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Over the years, substantial gains have been made in locating re-
gions of agricultural genomes associated with characteristics, dis-
eases, and agroeconomic traits. These gains have relied heavily
on the ability to statistically estimate the association between
DNA markers and regions of a genome (quantitative trait loci
or QTL) related to a particular trait. The majority of these ad-
vances have focused on diploid species, even though many im-
portant agricultural crops are, in fact, polyploid. The purpose of
our work is to initiate an algorithmic approach for model selection
and QTL detection in polyploid species. This approach involves the
construction of all possible chromosomal configurations (models)
that may result in a gamete, model reduction based on estimation
of marker dosage from progeny data, and lastly model selection.
While simplified for initial explanation, our approach has demon-
strated itself to be extendible to many breeding schemes and less
restricted settings.

D etecting and locating genomic regions associated with quan-
titative traits is known as quantitative trait locus (QTL)

mapping. The statistical methods (1–8) employed to identify
QTL are numerous and rely heavily on the fact that the organ-
ism is diploid (i.e., homologous pairs of chromosomes arranged
in sets). In the QTL analysis framework, diploidy ensures that
the outcome of meiosis is predictable and that in most breeding
schemes, molecular markers are at most single dose (one copy)
and observable, and thus segregate in the ususal manner.

When there are more homologous chromosomes per set, the
species is referred to as polyploid. While most animal species
are diploid, there are many important agricultural crops such as
sugarcane, cotton, banana, alfalfa, potato, coffee, and wheat that
are polyploid. Among natural species of flowering plants, nearly
half are polyploid (9). Even in animals, polyploidy is known to
exist. Salmonid fish and specific amphibians display doubling
and tripling of their ploidy level (9).

In some cases, such as the potato, a polyploid species is closely
related to a diploid and standard diploid QTL analysis can be
successful. In other cases, such as sugarcane, there is no closely
related diploid species making QTL analysis very difficult. This
difficulty is due to several inherent factors. First, the number of
possible genotypes per marker and/or QTL are much greater in
polyploids than diploids simply because of the increased number
of chromosomes in the homologous set. Second, the numbers of
copies of each marker and/or QTL (known as the dosage) in the
parents and progeny is not obvious and are often not observable.
Third, the additional doses (copies) of a marker can mask re-
combination information; and fourth, the meiosis process (i.e.,
pairing behavior and outcome of meiosis) of the species is usu-
ally unknown. Our task in this paper is to identify each of these
important aspects of polyploidy and incorporate them into an al-
gorithmic model selection process which will be used in a single
marker analysis for QTL detection.

The two main characteristics that describe a polyploid are the
number of chromosomes in each homologous set (ploidy level)
and the pairing mechanism during meiosis. The pairing of chro-
mosomes can range from preferential (always pairing with the
same chromosome in the set) to completely random (equally

likely to pair with any other chromosome in the set). Through-
out the remainder of this paper, the term preferential pairing
will be used, and it holds the same meaning as disomic pairing.
Similarly, the term random pairing will be employed to mean
nonpreferential and/or polysomic pairing. Unlike the diploid sit-
uation, where the meiotic process is known to involve the pairing
of two homologous chromosomes, the process in a polyploid is
unpredictable. A common assumption, and the one we will use
throughout this paper, is that meiosis is simply an extension of
the diploid case and involves multiple pairings of homologous
chromosomes (i.e., preferential bivalent pairing). During poly-
ploid meiosis, pairs of chromosomes in each homologous set
align and possibly exchange genetic material (i.e., crossover).
Each (bivalent) chromosomal pair then contributes one chro-
mosome to the chromosomal set in each gamete.

The probability of each type of gamete depends on the spe-
cific set of homologous chromosomes (configuration), the ploidy
level, and the pairing mechanism of the organism. Unlike the
diploid case, the pairing mechanism is important because there
are more than two chromosomes in a set. Species that display
preferential pairing are known as allopolyploids, whereas species
displaying random pairing are referred to as autopolyploids.
Species intermediate to preferential pairing and random pairing
are often represented as % polyploid/random. Our work will be
based on a preferential pairing mechanism, thereby reducing the
complexity of polyploidy to essentially that of a diploid. How-
ever, as noted throughout, our methods are directly extendible
to more complicated % polyploid/random pairing mechanisms
or the random pairing situation.

