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Dynamics of rat entorhinal cortex layer II and III cells:
characteristics of membrane potential resonance at rest
predict oscillation properties near threshold
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Neurones generate intrinsic subthreshold membrane potential oscillations (MPOs) under
various physiological and behavioural conditions. These oscillations influence neural
responses and coding properties on many levels. On the single-cell level, MPOs modulate the
temporal precision of action potentials; they also have a pronounced impact on large-scale
cortical activity. Recent studies have described a close association between the MPOs of
a given neurone and its electrical resonance properties. Using intracellular sharp micro-
electrode recordings we examine both dynamical characteristics in layers II and III of the
entorhinal cortex (EC). Our data from EC layer II stellate cells show strong membrane potential
resonances and oscillations, both in the range of 5–15 Hz. At the resonance maximum, the
membrane impedance can be more than twice as large as the input resistance. In EC layer III
cells, MPOs could not be elicited, and frequency-resolved impedances decay monotonically
with increasing frequency or has only a small peak followed by a subsequent decay. To
quantify and compare the resonance and oscillation properties, we use a simple mathematical
model that includes stochastic components to capture channel noise. Based on this model
we demonstrate that electrical resonance is closely related though not equivalent to the
occurrence of sag-potentials and MPOs. MPO frequencies can be predicted from the
membrane impedance curve for stellate cells. The model also explains the broad-band nature
of the observed MPOs. This underscores the importance of intrinsic noise sources for
subthreshold phenomena and rules out a deterministic description of MPOs. In addition,
our results show that the two identified cell classes in the superficial EC layers, which are
known to target different areas in the hippocampus, also have different preferred frequency
ranges and dynamic characteristics. Intrinsic cell properties may thus play a major role for the
frequency-dependent information flow in the hippocampal formation.
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The storage of information in explicit memory involves
both the entorhinal cortex (EC) and the hippocampus
(Bannerman et al. 2001; Galani et al. 2002). Rhythmic
neural activity plays an important role in this process
(Buzsaki, 2002). Oscillations in the theta range (4–10 Hz),
often superimposed by gamma rhythms (30–70 Hz),
have been observed during explorative behaviour in rats
(Chrobak & Buzsaki, 1998). The generation of the theta
rhythm is modulated by cholinergic inputs, but may also
exploit intrinsic membrane properties. Alonso & Llinas
(1989) have reported that near-threshold depolarizations

I. Erchova and G. Kreck contributed equally to this paper

can induce membrane potential oscillations (MPOs) in
stellate cells of EC layer II. These cells provide the major
input to the dentate gyrus. MPOs have also been observed
in the perirhinal cortex (Bilkey & Heinemann, 1999)
and deep layers of the entorhinal cortex (Schmitz et al.
1998), and might be transformed into network oscillations
through synaptic interactions (Gloveli et al. 1999; Egorov
et al. 1999).

MPOs are closely related to resonant behaviour (Lampl
& Yarom, 1997; Hutcheon & Yarom, 2000). Resonance
properties have been studied by injecting sinusoidal
currents with fixed frequencies (Falk & Fatt, 1964; Cole,
1968; Nelson & Lux, 1970; Leung, 1998) or currents
whose frequency varies monotonically in time. The latter
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‘impedance amplitude profile’ (ZAP) functions allow
one to rapidly characterize the resonance properties
(Gimbarzevsky et al. 1984; Puil et al. 1986; Hutcheon &
Yarom, 2000). Using this method, it has been shown that
neocortical neurones (Jansen & Karnup, 1994; Gutfreund
et al. 1995; Hutcheon et al. 1996a) and neurones in the
trigeminal root ganglion (Puil et al. 1987), mediodorsal
thalamus (Puil et al. 1994) and medial geniculate body
(Tennigkeit et al. 1997) exhibit an electrical resonance
while other neurones act as low-pass filters (Gimbarzevsky
et al. 1984). Resonance has also been observed in stellate
cells of the entorhinal cortex (Haas & White, 2002), but a
systematic study of the resonance properties in entorhinal
cortex including a comparison of the main cell classes
has not yet been performed. This is, however, of general
interest as different cell types within the entorhinal cortex
(Van der Linden & Lopes da Silva, 1998) have different
targets in the hippocampus. Stellate cells project to the
dentate gyrus (Dugladze et al. 2001) while layer III
cells project directly to area CA1 (Boulton et al. 1992;
Empson et al. 1995). Both cell types have been shown
to transfer synaptic inputs in a frequency-dependent
manner, with EC layer III cells being most effective
at low frequencies (up to 10 Hz) and stellate cells
effective at higher (above 5 Hz) frequencies (Gloveli
et al. 1997b). We therefore investigated the resonance
properties of EC layer II and III cells and their relation
to intrinsic subthreshold membrane potential oscillations.
Our data analysis is based on a minimal mathematical
model which facilitates the qualitative understanding as
well as the quantitative comparison of the observed
phenomena. This phenomenological description captures
the data without any assumption about the intracellular
mechanism responsible for the resonance and can thus
be applied to any cell type. The model also provides a
simple explanation why, contrary to heuristic reasoning,
the resonance frequency of a given cell can be larger than
its oscillation frequency.

