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P2X receptor subtype-specific modulation of excitatory
and inhibitory synaptic inputs in the rat brainstem

Tomokazu Watano, Jennifer A. Calvert, Catherine Vial, Ian D. Forsythe and Richard J. Evans
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The role of P2 receptors in synaptic transmission to the rat medial nucleus of the trapezoid body
(MNTB) was studied in an in vitro brain slice preparation. Whole-cell patch recordings were
made and spontaneous synaptic responses studied under voltage clamp during application
of P2X receptor agonists. ATPγS (100 µM) had no effect on holding current, but facilitated
spontaneous excitatory postsynaptic current (sEPSC) frequency in 41% of recordings and
facilitated spontaneous inhibitory postsynaptic currents (sIPSCs) in 20% of recordings. These
were blocked by the P2 receptor antagonist suramin (100 µM). α,β-meATP also facilitated
sEPSC and sIPSC frequency, while L-β,γ-meATP facilitated only sIPSCs. The sEPSC facilitation
by ATPγS was blocked by TTX (but did not block facilitation of sIPSCs). sEPSC facilitation
was blocked by PPADS (30 µM) and the selective P2X3 receptor antagonist A-317491 (3 µM),
suggesting that modulation of sEPSCs involves P2X3 receptor subunits.α,β-meATP-facilitated
sIPSCs were also recorded in wild-type mouse MNTB neurones, but were absent in the MNTB
from P2X1 receptor-deficient mice demonstrating a functional role for P2X1 receptors in the
CNS.
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ATP is released from neurones along with a range
of classical neurotransmitters (Richardson & Brown,
1987; von Kugelgen et al. 1998; Jo & Schlichter, 1999),
from glial cells and following tissue damage (Inoue,
1998; Queiroz et al. 1999), and acts via P2X and P2Y
receptors. P2X receptors are ligand-gated non-selective
cation channels with significant calcium permeability
(Evans et al. 1996; Garcia-Guzman et al. 1997; Virginio
et al. 1998a; Surprenant et al. 2000). Seven receptor sub-
units (P2X1–7) have been identified at the molecular level
which associate as homo- and hetero-trimeric channels
(e.g. P2X2/3, P2X4/6, P2X1/5) with a range of phenotypes
(see review see North, 2002). Seven P2Y G-protein-
coupled receptor genes have been identified (P2Y1, P2Y2,
P2Y4, P2Y6, P2Y11, P2Y12 and P2Y13) with an array of
signalling and pharmacological properties (Chang et al.
1995; Rice et al. 1995; Tokuyama et al. 1995; Communi
et al. 1997; Bogdanov et al. 1998; Hollopeter et al. 2001;
Zhang et al. 2002).

P2 receptors mediate a broad range of effects in the
nervous system. For example, presynaptic P2X receptors
regulate transmitter release (von Kugelgen et al. 1999;
Nakatsuka & Gu, 2001; Smith et al. 2001) both through
their depolarizing action and through direct calcium influx

(Lalo & Kostyuk, 1998; Shibuya et al. 1999; Khakh &
Henderson, 2000). Postsynaptic P2X receptors mediate
fast excitatory transmission as well as having roles in
sensory transduction and neuronal excitability (Jang
et al. 2001; Vlaskovska et al. 2001). P2Y receptors exert
both excitatory and inhibitory influences, regulating ion
channels and transmitter release and mediating calcium
waves in glial cells (Boehm et al. 1995; Harden et al. 1995;
Ikeuchi & Nishizaki, 1995; Fam et al. 2000; Filippov et al.
2000).

The medial nucleus of the trapezoid body (MNTB)
forms an inverting relay in the binaural auditory
pathway (Barnes-Davies & Forsythe, 1995; Forsythe et al.
1998). It receives an excitatory glutamatergic input via
the calyx of Held (Forsythe, 1994) and provides an
inhibitory projection (Smith et al. 2000) to ipsilateral
medial and lateral superior olives (MSO and LSO,
respectively). MNTB neurones also receive excitatory
glutamatergic inputs from non-calyceal terminals and
glycinergic/GABAergic inhibitory inputs (Forsythe &
Barnes-Davies, 1993; Hamann et al. 2003). Immuno-
histochemical, in situ and electrophysiological studies
show that P2X receptors are expressed in the auditory
system (Nikolic et al. 2001; Housley et al. 2002), hair
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cells (Glowatzki et al. 1997; Raybould & Housley, 1997;
Housley et al. 1998), spiral ganglion (Salih et al. 1999) and
brainstem, including the trapezoid nucleus and cochlear
nucleus (Yao et al. 2000). There is also evidence for cochlea
expression of P2Y receptors (Housley et al. 2002).

There are many regions in the CNS where P2 receptors
have been localized but comparatively few specific
functional roles have been identified. In this study, we have
explored the role of P2 receptors in rat auditory brain-
stem. We have shown that ATP enhances excitatory and
inhibitory transmission in the MNTB via distinct P2X
receptor-ion channels and demonstrated a functional role
for P2X1 receptor subunits in the CNS.