In addition to determining the probabilities of each chromo-
somal pairing during meiosis, the ploidy level, k, is important
because it determines the possible dosage levels of the marker
and QTL in both parents and progeny. The dosage, denoted
by d, is the number of copies of a particular marker/QTL in
a homologous set of chromosomes. If we consider a standard
diploid backcross experimental design, there is at most one pos-
sible dose of each marker and/or QTL. For our polyploid situa-
tion, as many as k

2 copies of a genetic marker and/or QTL can
be passed to the gamete. For example, in a tetraploid (k = 4),
as many as d = 2 copies of the marker or QTL can be passed
to a gamete. One key issue when considering dosage of QTL
and/or marker for a polyploid is the fact that standard labora-
tory procedures cannot determine the genotypic state (dosage)
of either, and they are instead estimated via segregation ratios.
With this as a consideration, we restrict our attention to the even
ploidy levels of 4, 6, and 8. Although there are species with an
odd number of chromosomes in a homologous set, these species
are characteristically of reduced fertility and of limited general
interest in the QTL setting.

Abbreviation: QTL, quantitative trait locus
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The complications of polyploidy have restricted the use of
DNA markers for genetic mapping, as well as for identifying ge-
nomic regions responsible for quantitative traits. Wu et al. (10)
derived a theoretical approach for mapping single dose DNA
markers in polyploids under the assumption of nonpreferential
bivalent pairing. da Silva and Sorrells (11) published similar the-
ory with data in 1996. Ripol et al. (12) later developed theory
for placing multiple dose markers on previously estimated maps
comprised of single dose markers, by first estimating the dosage
of the molecular marker and then relying on this information to
determine its chromosomal pairing and relationship to known
single dose markers. Furthermore, both da Silva and Sorrells
(11) and Guimaraes and Sobral (13) pointed out that the use
of multiple dose markers improves the accuracy of detection of
pairing homologs and their organization into homology groups.
Each of these works (10–13) is an important contribution toward
understanding genome organization and evolution. Equally im-
portant in understanding history and its organization is the de-
tection of QTL in association with multiple dose markers. Some
of the first efforts to map QTL in polyploids (sugarcane) were
performed by Sills et al. (14), and later extended by Guimaraes et
al. (15). In these studies, various agronomically important traits
were associated with single dose markers by means of multiple
regression model building and maximum likelihood methods. In
each of these QTL analyses, the model used to develop the like-
lihood function was limited to single dose markers. To date, no
effort has been made to employ multiple dose markers for QTL
analyses.

The potential for widening the study of polyploids was re-
cently explored by Galitski et al. (16) through a microarray-
based investigation of ploidy regulation of gene expression in
Saccharomyces cerevisiae where different ploidies demonstrated
different patterns of gene expression. Hieter and Griffiths (9)
discuss the implications that are increasing our understanding
of polyploids by pointing out that whatever the molecular rea-
son, gene regulation depends on ploidy levels. Fueled by recent
technologies, new questions are now being asked and directed
toward the genetics and genomics of polyploids (17). The basis
of many of these studies is deeply rooted in investigations involv-
ing the evolutionary significance of multiple origins of polyploid
species. Each investigation holds promise toward moving our un-
derstanding of complex genomes to that of diploid species, and
each has the long-term hope that conservation of QTL across
species will supply additional knowledge to and from polyploid
species.

Model Selection for QTL Analysis in Polyploids
The Experimental Model. Let us consider a pseudo-doubled back-
cross population (18) that is the result of selecting an informa-
tive parent, doubling half of its chromosomes to create a non-
informative parent, and then crossing the two parental lines. By
construction of the experiment, when the informative parent is
crossed to the noninformative parent, pseudo-double backcross
progeny result (18, 19). It is important to realize that the infor-
mative parent’s genetic constitution (i.e., dosage of markers) is
not known but may later be inferred from the pseudo-backcross
progeny. For our purposes, we assume the noninformative par-
ent marker and QTL dosages are zero. From this point forward,
we concentrate on one homologous set of chromosomes taken
from a pseudo–doubled backcross polyploid organism. The ex-
tension to the remainder of the chromosome sets is obvious, and
direct.