Methods

Brain slices were prepared from adult Wistar rats.
All experiments were done in accordance with animal
care regulations, recommendations of the European
Commission and the Berlin Ethics Committee. The
animals were decapitated under deep ether anaesthesia
and the brain was removed rapidly from the cranium
and placed into cold (4◦C) aerated (5% CO2, 95% O2)
artificial cerebrospinal fluid (aCSF) containing (mm): 129
NaCl, 1.25 NaH2PO4, 1.8 MgSO4, 1.6 CaCl2, 3 KCl, 21
NaHCO3 and 10 glucose, at a pH of 7.4. Horizontal slices
of the retro-hippocampal region were cut at 400 µm on a
vibratome (Vibroslice VSL, World Precision Instruments,
Inc., FL, USA) and then transferred to an incubation
chamber in which they were stored for at least 1 h at

room temperature (∼21◦C). Slices for electrophysiological
studies were transferred, one at a time, to an interface
recording chamber and perfused with aCSF (1.6 ml min−1)
at 35◦C.

Electrophysiology

Intracellular recordings were obtained using sharp micro-
pipettes filled with 2 m potassium acetate containing
1% biocytin (75–85 M�) and an intracellular recording
amplifier (Neuro Data model IR-183, New York, USA).
All recordings were carried out in current-clamp mode;
the series resistance was compensated through bridge
balance under visual guidance and verified several times
during the recording session; and capacitance transients
were removed using the capacitance compensation
circuit of the amplifier. The recorded data were
low-pass filtered at 3 kHz and digitized by an IO card
(DAQCard-AI-16E-4, National Instruments Inc., TX,
USA) at a sampling rate of 8 kHz. To block GABAA,
GABAB and ionotropic glutamate receptors, the
following drugs were added in all experiments to the
aCSF (µm): 30 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX), 60 dl-2-amino-5-phosphonopentanoic
acid (APV), 5 bicucculine (all from Sigma-Aldrich,
Deisenhofen, Germany) and 1 CGP55845A:
3-N-[1-(s)-(3,4-dichlorophenyl)-ethyl]amino-2-(s)-
hydroxypropyl-P-benzyl-phosphinic acid (CGP),
a GABAB blocker, kind gift from Novartis, Basel,
Switzerland).

Stimulus generation

For stimulus generation and data acquisition the program
Labview (National Instruments Inc., TX, USA) was used.
Hyper- and depolarizing current steps with a duration of
400 and 500 ms were applied to obtain information about
the input resistance and general cell properties. To study
subthreshold membrane potential oscillations (MPOs),
depolarizing currents that lasted for 1 or 10 s were injected
such that cells were just below firing threshold.

To obtain impedance amplitude profiles (ZAPs), a
frequency-modulated sinusoidal current whose frequency
f (t) increased linearly in time (Gimbarzevsky et al. 1984;
Puil et al. 1986; Hutcheon & Yarom, 2000) was applied:

I (t) = Io sin(2π f (t)t) (1)

with

f (t) = f0 + ( fm − f0)
t

2T
(2)

The time-dependent frequency f (t) of the injected current
I(t) was ramped up from f 0 = 0 Hz to the maximum
frequency f m = 20 Hz, as shown in Fig. 1B. The overall
duration of the ZAP input current is denoted by T , time
by t . The amplitude Io of the input current was adjusted
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individually for each cell to reach values of the membrane
potential close to firing threshold but not crossing it.

