varimax factor
5 even though we included all 25 muscles in the factor
analysis. Note that a unique pattern in 1 of 25 muscles
would represent 4% of the variance; however, factor 5
explained 7% of the total variance in the Winter data (and
from 8 to 27% of the variance in our own experimental
data). Therefore, we think that this factor is significant,
and the failure to detect it by Davis & Vaughan (1993) is
related to both a smaller number of EMG records and to
a strict application of the Kaiser criterion (see Methods).
Thus, even when we included the upper and lower trunk
muscles in the Winter data set we found the same basic
factors. This means that any of the activation patterns in
the entire set could be essentially reconstructed from an
appropriate linear sum of five activation patterns.

In Fig. 4C we also compare the results of the Winter data
analysis with our results from single subjects. The average
factors derived from our subjects (red dashed traces) are
nearly the same as the factors we derived from the Winter
data (25 muscles, black traces; or 16 leg muscles (Davis &
Vaughan, 1993), blue traces). They are also very similar
to the factors derived from eight leg muscles recorded
bilaterally by Olree & Vaughan (1995) (dotted traces).

These comparisons are further quantified in Table 2A
and B. The table shows the correlation coefficients for a
linear regression of the respective factor waveforms. The
high levels of correlation (r) and variance (r2) explained
for each of the respective factors across data sets indicate
the level of similarity of the respective waveforms of these
varimax factors.

Effects of stepping speed and weight support

In addition to the individual differences we note above,
there were also systematic differences that were related to
stepping speed and weight support as we noted in Fig. 3. We
examined this by pooling the data for all subjects by speed
or by the percentage of BWS. The results of this analysis
are plotted in Fig. 5. Again, Bartlett’s test of sphericity
(P < 0.001), KMO (ranging from 0.55 to 0.72 in the speed
data set and from 0.56 to 0.75 in the BWS set), and the
communalities (> 0.997 for speed and 0.998–0.999 in the

BWS set) indicated that a factor analysis was appropriate
in both cases.

It can be seen in Fig. 5A that despite the 5-fold range
of walking speeds, the activity patterns represented by
the varimax factors are basically the same across speeds.
The similarity of the waveform shapes indicates that the
patterns were normalized to the duration of the step cycle,
which varied from 2.4 s cycle−1 at 1 km h−1 to 1.0 s cycle−1

at 5 km h−1. However, there are systematic differences in
the timing of the patterns. The waveforms are shifted
to successively earlier phases in the step cycle as speed
increases. The shifts are equivalent to a phase delay in
the origin (heel strike reference) with increasing speed
(Fig. 5B). The effect seems to be related to the change in the
duration of stance as a function of speed, which decreased
by 11.6% of the gait cycle from 75.5% at 1 km h−1 to
63.9% at 5 km h−1. The activity peaks in the factors had
a comparable shift (about 9% on average). However, the
shifted waveforms for the first three factors at least are
basically indistinguishable across speeds (see Table 2C).

The analysis of speed effects shows that the activation
patterns represented by the component factors remain
stable even when the activation of specific muscles varies.
Thus it raises the question of the extent to which the
component factors may be associated with joint torques.
One way to address this question is to examine the patterns
of muscle activation under conditions in which the limb
kinematics are similar but the joint torques are completely
different. We did this by suspending the subjects in a
harness that supported 35%, 50%, 75% or 95% of their
body weight while they walked on the treadmill. The limb
kinematics under these conditions are quite similar to
those of the unsupported stepping (Ivanenko et al. 2002),
although there were some specific differences in the relative
durations of stance and swing. However, it is clear that the
loading of the limbs and the torques produced to make
the stepping movements were quite different in the two
conditions (see the effect of 95% body weight support on
muscle activation in Fig. 3, for example).

In order to examine the patterns of activity under these
conditions, we pooled the EMG data from all six subjects
for 3 km h−1 locomotion into five sets, normal walking and
4 BWS conditions. The results of the PCA are illustrated
in Fig. 5C. Once again, we found five factors that were
similar to those reported for normal unsupported walking
(black traces). The factors obtained for 75% (orange) and
95% (red) BWS showed more variation but were still quite
similar to the others. In general, factor 2 was basically
indistinguishable from the corresponding factor in the
other conditions, while the others were less similar but
showed the same general features. The peak in factor 5
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Table 2.
A. Winter data factors compared to Davis and Vaughan factors

Factors r r2

Factor 1 0.94 0.90
Factor 2 0.90 0.88
Factor 3 0.95 0.94
Factor 4 0.82 0.67
Mean 0.91 0.87