Similar to the diploid QTL analysis, we assume that there
are only two alleles at each marker and QTL, and we denote a
molecular marker by M and a QTL by Q. Because we focus on
a single marker and single QTL analysis, each homologous set
is a mixture of only four types of chromosomes. These types are
denoted as MQ (both present), M (only the marker present), Q

(only the QTL present), and ∅ (neither M nor Q present). The
number of each type of chromosome will depend on the ploidy
level.

The Diploid Model. In a diploid, the pseudo–doubled backcross
suits a standard backcross design initiated from two inbred
parental lines that differ in the trait of interest. The basic idea
of QTL analysis using single markers in diploid organisms is to
associate observable marker genotypes with measurable quan-
titative traits. Marker genotypes are observable, dosage of the
marker and unobservable QTL are known to be at most one,
and quantitative traits are scored. The statistical methodology
for doing single marker QTL analysis includes t-tests, regres-
sion, and likelihood ratio tests (see ref. 20 for review). When
the likelihood is employed, it is a function of marker genotypes
and varying mixtures of normal distributions that are controlled
in number by the possible genotypes of the unknown QTL, as
well as the mating design. Because the diploid meiotic process
(e.g., chromosomal pairing, crossing over, gametic probabili-
ties) is well understood, the likelihood function is easily stated
as a function of marker genotype classification probability dis-
tributions, and numerically maximized with respect to parental
means, variances, and recombination between the marker and
QTL. A test statistic can then be calculated for the purpose of
detecting/locating QTL.

All Possible Polyploid Models. In the diploid, there is only one
model to consider; however, in the polyploid setting, one must
model aspects of the chromosomal pairing, all possible ga-
metic configurations that may result from chromosomal pairing,
segregation, and independent assortment, as well as all pos-
sible dosages for both the marker and QTL. To consider all
of the possible polyploid models, we break down this process,
first focusing on a single homologous pair and then combining
the chromosomal contributions of each pair. In anticipation of
later, more complicated expressions, matrix representations of
QTL and marker probabilities are used.

For each pair of homologous chromosomes, the probability of
its contribution to the gamete can be expressed using a matrix
of the form

C =
[
P�∅� P�Q�
P�M� P�MQ�

]
: [1]

The rows and columns of the matrix C represent the possible
dosage levels of the marker and QTL, respectively. The ele-
ments of the matrix C are probabilities that depend on the con-
figuration of the paired chromosomes, and thus they are func-
tions of recombination r.

Extending to the polyploid case, there are k
2 pairs of chromo-

somes in each homologous set, making the probabilities of the
overall contribution a function of k

2 C matrices. Because each
pair contributes to one of four possible gametes independently,
the Kronecker product of the Ci; i = 1; : : : ; k2 matrices yields
a 2

k
2 3 2

k
2 probability matrix for each order-specific contribu-

tion. The Kronecker product, or the direct product, is a matrix
algebraic mechanism that consists of all possible products of an
element of a matrix multiplied by the elements of a second ma-
trix. Because we are not interested in what each chromosomal
pair specifically contributes to the gamete but rather the over-
all contribution of all k

2 pairs, we simplify this matrix such that
its rows and columns represent the gamete’s possible dosage
levels for the genetic marker and QTL. Because each chromo-
somal pair can contribute at most one copy of the marker and
QTL, the collapsed (or, simplified) matrix will be of dimension
� k2 + 1� 3 � k2 + 1�, instead of 2

k
2 3 2

k
2 .
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The general algorithmic reduction of the full 2
k
2 3 2

k
2 proba-

bility matrix is accomplished by multiplying each successive Kro-
necker product by a matrix Aiy i = 1; : : : ; k2 and its transpose.
Each Ai is of dimension 2i 3 i+1 and consists of i I232 matrices
along the main diagonal. The elements of Ai may be generalized
by

arc =
{

1 if r = 2c − 1 or 2c − 2

0 otherwise

r = 1; 2; :::; 2i and c = 1; 2; :::; i+ 1:

For any allopolyploid, the following expression generates all
gametic probabilities for allowable configurations of maximum
dosage k

2

G = AT
k
2
�: : : �AT

2 ��AT
1 C1A1� ⊗ C2�A2� ⊗ : : :⊗ C k

2
�A k

2
:

Preferential pairing, like diploids, provides the most straight-
forward calculations as there is only one set of homologous
pairs, Ci, so the matrix G represents the gametic probabilities
for specific ploidy and dosage levels. However, when pairing is
random, there is more than one set of chromosomal pairs possi-
ble, and the gametic probabilities for all configurations are more
extensive. For each set, one could construct the matrices �Ci�
and produce the gametic probabilities as described. The over-
all gametic probabilities are then obtained by multiplying each
G matrix by the probability that that set of chromosomal pairs
occurs, and summing the matrices together. A simple example
of this process is described in Appendix A, which is published as
supplemental data on the PNAS web site (www.pnas.org).

With an end goal of assessing all possible polyploid models for
the situation we are considering, we assume the ploidy level of
the species has been previously studied and is known in advance,
and that the dosage of both the marker and QTL is unknown.
Realizing that the dosage levels regulate the final gametic prob-
abilities, it is necessary to compute the resultant gametic proba-
bilities for each possible dosage level of both QTL and marker
and then, attempt to find the best model via model selection. For
the pseudo–doubled backcross under consideration, the maxi-
mum dosage of either QTL or marker is k

2 and these copies
are restricted to k

2 of the chromosomes in the homologous set.
The remaining k

2 chromosomes are ∅ (null) chromosomes. For
each combination of dosage levels, there is often more than
one configuration of chromosomes possible. We, however, con-
sider only the configuration that maximizes the number of MQ
chromosomes in the homologous set. Under our preferential
pairing mechanism this configuration maximizes the informa-
tion concerning the recombination fraction (see Appendix A at
www.pnas.org). Thus, the number of models that we consider is
� k2 �2 which is less than the total number of models. For exam-
ple, with k = 8, we consider 16 models instead of the full 26
models (Appendix A, www.pnas.org; see Table 6). The extension
to all models, however, is straightforward, direct, and practical
since the approach is algorithmic.

Polyploid Model Reduction. Having formulated all possible poly-
ploid models, we now reduce the potential pool of models by
estimating the dosage of the observable marker in the informa-
tive parent. The progeny that result from the pseudo–doubled
backcross could be easily described solely by what was passed
to them from the informative parent, if that information were
observable. Even though we know that the informative parent
has a marker, we do not know the dosage of that marker, de-
noted dM . Relying on the backcross offspring, we can infer the
dosage of the marker in the informative parent, which in turn
provides additional information that reduces the pool of mod-
els from which we will eventually select the best model. Letting

n denote the number of progeny, the probability of observing
n∅ progeny with no marker given the informative parent dosage
dM is

Pr�n∅�n; dM� = Bin�n∅yn;pdM � =
(
n

n∅

)
p
n∅
dM
�1− pdM �n−n∅ ;

where pdM = �1/2�dM and represents the probability of a
progeny having zero copies of the marker when the informative
parent has dM . This conditional probability is a result of our
pseudo–doubled backcross design and our preferential pairing
mechanism. Under a random pairing situation, this procedure
would follow similarly, except

pdM =
(
k− dM
k/2

)/( k

k/2

)
:

Employing this probability allows us to infer the dosage, dM ,
of a marker in the informative parent, via a Bayesian approach.
A priori we assume each possible dosage level (d = 1; : : : ; k2 , k
assumed known) is equally likely, and use Bayes theorem (21)
to compute the posterior probability of each dosage level,

Pr�dM �n; n∅� =
Bin�n∅yn;pdM �∑k/2
d=1 Bin�n∅yn;pdM �

:

If a particular dosage level has a posterior probability greater
than an arbitrary cutoff, in our case we selected 90%, we then
restrict our attention to only those models with that dosage level.
If no dosage has probability greater than 90%, we select succes-
sive dosage levels based on the largest posterior probability until
the sum of the probabilities is greater than 90%. By eliminating
models that are highly unlikely, given the observed number with
no marker present, we have reduced the potential models that
need to be considered.