The ZAP function should vary rather slowly to obtain
a similar precision as when injecting a set of sinusoidal
currents. In pilot experiments we tested four different
durations for the ZAP function: 5 s, 10 s, 15 s and 40 s.
We found that the precision of the measurement improves
with increasing T but that it saturates at about 15 s.
Accordingly, T was set to 15 s. In five cells we also tested
the reversed protocol, where the ZAP frequency changed
in the opposite direction, from 20 Hz down to 0 Hz.
This modification did not have any measurable effect on
the observed resonance phenomena. We can therefore
exclude spurious effects due to ionic currents with very
slow activation or deactivation. Each ZAP injection was
repeated 10 times. Evoked potential fluctuations (Fig. 1B)
were averaged over these trials. The subsequent data
analyses, curve fittings and simulations were performed
using Matlab (MathWorks Inc., Natick, MA, USA). In four
cells we also investigated the stability of the resonance
properties and repeated the experimental protocol over
a long time course (in two cells over 90 min and in
two other cells over 180 min). The frequency–impedance
relationship was approximately constant over these time
intervals.

Histology

After filling the recorded neurones with biocytin, the slices
were incubated and stored in 4% paraformaldehyde in
0.1 m phosphate buffer. Shortly before staining, the slices
were left in the 30% sucrose solution for 30 min. For
staining, the slices were cut at 50 µm on a cryotom (Leika

Figure 1. Analysis of membrane potential resonances, as
demonstrated by results from a typical EC layer II stellate cell
A, anatomy and physiology of the sample cell. Main panel: voltage
responses to step-current inputs whose size was varied from −420 to
210 pA in steps of 70 pA. The cell displays a pronounced sag potential
upon both hyperpolarizing and depolarizing current injections. Left
inset: histological reconstruction of the cell. Right inset: amplitude of
sag potentials (triangles) in comparison to steady-state voltage
responses (circles). B, injected ZAP current (upper panel) and
membrane voltage response (lower panel, average from 10
repetitions) as a function of time. Sinusoidal currents with both linearly
increasing (shown here) and decreasing oscillation frequency were
used. The dashed line in the lower panel indicates the steady-state cell
voltage response for a depolarizing step current with the same
amplitude as the ZAP current. C, impedance profile of this neurone as
determined from the record in B. The arrow at the impedance
maximum indicates the resonance frequency, f res. With 8.9 Hz the
resonance frequency falls in the range of 6–15 Hz typical for stellate
cells. Inset: phase shift of the voltage response relative to the injected
current. At low frequencies the cell shows a small positive phase shift
which indicates inductive membrane properties. At higher frequencies,
capacitive effects dominate and lead to large negative phase shifts.
D, impedance-locus diagram of the same cell. The complex-valued
impedance is represented by a vector whose length and angle are
shown in the main panel and inset of C, respectively.
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Jung RM 2035, Leitz, Nussloch, Germany). After washing
the slices three times in 0.1m phosphate buffer, they were
incubated overnight in 0.1 m phosphate buffer containing
1% Triton X-100 (Sigma-Aldrich, Deisenhofen, Germany)
and 0.1% avidin Alexa Flour 488 conjuate (AFK, Molecular
Probes A-21370, Leijden, the Netherlands). Then the slices
were washed again three times with 0.1 m phosphate
buffer, mounted on coated object slides, dried over-
night at room temperature, dehydrated in 70%, 80% and
96% ethanol and in isopropanol, and glass-covered using
50 ml ProlongAnti-fade Kit (Molecular Probes P-7481,
Leijden, the Netherlands) to preserve fluorescent colours.
Pictures of stained cells were made using a confocal laser
scanning microscope (Leitz, Nussloch, Germany). Cell
were identified on the basis of their laminar position and
shape.

Figure 2. Modelling of membrane potential resonances
A, to quantify the experimental resonance data, a minimal
mathematical model was constructed. Its equivalent electrical circuit
has two parallel branches. The first branch represents a leaky
integrator with resistance R and capacitance C. The second branch
models the dynamics characteristic for delayed rectifying currents
through a resistance RL in series with an inductance L. B, schematic
drawing of the theoretical impedance profile derived from the
electrical circuit model. For each neurone, the model parameters were
estimated from least-square fits to the experimental data. In addition,
several phenomenological parameters (shown in grey) were calculated
to characterize the neurone: resonance frequency f res, sharpness Q,
half-band width HB, high-frequency decay D and half-decay frequency
fHD (see Methods for the precise mathematical definitions).