Methods

Brain slice preparation

Transverse brainstem slices including the MNTB, were pre-
pared as previously described (Barnes-Davies & Forsythe,
1995; Smith et al. 2000). In brief, 9- to 13-day-old Lister
Hooded rats or mice (wild-type or P2X1 receptor deficient
as previously described; Mulryan et al. 2000) were killed
by decapitation and the brainstem removed into cooled
(0–4◦C) low-Na+, high-sucrose artificial cerebrospinal
fluid (aCSF; see below). Transverse slices (120 µm thick)
were cut sequentially in the rostral direction from the level
of the 7th nerve. The slices were then incubated for 1 h
at 37◦C in normal aCSF (see below) bubbled with 95%
O2–5% CO2, giving a pH of 7.4. Following incubation, the
slice maintenance chamber was allowed to cool to room
temperature.

For recording, one slice was transferred to a Peltier
controlled environmental chamber mounted on the stage
of an upright Axioskop microscope (Zeiss, Germany).
The microscope was fitted with differential interference
contrast (DIC) optics and individual cells were visualized
with a × 40 water-immersion objective (Zeiss, NA 0.75).
The environmental chamber (300–400 µl volume) was
continuously superfused with normal aCSF (bubbled with
95% O2–5% CO2) at a rate of 0.7–1.0 ml min−1 using a
peristaltic pump (Gilson, Minipuls 3), at a temperature
of 27◦C. Drugs were applied by switching between one of
four perfusion lines, all of which entered directly into the
recording chamber so as to minimize dead space.

Cell culture

Human embryonic kidney 293 (HEK-293) cells stably
expressing the recombinant rat glycosilated P2X6 receptor
were a gift from Dr I. P. Chessell (GlaxoSmithKline, UK).

Cells were maintained in Eagle’s medium supplemented
with 10% fetal bovine serum, 1% nonessential amino acids
and 0.6 mg ml−1 Geneticine (Gibco BRL, UK) at 37◦C in
a humidified atmosphere of 5% CO2 and 95% air. When
required for study, cells were attached to glass coverslips
(13 mm) and used for experiment the next day.

Electrophysiological study

Recordings were made using the whole-cell patch-clamp
technique as previously described (Barnes-Davies &
Forsythe, 1995; Smith et al. 2000). Patch pipettes were
made with a two stage vertical pipette puller (PP-83,
Narishige, Japan) from standard walled filamented
borosilicate glass (Clark Electromedical, GC150F-7.5)
Pipette resistances were around 5 M� when filled with
intracellular solution (see below). Recordings were made
from visually identified MNTB principal neurones. An
Axopatch 200B patch-clamp amplifier (Axon Instruments,
CA, USA) was used. Series resistances were under 20 M�

and 70–80% compensation was used with 10 µs lag.
Membrane currents were acquired by Digidata 1322A
interface (Axon Instruments) with a PC computer using
pCLAMP8 software (Axon Instruments). Data were
filtered at 5 kHz with a low-pass Bessel filter and digitized
at between 5 and 20 kHz. Spontaneous currents (sEPSCs
and sIPSCs) were recorded at a holding potential of
−70 mV. Analysis of sEPSCs and sIPSCs was conducted
using the whole-cell analysis programs WinEDR and
WinWCP (John Dempster, University of Strathclyde) with
a detection amplitude threshold of 29.3 pA. For analysis of
spontaneous currents we measured the number of events
in 30 s intervals; control currents were measured 60–30 s
before drug application, a test period was measured 30 s
after the commencement of agonist perfusion and recovery
was measured 5 min after drug washout. For experiments
with the antagonist suramin the frequency of spontaneous
events was measured 150 s after the start of suramin
application. Pharmacological studies were conducted only
on those MNTB neurones showing spontaneous IPSCs
or EPSCs under control conditions. Resting average
spontaneous rates could vary by up to 20%, hence only
enhancements of over 2-fold and where the rate on
washout returned to control levels were analysed further.
Recordings from HEK-293 cells expressing recombinant
rat P2X6 receptors were made using whole-cell patch-
clamp and agonists were applied using a U-tube (Evans &
Kennedy, 1994). Cells were perfused with an Etotal solution
(see below). Whole-cell currents were recorded at holding
potential of −60 mV.
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Solution and drugs

The low-Na+, high-sucrose aCSF used for slice pre-
paration contained (mm): 250 sucrose, 2.5 KCl, 10 glucose,
1.25 NaH2PO4, 26 NaHCO3, 2 sodium pyruvate, 3 myo-
inositol, 0.5 ascorbic acid, 4 MgCl2 and 0.1 CaCl2. The
normal aCSF used for incubation and control perfusion
media for slices contained (mm): 125 NaCl, 2.5 KCl,
10 glucose, 1.25 NaH2PO4, 2 sodium pyruvate, 3 myo-
inositol, 0.5 ascorbic acid, 2 CaCl2 and 1 MgCl2. The
normal aCSF solutions were bubbled with 95% O2–5%
CO2, giving a pH of 7.4. The patch solution for slices,
contained (mm): 110 CsCl, 40 Hepes, 10 TEA-Cl, 1 EGTA
(pH 7.3 adjusted by CsOH). The external solution for the
HEK-293 cell line contained (mm): 150 NaCl, 2.5 KCl, 10
Hepes, 2.5 CaCl2 and 1 MgCl2 (pH 7.3 adjusted by NaOH).
The patch solution for the HEK-293 cell line contained
(mm): 140 potassium gluconate, 5 NaCl, 10 Hepes, 10
EGTA (pH 7.3 adjusted by KOH).