Model Selection and Parameter Estimation. With the dosage of the
marker at least partially resolved, and a potential set of models
available, the aim becomes selecting the single best model that
will in turn provide the maximum likelihood estimates in the
single marker QTL analysis. The form of the likelihood is similar
to that of the diploid case except that there are now k

2 +1 dosage
levels of the QTL that lend k

2 +1 possible phenotypic means. For
example, assuming an additive dosage effect on the phenotypic
mean and using Im;i to indicate presence of the marker for each
individual i,

Im;i =
{

1 if individual i has the marker

0 otherwise

the likelihood is

L =
∏
Im;i=0

( k/2∑
j=0

P�Qj�N�yiyµj; σ2�
)

3
∏
Im;i=1

( k/2∑
j=0

P�MQj�N�yiyµj; σ2�
)
;

where j = 0; : : : ; k/2 represents the dosage of the QTL, P�Qj�
is the gametic probability of no marker and j copies of the QTL,
P�MQj� is the gametic probability of at least one copy of the
marker and j copies of the QTL, yi is the quantitative trait value
for the ith individual, and N�yiyµj; σ2� denotes a normal distri-
bution. Recall that the probabilities P�Qj� and P�MQj� are, re-
spectively, elements and sums of elements of the matrix G and
these elements are a function of the recombination fraction r
(Appendix A, www.pnas.org). For the additive dosage effect, the
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mean of the quantitative trait distribution for a specified QTL
dosage is

µj =
�k− j�µ2 + jµ1

k
;

and depends on the ploidy level of the organism, as well as the
means of the informative (dQ = k) and noninformative parents,
µ1 and µ2, respectively. The variance, σ2, is assumed equal in
both parents, but could easily be considered as two separate
parameters. Use of the EM-algorithm (22) maximizes the likeli-
hood function in a fashion similar to the diploid situation, only
now the expectation step, or the E-step, involves a multinomial
rather than binomial distribution.

Simulated Example Demonstrating the Model Selection
Process
As an example of the model selection process, we detail, by us-
ing simulated data for 50 progeny, the algorithmic approach put
forth in this work. The informative parent was double coupled
(two copies of both marker and QTL on the same chromosome)
with a recombination fraction of r = 0:25. We also assumed the
quantitative trait, y, was normally distributed with mean 4dQ,
where dQ is the dosage of the QTL, and variance 1.0. The sim-
ulated data for this example can be found in Table 1.

Steps Involved in the Model Selection Process. 1. Estimating the
marker dosage. For this data set, 41 of the 50 progeny have
at least one copy of the marker. The posterior probability of
marker dosage 1 through 4 is summarized in Table 2. Recall
that the expected fraction of progeny with no copies of the
marker, when the parental dosage is dM , is �1/2�dM . Because
the sum of the posterior probabilities of marker dosage 2 and
3 is greater than 0.90, we restrict our search to just these two
dosages.

2. Computing the likelihood for each model. Standard EM–
algorithm (22) procedures are used to compute the maximum
likelihood estimates for each of the models considered. The
likelihood value and parameter estimates are summarized in
Table 3. The parameter µ0 is the mean of the quantitative trait
when the QTL dosage is zero (the true value is 0). The param-
eter a represents the shift in the mean for an additional copy
of the QTL (the true value is 4). For these data, the model
(dM = 2, dQ = 2) has the highest likelihood so it would be se-
lected as the model. It should be noted that this configuration
is just slightly better than the model (dM = 3, dQ = 2), with
very little difference in the parameter estimates.

Single Marker QTL Analysis in Polyploids
As demonstrated, the real complication arising from polyploidy
is not the QTL analysis itself, but rather the model upon which

Table 1. Fifty simulated progeny from a pseudo–doubled
backcross

y IM y IM y IM y IM y IM

4.190 1 4.070 1 3.387 1 –0.156 1 –0.448 0
–0.324 0 2.091 1 5.753 1 –1.146 1 6.886 1

4.620 1 2.367 0 2.541 1 –1.483 1 3.446 1
1.286 1 7.638 1 4.866 1 7.718 1 7.662 1
6.795 1 3.098 1 3.185 1 2.156 1 7.808 1
4.542 1 1.218 1 4.967 1 3.309 1 3.449 1
0.480 1 3.674 1 4.146 0 1.338 1 0.212 0
3.864 0 8.481 1 8.249 1 8.130 1 3.389 1
2.404 0 8.417 1 7.424 1 1.069 1 6.855 1
4.380 0 7.875 1 3.890 1 4.439 1 3.856 0

y denotes the quantitative trait, and IM indicates presence of the marker.