Analysis of electrical resonance

The frequency-dependent impedance (or ‘transfer
function’) was calculated from the ZAP recordings as
the ratio between the Fast Fourier Transform (FFT) of
the output (measured voltage V ) and the input (applied
current I):

Z( f ) = V ( f )

I ( f )
= Zreal( f ) + i Z imaginary( f ) (3)

as shown in Fig. 1 for a typical stellate cell. The impedance
contains a real and an imaginary part, Z real and Z imaginary.
The length of the vector (Z real, Z imaginary) measures the
amplitude |Z | of the impedance (Fig. 1C and D):

|Z | ( f ) =
√

Z 2
real( f ) + Z 2

imaginary( f ) (4)

For notational simplicity, |Z | will be referred to as
the impedance Z throughout what follows. The angle
between the vector and the real axis represents the
phase shift between the input current and output
voltage (Fig. 1C, inset). Z real can be interpreted as the
resistive component of the cell impedance while Z imaginary

reflects the reactive component. Plotted against each
other, the two components form the so-called ‘impedance
locus diagram’ (Fig. 1D). Finite sample sizes and possible
non-stationarities complicate the precise estimation of the
phase shift and impedance at low frequencies. The error
is maximal at zero frequency and decreases rapidly with
increasing frequency once the duration of the ZAP-input
and the number of repetitions are sufficiently large. In
our experimental condition the error at 0.5 Hz was about
20%, at 1 Hz about 2% and above 2 Hz less than 1%. For
this reason only frequencies above 1 Hz were taken into
account.

Transfer functions obtained with the ZAP method
(eqns (3) and (4)) were fitted with the theoretical
impedance–frequency function Z theory(f ) given in
eqn (A9), using an iterative algorithm and least-square
methods. The phenomenological model (Fig. 2A)
underlying the function Z theory(f ) is introduced in the
section ‘Mathematical model’, its response properties
are discussed in the Appendix. After a satisfactory fit
(residual errors vary less than 0.001 per iteration step)
was obtained, the model parameters were estimated. To
characterize the shape of the impedance profiles, several
phenomenological parameters were calculated too (see
also Fig. 2B):

Resonance frequency, f res: the frequency at which the
impedance reaches its maximal value, Z res. For cells
with low-pass properties f res is set to 0 Hz.

Sharpness of resonance, Q: the ratio between Z res and
the impedance resulting from a constant current, Z0.
By definition Q is always equal or larger than 1.

Half-band width, HB: the width of the resonance peak
at the height Z HB = (Z 0 + Z res)/2.
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High-frequency decay, D: the ratio between Z20, the
impedance at the largest tested frequency (20 Hz),
and Z0.

Half-decay frequency f HD: the frequency at which the
value of the impedance function equals Z0/2. It
characterizes low-pass filter properties of the cell. If
f HD > 20 Hz, this quantity was left as undefined.

From a purely mathematical point of view, any Q-value
larger than unity indicates a resonance. However, only
resonances with sufficiently large Q-values will surpass the
intrinsic noise level and thus be of biological relevance.
With respect to a functional classification, cells with
Q-values between, say, 1.0 and 1.1 can therefore hardly
be considered as resonant; on the other hand, resonance
curves with Q-values above 1.3 clearly indicate resonant
behaviour. As no rigorous functional definition of a ‘best’
boundary value between the two dynamical regimes is
possible, we took an intermediate value and considered
cells with a Q-value greater than 1.2 as resonant cells.
Similarly, cells with a Q-value of less than 1.2 and a D-value
of less than 0.8 are referred to as low-pass filters whose
attenuation properties are characterized by f HD if this value
can be determined.

Analysis of sag potentials

Upon depolarizing or hyperpolarizing current injections
a cell might generate a ‘sag potential’, i.e. an over-
shooting deflection of the membrane potential. From
a mathematical point of view, two subtypes can be
distinguished (see also Fig. 8 and the Appendix): sag
potentials where a damped oscillation with successively
decreasing extrema follows the initial deflection
(scenario A) and sag potentials with only a single
overshoot (scenario B-I). The transition between the two
regimes is continuous; due to stochastic components of
the intrinsic dynamics, the damped oscillation pattern
of scenario A may not even be visible in a recording. To
characterize the sag potentials, we fit the appropriate
solution of the biophysical model, given by eqn (A13)
(scenario A) or eqn (A14) (scenario B-I).