ATP, UTP, adenosine-5′-O-(3-thiotriphosphate)
(ATPγ S), α,β-methyleneATP (α,β-meATP), adenosine,
suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-di-
sulphonate (iso-PPADS) and tetrodotoxin (TTX) were
purchased from Sigma (UK). 6-Cyano-7-nitro-
quinoxaline-2,3-dione (CNQX), strychnine and bi-
cuculline were purchased from Tocris Cookson (St Louis,
MO, USA). l-β,γ -Methylene ATP (L-β,γ -meATP) was
purchased from RBI (UK). A-317491 was a gift from
Abbott Laboratories, USA.

Statistical analyses

Statistical analyses were performed with the Dunnett
multiple comparisons or Chi-squared tests, with P < 0.05
considered significant.

Results

Spontaneous excitatory and inhibitory synaptic
currents

Two distinct types of spontaneous synaptic transient
inward currents were recorded from MNTB neurones in
the brain slice; (i) fast currents with a half-decay time of
≤ 3 ms and (ii) slow currents that decayed with a half-
time of > 3 ms. Using a CsCl2-based internal solution
and holding potential of −70 mV, both excitatory and
inhibitory synaptic inputs gave rise to inward currents.
The MNTB expresses AMPA receptors of the GluRD
‘flop’ spliced-variant that have rapid kinetics and are
calcium permeable (Geiger et al. 1995), giving fast EPSC
decay time constants (Barnes-Davies & Forsythe, 1995;

Figure 1. Characteristics of spontaneous excitatory and
inhibitory synaptic currents in MNTB neurones
A, CNQX inhibited only spontaneous currents with a fast time course
(half-decay ≤ 3 ms). Strychnine and bicuculline inhibited spontaneous
currents with a slow time course (half-decay > 3 ms). Five overlaid
traces are shown for control (upper), after application of 10 µM CNQX
(middle) and after application of 1 µM strychnine and 10 µM

bicuculline in the presence of 10 µM CNQX (bottom). B, in another cell
the antagonists were applied in reverse order. All spontaneous activity
was abolished in the presence of CNQX, strychnine and bicuculline.
C, averaged and expanded traces of the two types of spontaneous
currents showing their different decay times. The upper panel shows
normalized averaged traces (10 events) of fast and slow events in
control conditions. The lower panels show traces following the
application of 10 µM CNQX (left panel, data from A) or 1 µM

strychnine with 10 µM bicuculline (right panel, data from B).
D, summary: CNQX reduced only the fast spontaneous currents
(half-decay ≤ 3 ms) and strychnine with bicuculline reduced only slow
spontaneous current (half-decay > 3 ms). Each column indicates the
mean ± S.E.M. from 5 cells.
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Table 1. Summarized data of effect of some P2 agonists and antagonists on sEPSC and sIPSC frequency

Agonist sEPSC sIPSC No change
Total

(100 µM) % (n) Fold % (n) Fold % (n) n

ATPγ S 41 (70) 10.7 ± 3.7∗∗ 20 (33) 4.0 ± 1.0∗∗ 47 (79) 169
ATP 56 (9) 9.9 ± 5.4∗ 25 (4) 4.3 ± 1.7∗ 38 (6) 16
α,β-meATP 50 (7) 13.3 ± 7.0∗ 29 (4) 4.5 ± 1.7∗ 36 (5) 15
L-β,γ -meATP 0 — — 19 (5) 4.0 ± 0.8∗∗ 81 (21) 26
UTP 0 — — 0 — — 100 (9) 9
UDP 0 — — 0 — — 100 (9) 9
ADP 0 — — 0 — — 100 (9) 9

ATPγ S +
TTX 0 — — 24 (4) 5.4 ± 1.3∗∗ 76 (13) 17
TTX, low [Ca2+]o 0 — — 0 — — 100 (16) 16
Adenosine 60 (6) 9.2 ± 3.7∗ 30 (3) 3.8 ± 1.8∗ 30 (3) 10
Suramin 0 — — 0 — — 100 (11) 11
Suramin washout 55 (6) 10.8 ± 0.5∗ 27 (3) 4.0 ± 0.2∗ 36 (4) 11
PPADS 0 — — — — — 100 (5) 5
A-317491 0 — — — — — 100 (4) 4

Data show percentages and numbers (n) of neurones responding, and increases in frequency of sEPSCs and sIPSCs relative to control
(Fold). Fold data shown as mean ± S.E.M. of effective cells only. No change means that change is less than 1.5-fold of control. (The data
for sEPSC and sIPSC included the number of neurones in which both sEPSC and sIPSC frequency was increased). ∗∗ P < 0.01, ∗ P < 0.05,
Dunnett’s multiple test.