B. Winter data factors compared to factors for all speeds
(averaged across subjects)

Factors r r2

Factor 1 0.88 0.78
Factor 2 0.87 0.76
Factor 3 0.88 0.78
Factor 4 0.71 0.50
Factor 5 0.78 0.62
Mean 0.83 0.70

C. Factors for 5 km h−1 compared to factors for 1 km h−1∗

Factors r r2

Factor 1 0.93 0.88
Factor 2 0.95 0.90
Factor 3 0.97 0.95
Factor 4 0.83 0.69
Factor 5 0.86 0.75
Mean 0.92 0.86

D. Winter data compared to factors for weight support
(50% BWS at 3 km h−1)∗

Factors r r2

Factor 1 0.64 0.42
Factor 2 0.94 0.88
Factor 3 0.81 0.66
Factor 4 0.86 0.74
Factor 5 0.59 0.35
Mean 0.81 0.66

∗Data phase shifted for best phase alignment.

appears to be phase-shifted to an earlier time in the cycle
compared to the corresponding activity peaks observed
with less weight support. The five factors determined from
these pooled data sets explained together about the same
fraction of total variance in the EMG patterns recorded
during supported and unsupported conditions, but the
proportion of the variance explained by each factor could
vary.

It is clear from these results that the five factors do appear
to represent robust components of the EMG patterns
during locomotion, and they do not seem to be highly
dependent on the locomotion speed, the duration of the

step cycle or on the patterns of mechanical loading in the
limbs. Thus even though individual muscles might show
prominent changes in their patterns of activity in various
conditions, they could nevertheless all be accounted for
by a weighted sum of the same five varimax factors. For
example, the response patterns illustrated in Fig. 3 were
mostly accounted for by a weighted sum of the five factors
(thin traces in Fig. 3; range was r = 0.79 (LE, RF 1 km h−1)
to r = 0.96 (GB, RF 5 km h−1)).

Weighting coefficients

The relative strength of the effect of each factor on a given
EMG pattern is given by the factor loading or weighting
coefficient. The differences in loadings that we observed
among subjects are illustrated in Fig. 6, which shows the
value of the weighting coefficient associated with factors
1–5 for each subject for each of eight muscles during
locomotion at 2 km h−1. The values are also compared
with the weighting of factors for the Winter data for those
muscles. There is a fairly large consistency across subjects
for several distal muscles (e.g. TA, LG and PER) that is
much less true for some more proximal limb muscles
(e.g. ST, VL) or trunk muscles (ES). The weightings
also showed some systematic changes with speed
and BWS.

It can be seen in Fig. 7A that some muscles displayed a
systematic trend in loading at different speeds (PERL, BF,
ST, RF, VL, ADD, SART, TFL, ES) while others loaded more
evenly (LG, TA, GM). Individual factor loadings of some
muscles were more variable at low speeds (1–2 km h−1)
than at high speeds (3–5 km h−1). For example, at 5 km h−1

the ST muscle loaded heavily in all subjects on factor 3
(r ∼ 0.9), whereas at 1 km h−1 it loaded heavily as well
but on factors 1, 2, 3 and 5 (r = 0.7–0.95) depending on
the subject. A similar dispersion of highly loaded factors
among subjects at low locomotion speeds was observed in
RF, BF, VL and ES muscles. This explains in particular why
the averaged factor loadings of these muscles were higher
at 5 km h−1 than at 1 km h−1.

The effect of BWS on loadings is illustrated in Fig. 7B.
Under these conditions the factor loadings changed for
most of the muscles, particularly at the higher levels of
BWS.

Thus, while the intrinsic structure (basic components,
Figs 4 and 5) of the locomotor programme was
similar, we observed a systematic redistribution of
factors across speeds and BWS conditions. In part this
might be accounted for by the changes in the kinetic
requirements in the two cases. For instance, both the
EMG patterns (Fig. 3) and the dynamics of joint
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moments change drastically with speed (Winter, 1991;
Holden et al. 1997). Finally, it is worth noting that although
some muscles (LG, TA and GM) were loaded heavily on
single factors, many muscles had loadings on more than
one factor.

Figure 5. Effect of locomotion speed and of body weight support on component factors
A, 5 varimax factors derived for each of 4 different speeds (coloured traces) across 6 subjects compared to the
overall average across subjects (black trace). B, upper graph shows changes in the duration of the stance phase
with speed. Lower graph shows the phase lag required to provide the best fit between each factor and the factor
determined from the 5 km h−1 data. C, 5 varimax factors derived for each of 4 levels of body weight support
(coloured traces) compared to no support (black traces; 0%) for treadmill locomotion at 3 km h−1. The cumulative
percentage of variance explained by each factor is shown for each data set in the lower panels of A and C.