Table 2. Posterior probabilities of parental marker dosage for sim-
ulated data

Marker dosage of parent

1 2 3 4

0.000 0.471 0.512 0.017

the likelihood function is based. Selection of the single best
model to represent the polyploid situation under investigation
allows one to proceed with such a formulation of the likelihood
function. This likelihood function, when coupled with a standard
test statistic (i.e., LOD score or likelihood ratio test) can then be
used to test various statistical hypotheses concerning QTL de-
tection and effect, as well as QTL location. Relying on Monte
Carlo resampling procedures, the distribution of the test statistic
can be estimated and the meaning of statistical significance un-
derstood for the polyploid at hand. For a review of single marker
analyses and Monte Carlo methods for estimating significance
thresholds in a QTL setting see Doerge et al. (20). It is expected
that ploidy level, marker dosage, and pairing mechanism of ho-
mologous chromosomes will add to the genetic specificity that
complicates the asymptotic distribution of the test statistic.

Results
A simulation study was performed to assess the power of
this model selection procedure. Motivated by an example in
sugarcane, an octaploid (1 � dM; dQ � 4) was simulated by
using the pseudo–modified–doubled backcross, as previously
described. For each combination of dM , dQ, r, and n (num-
ber of progeny), we generated 1,000 data sets which contained
the quantitative trait value and the marker genotype for each
progeny. The quantitative trait distribution had a common vari-
ance of σ2 = 1:0 and a mean which depended on the dosage of
the QTL. The noninformative parental mean was set to −2:0
and each dose of the QTL increased the mean by 2.0 (addi-
tive). We investigated four progeny sizes n = 50; 100; 200, and
500 and two recombination rates r = 0:01 and 0:25. In to-
tal, 16 3 4 3 2 = 128 different parameter combinations were
investigated.

For each parameter combination, the percentage of data sets
that resulted in the correct dM and dQ estimate (Table 4), and
the percentage of sets that also correctly estimated the recombi-
nation fraction (Table 5) were recorded. Tables 4 and 5 summa-
rize the results for dM = 1; 2; 3; and 4; and dQ = 1; 2; 3; and 4;
and r = 0:01 and 0:25. We assumed the recombination fraction
was estimated successfully when the maximum likelihood esti-
mate was less than 0.05 when the true value was r = 0:01 and
between 0:125 and 0:375 for true value r = 0:25.

Each of the 1,000 simulated data sets per parameter combina-
tion and sample size was analyzed, via the procedure described,
for the purpose of selecting the best model, and thus formulat-
ing the likelihood function. Because the estimation of the dosage
level is the limiting factor in the process, we first spend some
time considering the effect of dosage estimation on the general

Table 3. Maximum likelihood results for simulated data

dM dQ log(L) a µ0 σ r

2 1 –96.210 3.906 2.061 4.162 0.0001
2 2 –89.096 3.708 0.082 0.782 0.3291
3 1 –95.612 4.232 2.202 3.616 0.0001
2 3 –96.619 2.573 –0.516 0.894 0.2610
3 2 –89.191 3.697 0.120 0.778 0.3049
3 3 –96.622 2.560 0.247 1.975 0.2765
2 4 –95.408 3.203 –3.459 0.797 0.0417
3 4 –95.976 2.596 –1.135 0.779 0.2589
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Table 4. Simulation results for a pseudo–doubled backcross of
sample size n = 50;100;200, and 500

Progeny size

dM r 50 100

1 .01 0.992 0.983 0.956 0.890 0.999 1.000 1.000 0.996
.25 0.968 0.933 0.910 0.863 0.997 0.995 0.996 0.982

2 .01 0.863 0.955 0.925 0.843 0.958 0.981 0.977 0.972
.25 0.828 0.839 0.817 0.744 0.936 0.952 0.952 0.944

3 .01 0.664 0.722 0.778 0.815 0.805 0.881 0.903 0.942
.25 0.616 0.632 0.615 0.722 0.786 0.823 0.813 0.928