Taschenberger & von Gersdorff, 2000). AMPA receptor-
mediated currents were blocked by the glutamate receptor
antagonist CNQX (10 µm) in all cells tested (5/5) (Fig. 1A,
C and D). The slow currents mediated by corelease of
GABA and glycine (Jonas et al. 1998; Smith et al. 2000)
were abolished by combined application of the glycine
receptor antagonist strychnine (1 µm) and the GABAA

receptor antagonist bicuculline (10 µm) in all cells tested
(5/5) (Fig. 1B, C and D). TTX (0.5 µm) had no effect on
basal rates of spontaneous IPSCs or EPSCs in all cells tested
(17/17). Co-application of all three antagonists blocked all
spontaneous synaptic currents (Fig. 1A and B). Therefore
spontaneous synaptic currents in the MNTB arise from
glutamatergic ‘fast’ sEPSCs and mixed glycine–GABAergic
‘slow’ sIPSCs.

ATPγS evoked transient facilitation of sEPSC
and sIPSC frequency

We applied ATPγ S, the metabolically stable ATP analogue,
to examine the effects of P2 receptor activation on auditory
brainstem activity. ATPγ S (100 µm) had no effect on the
holding current of MNTB neurones (n =169), indicating
that functional P2X receptors are not expressed on the cell
body or dendrites of MNTB neurones. However, in 53%
of neurones ATPγ S showed a dramatic potentiation of
spontaneous synaptic current frequency (see Table 1; 47%
of neurones showed no change in spontaneous synaptic
currents). The effect was transient and decayed during

the continued application of ATPγ S (over a time course
of around 1–2 min). Analysis of this increased activity
revealed three different patterns (Figs 2 and 3); (1) the most
common response (34%, 57/169) was a transient increase
in sEPSC frequency (Fig. 2); (2) 12% (20/169) of MNTB
neurones showed a large increase in sIPSC frequency
(Fig. 3A), and (3) 8% of neurones (13/169) showed a large
increase of both sEPSC and sIPSC frequency (Fig. 3B).
Overall, 41% of MNTB neurones showed increased sEPSC
frequency and 20% showed increased sIPSC frequency
(Table 1, Fig. 3C), however, ATPγ S had no effect on
the mean current amplitude of sEPSCs (101 ± 8% of
control) or sIPSCs (94 ± 7% of control). Following 3 min
pre-application of suramin, co-application with ATPγ S
had no effect on either sIPSC or sEPSC frequency (11/11
neurones) (Fig. 4). As a positive control following washout
of suramin, ATPγ S increased sIPSC and sEPSC frequency
in 27% and 55% of neurones (3/11 and 6/11), respectively.
These results indicate that ATPγ S mediates the increase in
spontaneous synaptic transmission through the activation
of P2 receptors.

P2Y receptor and P1 adenosine receptor agonists
have no effect on spontaneous activity

ATPγ S is an effective agonist at P2X receptors and at
some P2Y receptors. To investigate which P2 receptors are
expressed in the auditory brainstem we used a range of
nucleotide agonists showing some P2Y subtype specificity
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and with action at P2X receptors. P2Y1, P2Y11, P2Y12 and
P2Y13 are ADP sensitive, P2Y2 and P2Y4 receptors are UTP
sensitive, and the P2Y6 receptor is UDP sensitive (Webb
et al. 1993; Chen et al. 1996; Communi et al. 1996; Nicholas
et al. 1996; Bogdanov et al. 1998; Hollopeter et al. 2001;
Zhang et al. 2002).

UTP, UDP and ADP (100 µm) preferentially activate
specific P2Y receptors but had no effect on the holding
current of MNTB neurones or on the frequency of
spontaneous synaptic currents (Fig. 5A, Table 1). As a
positive control following the washout of ADP, UTP or
UDP, ATPγ S increased the frequency of spontaneous
synaptic events (Fig. 5A). ATP is metabolically unstable
and is degraded to ADP, AMP and adenosine by ecto-
nucleotidases (Kegel et al. 1997; Cunha et al. 1998; Ohkubo

Figure 2. ATPγS evoked a transient facilitation of sEPSC
frequency
In this cell ATPγ S facilitated only spontaneous EPSC frequency with no
effect on spontaneous IPSCs. A, ATPγ S was applied during the period
indicated by the horizontal bar. B, overlaid traces (five sweeps) during
control (i), during the application of 100 µM ATPγ S (ii) and after
washout (iii) in the periods indicated by the filled bars in A. C, the time
course of changes in sEPSC frequency are shown on the left, no
changes were observed in sIPSC frequency (right).