Discussion

We found that five component factors can account for a
considerable fraction of the total EMG pattern variance
in a large number of muscles that are active during
locomotion, including those of the legs, trunk and upper
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body. This finding implies that a few basic patterns may
be distributed to all the muscles that are specifically
activated during locomotion, and thus the activation of
each muscle involves a dynamic weighting of these basic
patterns.

The finding that 95% of the EMG pattern variance in
the Winter data can be explained by only five component
factors may result in part from the data reduction

introduced by the 3 Hz low-pass filtering and the averaging
across subjects. In fact, while the analysis of our data
from individual subjects produced the same five factors,
they tended to explain a smaller fraction of the total
waveform variance in each case. The higher order factors
were generally not significant though, and individually
they usually accounted for less than 3–4% of the variance.
Note that a unique pattern in 1 of 16 muscles would
represent 6% of the variance. It seems unlikely that there
are other basic activation patterns, although it cannot be
ruled out that other components may have been lost in
the data averaging and filtering. The question remains
though whether such minor components are also ‘basic’ in
some sense or else idiosyncratic to particular muscles, or
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Figure 6. Weightings of factors in individual activity patterns for 6 subjects
The weighting coefficients for factors 1–5 in the EMG waveforms of 8 muscles recorded from each of the 6 subjects
during treadmill locomotion at 2 km h−1.

whether they are directly related to the locomotion, or even
to ‘noise’ in the recording. What is interesting about the
finding of five factors is that they are robust and apparently
ubiquitous.

Another potential confound is the possibility of
electrical cross-talk between recording channels,
particularly between closely spaced muscles like PERL
and TA (De Luca & Merletti, 1988). Since the analysis
technique is based on a cross-correlation matrix derived
from the individual EMG records, any cross-talk might
exaggerate a positive correlation among EMG records,
and therefore potentially bias the result. It was important
therefore, to show that our surface EMG recordings
did not have significant cross-talk as indicated by
simultaneous intramuscular recordings. Nevertheless,
any instance of cross-talk may be limited to only a few
of the 16 muscles in total that we recorded. Thus, it
is unlikely that the factors themselves could have been
strongly biased. If cross-talk did exist, it would most likely
have affected only the loadings or weighting coefficients
assigned to each factor in accounting for the activity of a
muscle that was contaminated by cross-talk.
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Our basic result, namely that five component factors can
account for the activation of muscles during locomotion,
was reported earlier by Patla (1985), who used a
PCA without varimax rotation based on averaged EMG
recordings from seven muscles in six subjects. He found
that the first PC accounted for 42% of the waveform
variance and four PCs accounted for 92%. Based on
these results, he proposed a conceptual model for human
locomotion control, and developed it further in a cat
model (Patla et al. 1985). He suggested that the central
nervous system does not need to generate all the muscle
activity patterns, rather only a few basic patterns that
can be combined appropriately to produce the observed
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Figure 7. Distribution of factors across muscles
The weighting coefficients (loadings) averaged across 6 subjects are plotted as a function of speed (A) and body
weight support (BWS; B).

muscle activations. Even though his approach was limited
by the relatively few muscles he sampled, and he was
unable to show that the PCs represented the same basic
patterns across conditions, our data strongly corroborate
this concept. We have extended the previous PCA results
(Patla, 1985; Davis & Vaughan, 1993; Olree & Vaughan,
1995) by showing that the basic patterns are conserved
across subjects with quite different anthropometrical
characteristics of weight, height and mass distribution, and
also for locomotion at different speeds and under different
gravitational loads.

The varimax factors represent bursts of activity
occurring at certain points in the step cycle. The basic
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invariance of the factors with locomotion speed (over a
5-fold range, at least) implies that the timing and duration
of the bursts are normalized with respect to step cycle
kinematics. In fact there is also a phase shift with speed,
that is about the same magnitude for each factor, and in
the same direction as the shift in the lift-off marking the
end of the stance phase. Both the lift-off of the step and
the peaks in the component factors occur progressively
earlier in the cycle as speed increases. The kinematic shift
is approximately as large as the pattern shift over the
range of speeds we reported, though there is not an exact
correspondence. For instance, the duration of the swing
phase at 1 km h−1 was a smaller fraction of the cycle length
than its duration at 5 km h−1 (reduced by 11.6%), while
the average shift of varimax factors was 8.9%. It may
be that the shift in activity peaks is somehow related to
the timing of force production required by the loaded
limb at touch down, and this may need to be anticipated
differently (i.e in a different kinematic phase) for different
speeds. Nevertheless, the tendency for the factors to be
timed according to the toe-off event supports the idea that
the origin of the gait cycle generation is the propulsion
rather than the heel strike event.