4 .01 0.799 0.805 0.827 0.763 0.882 0.908 0.939 0.925
.25 0.779 0.793 0.751 0.428 0.880 0.891 0.889 0.588

Progeny size

dM r 200 500

1 .01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.25 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

2 .01 0.994 0.994 1.000 0.996 1.000 1.000 1.000 1.000
.25 0.992 0.995 0.990 0.992 1.000 1.000 1.000 1.000

3 .01 0.946 0.963 0.973 0.986 0.994 0.995 0.998 0.998
.25 0.930 0.926 0.939 0.978 0.993 0.993 0.993 0.997

4 .01 0.955 0.957 0.987 0.964 0.997 0.999 1.000 0.997
.25 0.942 0.943 0.950 0.803 0.992 0.991 0.994 0.977

Each cell (dM , r, and n) represents dQ = 1, 2, 3, and 4, respectively, and
contains the percentage of correct dosage level identifications.

process of model selection. For all marker dosage, dM , and QTL
dosage, dQ, combinations, the probability of correctly identify-
ing the dosage levels was 97% or higher when n = 500 and
80% or higher when n = 200 (Table 4). When in fact the sam-
ple size is 50 or 100 our ability to correctly estimate dosage of
marker and/or QTL greatly decreased as the dosage level of
both marker and QTL increase. This point emphasizes the im-
portance of sample size when mapping in polyploids. If one is
going to rely on multiple dose markers and multiple dose QTL,
large sample sizes must be employed. In general, as the dosage
level of the marker increases, a corresponding doubling of the
sample size maintains the same level of power to detect the cor-
rect model. In this simulation, when dM = 4, there was some
increase in power over dM = 3 strictly because only models with
dM � 4 were considered (border effect). In situations where
the dosage levels were not identified correctly, there was a ten-
dency to overestimate both dM and dQ, with the QTL dosage
more likely to be identified correctly. This overestimation can
largely be attributed to the fact that pdM = �1/2�dM . For a given
dM , pdM+1 is much closer to pdM than pdM−1. Lastly, as the
distance or recombination, r, increases between the QTL and
marker, the probability of correctly identifying the dosage levels
decreases.

When the motivation for model selection in polyploids is to
test for QTL detection and/or location, the estimate of recom-
bination when coupled with an appropriate map function will
supply a relational distance between the marker and QTL (i.e.,
how far the QTL is from the marker). As with all maximum
likelihood estimation, estimates of r tend to be underestimated
when the sample sizes are small, and in polyploids this situa-
tion is even more pronounced when dM � dQ, and when the
linkage is weak (r = 0:35) (not shown). When sample sizes in-
crease, the power to estimate r correctly is greater when, in fact,

Table 5. Simulation results of sample size n = 50;100;200, and
500

Progeny Size

dM r 50 100

1 .01 0.971 0.909 0.825 0.727 0.995 0.968 0.927 0.857
.25 0.920 0.771 0.666 0.516 0.991 0.950 0.868 0.795

2 .01 0.742 0.929 0.867 0.733 0.900 0.978 0.951 0.901
.25 0.583 0.772 0.666 0.553 0.821 0.935 0.902 0.840

3 .01 0.607 0.641 0.751 0.736 0.688 0.833 0.894 0.907
.25 0.327 0.453 0.518 0.525 0.537 0.723 0.758 0.826

4 .01 0.729 0.713 0.684 0.507 0.806 0.793 0.834 0.735
.25 0.142 0.357 0.429 0.259 0.405 0.583 0.692 0.474

Progeny Size

dM r 200 500

1 .01 1.000 0.993 0.979 0.928 1.000 1.000 0.999 0.983
.25 1.000 0.994 0.976 0.938 1.000 1.000 1.000 0.999

2 .01 0.967 0.994 0.997 0.975 0.999 1.000 1.000 0.999
.25 0.949 0.993 0.983 0.974 1.000 1.000 1.000 0.999

3 .01 0.865 0.945 0.973 0.981 0.981 0.993 0.998 0.997
.25 0.781 0.894 0.930 0.950 0.968 0.991 0.993 0.997

4 .01 0.841 0.893 0.951 0.881 0.944 0.979 0.996 0.986
.25 0.619 0.774 0.882 0.776 0.868 0.966 0.988 0.977