et al. 2000). For example in the caudal regions of the rat
nucleus tractus solitarii, ATP mediates excitatory trans-
mission indirectly through breakdown to adenosine and
activation of A1 receptors (Cunha et al. 1998; Kato &

Figure 3. ATPγS can evoke transient facilitation of sEPSC- and
sIPSC-frequency
A, ATPγ S increased sIPSCs frequency only in this MNTB neurone.
Aa, ATPγ S was applied during the period indicated by the horizontal
bar. Ab, overlaid traces (5 sweeps) are shown for control (i) and during
the application of 100 µM ATPγ S (ii). Ac, summary of ATPγ S-mediated
frequency changes for sEPSCs (left) and sIPSCs (right) in this cell. The
bar graphs shows the frequency in control (i), and during the
application of 100 µM ATPγ S (ii) and after wash (iii) in the period
indicated by the bars in a. B, ATPγ S evoked facilitation of both sEPSC
and sIPSCs frequency in this MNTB neurone. Ba, example traces
showing the effect of ATPγ S. Bb, overlaid traces (5 sweeps) are shown
for control (i) and during the application of 100 µM ATPγ S (ii). Bc, bar
graphs show the change in sEPSC and sIPSC frequency in control (i), on
application of 100 µM ATPγ S (ii) and following wash (iii). C, summary:
each column indicates the mean ± s.e.mean from 56 (sEPSC) and 24
cells (sIPSC). Open bars above the data trace indicate analysis epochs,
with illustrated traces corresponding to times indicated by the filled
portion of the bar in this and subsequent figures.
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Shigetomi, 2001). In the present study adenosine (10 µm)
had no effect on resting frequency or ATPγ S-induced
facilitation (Table 1). ATP (100 µm) had similar effects
to ATPγ S on sEPSC and sIPSC frequency (Table 1),
indicating that it was acting directly through P2X receptors
(ATP had no significant effect on the mean current
amplitude of sEPSCs 92 ± 7% (n = 9) and sIPSCs 97 ± 3%
of control (n = 4)). These results indicate that P2Y or P1
adenosine receptors do not regulate MNTB spontaneous
activity and that ATPγ S effects are most likely to be
mediated through P2X receptors. The lack of expression
of P2X receptors on acutely dissociated astrocytes suggests
that ATPγ S is acting directly at neuronal P2X receptors to

Figure 4. Suramin blocked the ATPγS-evoked facilitation of
sEPSC and sIPSC frequency
A, suramin and ATPγ S were applied as indicated by the horizontal
bars. B, overlaid traces (5 sweeps) are shown for control (i), on
application of 100 µM suramin (ii), during co-application of 100 µM

ATPγ S and suramin (iii), washout (iv), for 100 µM ATPγ S applied
following washout of suramin (v). The final wash (vi) data are shown in
the averaged graphs. C, summary bar graphs showing the effect of
ATPγ S on the frequency of sEPSCs (left) and sIPSCs (right) in the
presence (ii, iii) or absence of suramin. Each column indicates the
mean ± S.E.M. from 6 (sEPSC) and 3 (sIPSC) cells (only those cells that
responded to ATPγ S following washout of suramin were included).

modulate release of excitatory mediators, e.g. glutamate
(Jeremic et al. 2001).

Subclassification of P2X receptor-mediated increases
in synaptic activity

To further characterize the P2X receptor subtypes
underlying the ATPγ S-mediated responses we used

Figure 5. Effect of UTP and α,β-meATP on the spontaneous
currents
A, UTP had no effect on the spontaneous currents; however, this cell
could respond to ATPγ S. B, α,β-meATP evoked transient facilitation of
both sEPSC and sIPSC frequency. α,β-meATP was applied during the
period indicated by the horizontal bars. C, overlaid traces (5 sweeps)
are shown for control (i), during the application of 100 µM α,β-meATP
(ii) and after wash (iii). D, summary data for the effect of α,β-meATP on
the frequency of sEPSCs (left) and sIPSCs (right). Each column shows
the frequency in control (i), on application of 100 µM α,β-meATP (ii)
and after wash (iii). Each column shows the mean from 7 (sEPSC) and
4 (sIPSC) cells (including only those cells responding to α,β-meATP).
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metabolically stable and subtype-selective agonists.
α,β-meATP is an agonist at recombinant P2X receptors
containing P2X1, P2X3 or P2X6 receptor subunits (e.g.
homomeric P2X3 and heteromeric P2X2/3 receptors;
North, 2002; Jones et al. 2004 and current study) and
evoked increases in sIPSC and sEPSC frequency similar
to ATPγ S (Table 1, Fig. 5B–D) with no effect on the
mean current amplitudes (sEPSCs 100 ± 10% of control
(n = 7) and sIPSCs 102 ± 13% control (n = 4)). The
percentages of neurones that responded to ATPγ S, ATP
and α,β-meATP were similar, indicating no additional
expression of ATPγ S-sensitive but α,β-meATP-insensitive
P2X receptors (Table 1). The relative contribution of