Analysis of subthreshold oscillations

Several complementary methods were used to analyse
the spectrum and coherence of the MPOs (see Fig. 9 for
an example). An analysis based on Windowed Fourier
Transforms (WFT) was performed with a running window
of length 950 ms and window overlaps of 500 ms using the
Welch method (a non-parametric periodogram estimate
based on splitting the time series in overlapping segments
multiplied by data windows, and on the ensemble
average of periodograms computed separately in each data
window). Each window was smoothed using a Hanning

function to decrease aliasing effects. This method allows
one to reduce noise components from the spectrum of Fast
Fourier Transform (Lyons, 1998) but introduces an error in
the frequency resolution. The WFT is useful for extracting
local frequency information, but is rather inaccurate
for time–frequency localization, as it imposes a time
window and aliases high- and low-frequency components
that do not fall within the frequency range of the
window.

To account for a possible non-stationarity of the signal,
MPOs were also analysed using a set of orthogonal
Morlet wavelets (Torrence & Compo, 1998). This method
estimates the correlation of the original signal with a set of
sine waves that are modulated by Gaussian filter functions.
The analysis allows one to vary the temporal focus of
the analysis by changing the width of the wavelet, an
advantage over a moving Fourier spectrum. The frequency
resolution of the Wavelet analysis is, however, restricted by
the number of orthogonal functions.

Power spectra were estimated from both methods using
data samples that lasted for 10 s. The peak frequency
was taken as a measure for the dominant frequency
and the full width at half height was taken as a
measure for the coherence of the oscillations. In addition,
an auto-correlation analysis was performed to analyse
local oscillatory properties. Auto-correlograms (bin width
1.25 ms) were calculated from the same data sets. The time
interval between the central and first side peak was used as
an estimate for the dominant frequency. The ratio between
the magnitudes of the first and second side peaks will be
called ‘relative decay’ and served as a further measure for
the internal coherence of the oscillations.

The validity and resolution errors of all methods
were tested on simulated data traces (sinusoidal 8 Hz
oscillations with a duration of 10 s and an amplitude
of 2 mV). The frequency estimation from the WFT
was 7.99 Hz; the full width at half height was 1.5 Hz.
The wavelet analysis led to a frequency estimate of
7.86 Hz, with a full width at half height of 1.6 Hz. The
auto-correlation analysis resulted in a frequency of 8.0 Hz
and a relative decay of 0.98. All three methods closely
coincide with respect to the dominant frequency. While the
auto-correlation analysis seemed to be the most precise for
the simulated data this method is sensitive to noise in the
recorded data and may fail for neurones showing MPOs
with low coherence. We therefore always compared the
results of all three methods and then computed average
values.

Mathematical model

The measured neurophysiological data were analysed
within a quantitative framework. We focused on a minimal
phenomenological model capable of capturing the essence
of the observed neural properties. Using this approach
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we can precisely determine the differences between
the studied cell types, investigate the relation between
subthreshold oscillations and resonance phenomena,
and make quantitative predictions about responses to
time-varying inputs.

The least complicated model accounting for the data
is illustrated in Fig. 2A in terms of its equivalent RLC
circuit. We chose this intuitive interpretation of the neural
dynamics throughout the paper because of its simplicity
and direct relation with previous approaches based on the
analogy with electrical circuits; see, for example, Koch
(1984) or Hutcheon & Yarom (2000). Alternatively, the
model can be interpreted as a systematic and linearized
reduction of Hodgkin-Huxley type dynamics, as has been
shown by various authors; see, for example, Koch (1999)
or Richardson et al. (2003).

The model is linear, assumes an isopotential neurone,
and consists of two parallel branches. The first branch
is characterized by a resistance R in parallel with
a capacitance C and mimics the dynamics of a
leaky-integrator model neurone. The second branch
consists of a resistance RL in series with an inductance L and
endows the model with the general dynamical properties
of delayed rectifying currents. The model’s effective input
resistance ρ is given by ρ = RRL/(R + RL).