Each cell (dM , r, and n) represents dQ = 1, 2, 3, and 4, respectively, and
contains the percentage of correct dosage level and recombination fraction
identifications.

dQ � dM . As is the case in this simulation, preferential pairing
ensures that each informative chromosome from the informa-
tive parent is paired with a null chromosome, and as a result,
only chromosomes which contain both a marker and QTL pro-
vide information on recombination. When the QTL and marker
dosage levels are unequal, there will be some chromosomes con-
taining just an M or Q, and thus provide no information about
r. Unequal dosage levels for the QTL and marker can even
mask recombination, the effect of which is even more severe
when there are additional copies of the marker (i.e., increased
marker dosage) since dQ is observed in the quantitative trait
distribution means. Lastly, as the linkage between the marker
and QTL weakens (i.e., the QTL is further in location from the
marker), regardless of marker and/or QTL dosage, the power to
estimate r decreases dramatically.

Discussion
Model selection for QTL analysis using a single marker has been
presented for a pseudo–doubled backcross polyploid organism
demonstrating preferential pairing during meiosis. Clearly, the
assumption of preferential pairing and known ploidy level af-
fects the power by increasing or decreasing the number of po-
tential models. Thus, for a polyploid with a smaller ploidy, the
power for all possible parameter configurations will be higher
than what has been described. When the assumption of pref-
erential pairing is lifted to accommodate random pairing, the
results may be very different in that, the ploidy level not only
alters the number of potential models, it can also affect the
probability of an informative pairing. Extensions to include this
work are in progress.

Given our mating design and simulation, we assumed an ad-
ditive QTL mean model with the effect of the QTL being a
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single value, and a variance of 1.0. In doing so, we realize that
we have limited our simulation space, and for completion, a
range of QTL effects, along with varying variance parameter
values must be considered. We fully expect the statistical power
of what we described to be affected as both QTL effect and
variance change. Clearly, as the QTL dose means become more
disparate it will be easier to estimate the correct dosage of the
QTL. Additionally, our model selection process is simplified be-
cause the number of parameters for each configuration is the
same. A more flexible approach is to use only an order restric-
tion on the means. In other words µ0 + µ1 + ::: + µdQ , where
the subscript represents the dosage of the QTL; however, this
alters the number of parameters in each configuration. If a non-
additive model is employed, a model selection criterion such as
the BIC (23) could be used to select the model.

As demonstrated by Ripol et al. (12), placing multiple dose
markers on an existing framework of single dose markers allows
the estimation of a genetic map for any polyploid. As shown in
many diploid studies, given that a genetic map exists, the ge-
netic distances between markers can easily be exploited for the
purpose of QTL mapping by using interval mapping method-
ology (3). The limiting factor in extending what has been suc-
cessful in diploid QTL mapping, to what needs to be done in
polyploids, has been the development of models that reflect the
polyploid nature of more complex organisms. Our goal in this
paper has been to describe all the tools necessary to investigate
QTL mapping in polyploids by initiating the simplest situation
of single marker QTL mapping, and setting the stage for inter-
val mapping or composite interval mapping (6, 7). We anticipate

that (composite) interval mapping will present an entirely new
set of challenges when coupled with the complexities of random
pairing and non-additive models.

Finally, in addition to the particularities of the polyploidy and
the complications that arise in attempts to model it for QTL
mapping, questions with regard to linkage between markers
and QTL arise. These questions have great potential to further
our understanding of genome organization within and between
species, as well as provide us with an evolutionary time line for
polyploidization. Some of these questions are: if a molecular
marker is found to be tightly linked to a QTL, should the dosage
of the marker agree with the dosage of the QTL? In which situ-
ations is the linkage more strongly affected? Should the models
which are controlled by dosage levels be weighted for the pur-
pose of representing more realistic results? Would models with
dosage levels more similar to each other be more likely, espe-
cially with close linkage? Answers to these questions may aid in
our understanding of the genetics, evolution, and comparative
organization between well mapped diploids and sparsely inves-
tigated polyploids. QTL mapping in polyploids may enable us
to create links between evolutionarily related species, many of
which are diploid, which in turn will allow us to broaden our un-
derstanding of genetically diverse and distantly related species.
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