Figure 6. l-β,γ-meATP can induce P2X6 receptor-mediated
currents and evoked transient facilitation of sIPSC
frequency only
A, ATP (100 µM), α,β-meATP (100 µM) and L-β,γ -meATP (100 µM)
evoked inward currents via P2X6 receptors expressed in HEK-293 cells.
B, L-β,γ -meATP facilitated sIPSC frequency onto MNTB neurones.
C, overlaid traces (5 sweeps) for control (i), during the application of
100 µM L-β,γ -meATP (ii) and after wash (iii). D, summary of the effect
of L-β,γ -meATP on the frequency of sEPSCs (left) and sIPSCs (right).
Each column shows the frequency in control (i), on application of
100 µM L-β,γ -meATP (ii) and after wash (iii). Data are the mean from
26 and 5 cells, respectively.

individual subunits was investigated using L-β,γ -meATP,
which acts at P2X1 receptors, but not at P2X3 receptors
(Evans et al. 1995; Lewis et al. 1995; Grubb & Evans, 1999).
The properties of recombinant P2X6 homomeric receptors
have been described recently; this receptor only forms
functional channels when correctly glycosylated (Jones
et al. 2004). ATP (100 µm), α,β-meATP (100 µm) and
L-β,γ -meATP (100 µm) all evoked inward currents
at P2X6 receptors (9.9 ± 1.2, 12.0 ± 0.9 and
4.5 ± 0.4 pA pF−1, respectively, Fig. 6A) expressed in
HEK-293 cells.

In the MNTB slices l-β,γ -meATP (100 µm) evoked
increases in sIPSC frequency (with no effect on the mean
current amplitude 104 ± 9% of control (n = 5) but did not
change sEPSC frequency (Fig. 6B–D, Table 1). The similar
percentage of inhibitory neurones responding to ATPγ S,
ATP, α,β-meATP and l-β,γ -meATP indicates that
there are no additional inhibitory neurones expressing
ATPγ S-sensitive but l-β,γ -meATP-insensitive P2X
receptors. To determine whether the α,β-meATP-
sensitive, but l-β,γ -meATP-insensitive increase in
sEPSCs was mediated by receptors containing P2X3

receptor subunits we used the selective P2X3 receptor
antagonist A-317491 (Jarvis et al. 2002). ATPγ S-evoked
increases in sEPSCs were abolished by A-317491 (3 µm)
and iso-PPADS (30 µm) (Fig. 7).

The sensitivity to α,β-meATP and l-β,γ -meATP
of the sIPSCs suggested the involvement of either
P2X1 or P2X6 receptor subunits and is similar to
that described recently in the somatosensory cortex
(Pankratov et al. 2003). To determine the contribution
of P2X1 receptors we compared responses in MNTB
neurones from wild-type and P2X1 receptor-deficient
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Figure 7. Summary of P2 antagonism of sEPSC frequency
potentiation by ATPγS (100 µM)
A, the P2X3-specific antagonist A-317491 (3 µM) caused a
87.5 ± 12.5% (n = 4) inhibition of the sEPSC potentiation generated
by ATPγ S. B, 30 µM PPADS reduced the ATPγ S-induced potentiation
of sEPSCs by 98.8 ± 1.2% (n = 5).
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mice (Mulryan et al. 2000). The sIPSC frequency
was potentiated by α,β-meATP in 8/8 MNTB neuro-
nes from wild-type mice, but α,β-meATP failed to
evoke any change in sIPSC frequency recorded from
P2X1 receptor-deficient mouse MNTB neurones (0/5)
(χ 2 P < 0.01). These results demonstrate that in the mouse
and probably in the rat, P2X1 receptors are expressed on
the inhibitory projections to the MNTB.

Figure 8. ATPγS applied in the presence of TTX and low [Ca2+]o

(0.1 mM)
A, ATPγ S evoked facilitation of sIPSC-frequency but not
sEPSC-frequency in the presence of 0.5 µM TTX. ATPγ S failed to
change sIPSC or sEPSC frequency in low Ca2+ conditions (0.1 mM).
B, overlaid traces (5 sweeps) in control (i), 5 min following the
application of 0.5 µM TTX (ii), during co-application of 100 µM ATPγ S
and 0.5 µM TTX (iii) and during application of 100 µM ATPγ S in low
[Ca2+]o and in the presence of 0.5 µM TTX (vi). C, summary bar graphs
showing frequency changes for sEPSCs (left) and sIPSCs (right). Each
column shows control (i), application of 0.5 µM TTX (ii), co-application
of 100 µM ATPγ S and 0.5 µM TTX (iii), wash of ATPγ S (iv) in TTX,
5 min after the application of low [Ca2+]o (v), on application of
100 µM ATPγ S in low [Ca2+]o in the presence of 0.5 µM TTX (vi) and
after wash ATPγ S in low [Ca2+]o conditions in TTX (iv). Each column
indicates the mean ± S.E.M from 16 and 4 cells, respectively (all cells
for sEPSCs and only those cells potentiated by ATPγ S for sIPSCs).