Note that the parameters R, C, RL and L are
phenomenological parameters that depend on the state
(e.g. holding potential) of a neurone. In particular, the
capacitance C is an effective quantity that will in general
differ from the membrane capacitance (Mauro et al. 1970).
It is therefore of particular interest to investigate which
parameters change as, for example, the holding potential
is varied, and how they change under such variations.
These data can help to constrain later detailed biophysical
models. In addition, they illustrate the limitations of an
overly simplified view that interprets the four parameters
as fixed cell properties.

The time evolution of the model is given by two coupled
ordinary first-order differential equations:

C
d

dt
V (t) = − 1

R
V (t) − IL(t) + I (t) (5)

and

L
d

dt
IL(t) = −RL IL(t) + V (t) (6)

where V denotes the membrane potential, as measured
relative to the resting potential, and IL is the current
flowing through the inductive branch of the circuit.

This minimal model is deterministic and does not
cover the stochastic fluctuations seen in measurements
of intrinsic subthreshold oscillations. These fluctuations
represent a dynamic balance between damped oscillations
of the membrane potential and intrinsic excitations caused
by random opening and closing of ionic channels (see,

e.g. the review by White et al. 2000). However, such
intrinsic noise sources can be easily incorporated into the
model. In the spirit of quasi-active neurone models with
stochastic components (Steinmetz et al. 2000), we assume
that channel noise generates a stochastic intrinsic current
I int(t). Due to the voltage dependence of the channel
kinetics, the statistical properties of I int(t) will in general
depend on the mean membrane potential.

The intrinsic current has to be added to the externally
applied current I ext(t) so that the total current I(t)
becomes:

I (t) = Iint (t) + Iext(t) (7)

It follows from eqn (3) that for vanishing or constant
external current, I ext(t) = I0, and for any non-zero
frequency f , the power spectral densities of the measured
membrane potential oscillations V (t) and intrinsic noise
currents I int(t) are related by:

|V |2 ( f ) = |Iint|2 ( f ) × |Z |2 ( f ) (8)

This result is particularly valuable if the membrane
potential exhibits a highly irregular time evolution without
external stimulation. If, on the other hand, external
time-varying currents I ext(t) are injected into the cell – as
is the case for ZAP measurements or step-current inputs
– we are mainly interested in the mean, deterministic
component of the neural response and may therefore
neglect stochastic fluctuations by setting I int(t) = 0.

The model can be used in these two very different
experimental conditions and is thus well suited to quantify
salient characteristics of autonomous subthreshold
oscillations as well as responses to time-dependent inputs,
such as resonance phenomena and sag potentials, within
a single mathematical framework.

Statistics

Properties of the identified cells will be characterized
by their mean values and standard error of the mean.
Resonance and oscillation parameters are given as mean
values and standard deviation. Groups were compared
using Student’s t tests. The significance of a correlation
coefficient r was also calculated with Student’s t test,
t = r(n − 2)1/2(1 − r2)−1/2. n is the number of samples.
P-values were obtained from standard tables with degree
of freedom d = n − 2.

Results

The objective of this study is to characterize the sub-
threshold behaviour of single EC layer II and III cells
and to quantify differences between various cell types.
This is done in order to elucidate the role of intrinsic
cell properties for the frequency-dependent information
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flow in the entorhinal cortex and, more generally, the
hippocampal formation. Of particular importance are
intrinsic oscillations of the membrane potential, responses
to time-varying external inputs, and the precise relation
between these two different kinds of dynamical single-cell
properties.

Membrane potential resonance

Stable recordings were obtained from 67 entorhinal cortex
cells in layers II and III. Within this population, 46 cells
were identified as stellate cells based on a sag potential
occurring both during hyper- and depolarizing current
injection, a membrane time constant between 6 and

Figure 3. Impedance profiles of non-stellate cells
A, example of an EC layer III pyramidal cell with slow spike generation. Shown are voltage responses to step-current
inputs whose amplitudes were varied from −490 pA to 140 pA in steps of 70 pA. B, a representative non-stellate
‘other’ cell, located in EC layer II. Depicted are voltage responses to step current pulses (from −350 pA to 70 pA,
again in 70 pA steps). C, impedance profile of the cell depicted in A. After reaching a small maximum, the
impedance rapidly decreases with increasing frequency: f res = 2.2 Hz, Q = 1.08, HB = 1.0 Hz, fHD = 14.0 Hz.
Inset: impedance-locus diagram (see Fig. 1D) of the same cell. D, impedance profile of the cell shown in B. The
impedance function of this cells also exhibits a small maximum and then decays slowly with increasing frequencies:
f res = 2.5 Hz, Q = 1.03, HB = 1.2 Hz, fHD = 13.7 Hz. As characteristic for pyramidal and non-stellate cells, the
two neurones shown here did not display membrane potential oscillations. Inset: impedance-locus diagram of the
same cell.