Davis & Vaughan (1993) proposed that the varimax
factors have a specific relationship to the propulsion
and loading events in locomotion. They suggested that
the factors represent motor ‘programmes’ for groups of
muscles that have to perform a given function during
locomotion. Some evidence for such a functional grouping
may be seen in our data, in the tendency for distal
extensors to load on factor 1 (presumably for propulsion)
and proximal extensors to load on factor 2 (for loading
or weight acceptance). This pattern was enforced by
increasing speed (Fig. 7A) and altered by changes in body
weight support that altered the propulsion and loading
demands (Fig. 7B). A more thorough analysis would
be required however, before drawing inferences about
such relationships between the factors and these specific
functional demands.

In contrast with this view, the EMG analysis during
supported locomotion suggests that the factors may not
relate easily to specific force demands during locomotion.
Propulsion and loading are not simply attenuated under
body weight support conditions, but rather undergo
qualitative changes as well (Ivanenko et al. 2002).
Moreover, there is a pronounced differential effect of body
load on leg flexor and extensor muscles (Finch et al. 1991;
Ivanenko et al. 2002), and energetic aspects of walking in
simulated reduced gravity are also different (Griffin et al.
1999; Cavagna et al. 2000). Thus the lack of any substantial
qualitative changes in the five factors with weight support

makes it seem unlikely that the factors can be easily related
to strictly kinetic conditions in the limbs. The differences
between the normal and weight-supported factors were
primarily differences in timing (Fig. 5C), particularly at
75% and 95% BWS where there are also differences in
the stepping kinematics (Finch et al. 1991; Ivanenko et al.
2002). For example the peaks in factors 1, 3 and 5 seem
to be systematically phase-shifted to an earlier time in the
cycle (relative to heel strike) with weight support.

In their analysis of EMG activity recorded bilaterally
from eight leg muscles, Olree & Vaughan (1995) suggested
that two of the five varimax factors they found (see
Fig. 4C) namely factors 1 and 3 were actually the same
as factors 2 and 4, but phase shifted by one-half a step
cycle. According to that interpretation there may be only
three basic factors that are somehow associated with each
limb. Although their bilateral recordings suggested that the
three component patterns may be distributed primarily
to ipsilateral muscles, the extensive unilateral recording
in our study showed that both the ipsilaterally and
contralaterally phased patterns are significantly present in
the activity patterns of the ipsilateral muscles. This finding
does not necessarily contradict the interpretation of Olree
& Vaughan (1995), but it does imply a more complex
distribution of activity to the working muscles than
one might suppose from a more straightforward pattern
generator model of locomotion. While the evidence
suggests there may be lateralized components that oscillate
in opposite phase, the components may be distributed to
many or all of the motoneurones bilaterally via a network
that modulates the weighting of each component, perhaps
according to the kinetic demands of the biomechanical
system.

Nevertheless, it is tempting to speculate from these
findings that the locomotion circuitry may consist of a few
simple oscillating circuits that provide the major input
to the active motoneurones during locomotion (Patla,
1985; Orlovsky et al. 1999; Yakovenko et al. 2002). This
was explored by Patla et al. (1985) in a model of the
pattern generator for locomotion in which they proposed
that a limb pattern generator has three subsystems. They
were represented by a few sinusoidal oscillators and wave-
shaping circuits to produce a set of basic waveforms
(corresponding to the EMG factors) and weighting
functions to generate appropriate muscle activations. This
idea may also relate in some way to the spinal cord
motor primitives. The primitives represent specific muscle
synergies that may be combined in different proportions to
produce a variety of limb positions and movements (Bizzi
et al. 2000; Kargo & Giszter, 2000; d’Avella et al. 2003).
The EMG factors, in contrast, represent only the temporal
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structure of the muscle activity. Perhaps the temporal
patterns are established upstream from the formation of
primitives, which may be created from the component
factors by the factor loadings associated with each specific
task. Thus, the components (essentially bursts of activity)
may be parcelled out to muscles via a network that creates
the muscle synergies required to produce the appropriate
locomotion kinematics. Since this process appears to occur
dynamically, a major part of the proprioceptive feedback
may be directed to modulate this network, along with
descending information from vestibular and other balance
control systems as well as more global commands that may
determine speed, for example. Thus we propose that the
modulations occurring within this spinal network may
be a key element in a kind of inverse model that adapts
the global activity patterns to the kinetic and kinematic
demands of the limbs during locomotion.
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