Is action potential firing required for the modulatory
actions of ATPγS on sEPSC and sIPSC frequency in
MNTB neurones?

The P2X receptor effects may depend on the cellular
localization of the receptors; for example in intrinsic
sensory neurones P2X receptors are present on the cell
body and their activation leads to depolarization and
firing of action potentials (Bertrand & Bornstein, 2002).
P2X receptors may also be present at the presynaptic
nerve terminal and directly regulate transmitter release
via calcium influx through the receptor ion channel (Rhee
et al. 2000; Kato & Shigetomi, 2001; Nakatsuka & Gu,
2001). We used the voltage-gated sodium channel blocker
tetrodotoxin (TTX) to determine whether action potential
propagation was required for P2X receptor-mediated
facilitation of spontaneous synaptic transmission. Figure 8
shows the typical effect of TTX (0.5 µm) on spontaneous
currents and the ATPγ S-evoked facilitation. TTX did not
change the frequency of spontaneous currents in any
neurones (17/17) and in the presence of TTX, ATPγ S
no longer facilitated sEPSC frequency (Table 1, Fig. 8C).
However the proportion of cells responding to ATPγ S with
an increase in sIPSCs was unchanged (Table 1, Fig. 8C).
These results suggest that P2X receptors are present pre-
dominantly on the cell body or fibre tracts in excitatory
pathways, while for inhibitory pathways they are located
on the presynaptic nerve terminals.

Is the facilitation of sIPSC frequency dependent on
calcium influx?

In order to determine if the facilitation of sIPSC frequency
was Ca2+ dependent we tested the effect of ATPγ S in
low external Ca2+ solution (low [Ca2+]o) and in the pre-
sence of TTX. As a positive control in 0.5 µm TTX, ATPγ S
facilitated sIPSC frequency in 24% (4/17) of cells (Table 1,
Fig. 8). After 5 min perfusion of low [Ca2+]o, ATPγ S no
longer facilitated sIPSC frequency in any of the 16 cells
tested (Table 1, Fig. 8), indicating that calcium influx via
presynaptic P2X receptors mediates the increase in sIPSCs
frequency.

Discussion

In this study we have shown that functional P2X receptor-
ion channels are expressed in the auditory brainstem where
they act to facilitate transmitter release in the super-
ior olivary complex. Although ATP potentiates release
at both excitatory and inhibitory synapses, it does so
by different P2X receptor subtypes expressed at different
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cellular locations: receptors comprising P2X3 receptor sub-
units on cell bodies or axons of excitatory pathways and
receptors comprising P2X1 receptor subunits directly on
the presynaptic terminals of inhibitory pathways (Fig. 9).

The application of ATPγ S (or indeed any of a number of
purinergic agonists) had no effect on the holding current of
MNTB neurones, suggesting that functional P2X receptor-
ion channels are not present on MNTB somas (or in their
short dendritic tree). P2X receptors could be present on
the axonal projections of the MNTB, but this remains to be
determined. In contrast, ATPγ S gave a profound increase
in spontaneous transmitter release from both excitatory
(11.5-fold) and inhibitory inputs (3.6-fold), indicating a
high degree of purinergic regulation within the super-
ior olivary complex. However not all inputs responded
with an increase in activity (41% of excitatory and 20%
of inhibitory inputs showed potentiation), suggesting that
there is a heterogeneity in the neuronal input to the MNTB.
ATPγ S is an agonist at all P2X receptors and many P2Y
receptors. We have shown that only P2X receptors were
involved in the reported effects since a range of P2Y
receptor agonists (selective for all currently identified P2Y
receptor subtypes) had no effect on spontaneous synaptic
currents in the MNTB. Using subtype-selective purinergic
agonists we have demonstrated the presence of molecularly
distinct P2X receptors on excitatory and inhibitory
inputs.

MNTB neurones receive excitatory input from a single
giant synapse (calyx of Held), which covers around half
of the somatic surface area, as well as conventional
glutamatergic synaptic terminals (Hamann et al. 2003).
P2X receptor-mediated potentiation of sEPSCs was
sensitive to TTX, indicating that the receptors were located

Excitatory neuron Inhibitory neuron

glutamate GABA
and/or
glycine

MNTB

P2X3 receptor subunit
P2X1 receptor subunit

sEPSC sIPSC

Figure 9. Schematic diagram of excitatory and inhibitory inputs innervating rat MNTB neurones and
regulated by P2X receptors
The α,β-meATP-sensitive, L-β,γ -meATP-insensitive, TTX-sensitive excitatory input is consistent with mediation by
channels containing P2X3 receptor subunits located on the cell body. Activation of these P2X receptors increases
spontaneous glutamate release at non-calyceal synapses. Mediation of the L-β,γ -meATP-sensitive inhibitory input is
consistent with expression of channels containing P2X1 receptor subunits located on the nerve terminal. Activation
of these receptors leads to an increase in spontaneous IPSCs in a TTX-insensitive manner.

predominantly on cell bodies or axon tracts of excitatory
fibres innervating the MNTB (it is unlikely that a poly-
synaptic pathway is involved due to the orientation during
cutting of the brain slice). The giant calyceal input is
unlikely to be involved in P2X receptor stimulation as the
increases in sEPSCs were blocked by TTX, hence they must
require action potential propagation. Such spontaneous
action potentials would generate giant sEPSCs at the calyx
of Held, which were never observed. However, presynaptic
P2X receptors have been observed at other giant synapses
(Sun & Stanley, 1996). Previous reports have demonstrated
a modest depression of the evoked EPSC at the calyx
of Held/MNTB synapse by adenosine (Barnes-Davies &
Forsythe, 1995) and in the present study adenosine had no
effect on the frequency of sEPSCs. Thus the potentiation of
spontaneous excitatory events is probably via non-calyceal
high threshold excitatory inputs innervating the MNTB,
as previously described (Hamann et al. 2003).

In addition to ATPγ S stimulation, transmitter release
from the excitatory terminals was potentiated by
α,β-meATP (an agonist at recombinant receptors
containing P2X1, P2X3 and P2X6 receptor subunits).
The potentiation of sEPSCs was abolished by the P2X3

receptor-selective antagonist A-317491 (Jarvis et al. 2002)
and insensitive to the P2X1 and P2X6 receptor subunit
agonist l-β,γ -meATP (Evans et al. 1995; Buell et al. 1996).
These results indicate that the high threshold excitatory
neurones express P2X3 receptor subunits. P2X3 receptor
subunits are thought to be expressed predominantly, if
not exclusively, on sensory nerves, suggesting that either
the MNTB receives a sensory afferent input or more likely,
given the anatomy of the brainstem, that P2X3 receptors
are not expressed exclusively on sensory fibres. The
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incorporation of P2X3 receptor subunits into heteromeric
channels can confer α,β-meATP sensitivity to the resulting
channel, e.g. P2X2/3 (where P2X2 receptor homomeric
channels are essentially insensitive to α,β-meATP) (Lewis
et al. 1995; Le et al. 1998). The desensitizing nature of the
response (1–2 min) is considerably slower than that for
recombinant P2X3 receptors (1–2 s) and suggests that the
P2X3 receptor subunit contributes α,β-meATP sensitivity
to a heteromeric P2X receptor on excitatory neurones.

The MNTB receives inhibitory drive from recurrent
inputs and from other brainstem nuclei of the super-
ior olivary complex (Guinan & Stankovic, 1996;
Kopp-Scheinpflug et al. 2002). The mixed GABA–
glycine-mediated sIPSCs reported are similar to those
characterized previously in the medial superior olive
(Smith et al. 2000). The sensitivity of P2X receptors located
on inhibitory inputs to l-β,γ -meATP (P2X1 or P2X6

receptor subunit selective) and the abolition of responses
in P2X1 receptor-deficient mice suggest that the P2X
channel on these neurones expresses P2X1 receptor sub-
units. This is consistent with in situ hybridization (Kidd
et al. 1995; Collo et al. 1996) and immunohistochemical
studies (Xiang et al. 1998; Yao et al. 2000; Rubio & Soto,
2001) that have shown these subunits to be expressed
in the CNS and brainstem (Yao et al. 2000). However,
it is unlikely that the response corresponds to homo-
meric P2X1 receptors as these show rapid desensitization
(1–2 s) (Evans et al. 1995). It seems more likely that
P2X1 receptor subunits contribute α,β-meATP and
l-β,γ -meATP sensitivity to a heteromeric P2X receptor on
the terminals of inhibitory neurones similar, for example,
to the P2X1/2 heteromeric channel in superior cervical
ganglion neurones (Calvert & Evans, 2004).

The TTX insensitivity of the P2X agonist effects on
inhibitory pathways demonstrates that action potential
propagation is not involved and suggests that the P2X
receptors are present on the presynaptic nerve terminal.
This is consistent with previous studies demonstrating pre-
synaptic P2X receptors regulating transmitter release (Sun
& Stanley, 1996; Nakatsuka & Gu, 2001; Smith et al. 2001)
and including inhibitory glycinergic (Rhee et al. 2000; Jang
et al. 2001) and GABAergic neurones (Hugel & Schlichter,
2000).

In summary we have shown that ATP can regulate
both excitatory and inhibitory inputs to MNTB neuro-
nes by the discrete localization of functional P2X
receptor subtypes in the brainstem; one mechanism is via
P2X3-containing receptors located on excitatory neuronal
cell bodies and a second is via presynaptic P2X1-containing
receptors located on inhibitory neurones. P2X receptors
have been described in the primary sensory apparatus

of the cochlea and this study demonstrates that these
receptors can also play a functional role in the regulation
of auditory processing at the level of the brainstem. This is
the first time that a functional role of P2X1 receptors has
been demonstrated in the central nervous system.
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