9 ms, and a resting membrane potential between −58
and −67 mV (Alonso & Klink, 1993; Jones, 1994); 21 of
these cells were also morphologically identified as stellate
cells (see, for example, Fig. 1A). The cells that were not
classified as stellate cells include eight pyramidal cells
(see also Fig. 3A) of which five were also morphologically
identified. The remaining 13 cells did not show a sag
potential and/or had slower membrane time constants and
will be referred to as ‘other cells’ (see also Fig. 3B). The data
on spike amplitudes, input resistances, resting potentials
and time constants are summarized in Table 1. All cells
had a membrane potential below −58 mV, an input
resistance larger than 20 M� and an overshooting action
potential.
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Table 1. Measured cell properties

Cell type Action potential Time constant, Input resistance Resting potential n
(mV) (ms) (M�) (mV)

EC-II stellate cells 75.7 ± 5.1 8.5 ± 2.2 32.2 ± 11.2 − 61.5 ± 3.2 46
EC-III pyramidal cells 86.0 ± 8.8 10.9 ± 3.7 56.9 ± 17.4 − 70.4 ± 4.9 8
Other EC cells 83.8 ± 7.9 15.2 ± 1.5 46.2 ± 19.2 − 68.6 ± 4.9 13

Data are presented as means ± S.E.M.

Table 2. Summary of the parameters for equivalent electric circuit

Cell type R (M�) RL (M�) L (H) C (µF)

EC-II stellate cells 56.7 ± 17.3 46.1 ± 3.3 1.26 ± 0.11 (3.1 ± 0.2) × 10−4

(12.2–608.8) (22.1–92.0) (0.40–4.0) ((0.2–6.3) × 10−4)

EC-III pyramidal cells 69.9 ± 4.9 34661 ± 11363 173 ± 542 (3.1 ± 0.5) × 10−4

(59.1–78.8) (340–59729) (32–2411) ((2.3–4.7) × 10−4)

EC non-identified cells 26.8 ± 5.0 805 ± 725 6.02 ± 1.8 (6.5 ± 1.6) × 10−4

(11.6–62.6) (43–9136) (0.7–18.5) ((2.1–22.3) × 10−4)

Data are presented as means ± S.E.M. with the range given in parentheses.

The impedance-amplitude-profile method
(ZAP-method) allows one to rapidly characterize
neuronal resonance properties (see, for example,
Gimbarzevsky et al. 1984; Puil et al. 1986; Hutcheon &
Yarom, 2000). When a stellate cell such as that shown
in Fig. 1A is stimulated with a frequency-modulated
current I inj(t) as depicted in the upper trace of Fig. 1B,
the amplitude of the voltage membrane response first
increases as a function of the stimulation frequency,
then reaches a maximum before it declines at higher
frequencies (Fig. 1B, lower trace).

To quantify the resonance properties of a given cell,
the impedance-frequency function Z theory (eqn (A9))
was fitted to the experimental data. In terms of the
model framework (Fig. 2), this provides a compact
four-dimensional description (C, L, R and RL) of the
resonance behaviour. Average parameters for different cell
classes (at resting membrane potential) are summarized
at Table 2. As discussed in Methods and the Appendix,
these parameters are phenomenological; in particular, they
may depend on the holding potential. For the sample
cell of Fig. 1A, the membrane impedance Z is shown in
Fig. 1C as a function of the stimulus frequency. The cell
has a pronounced resonance (Q = 1.8) at a frequency
of 8.9 Hz, with a half-band width HB of 10.0 Hz, and
a high-frequency decay D of 1.01 (see Methods for the
definition of these quantities). The impedance profile of
a characteristic layer III pyramidal cell (Fig. 3A) is shown
in Fig. 3C. With a Q-value of 1.08, the resonance of this
cell is too weak to surpass the noise level under realistic
conditions. For the typical multipolar cell depicted in
Fig. 3B, the same is true (Q = 1.03) as evident from Fig. 3D.

Population averages from the measured stellate cells
(n = 46) are presented in Fig. 4A. All measurements were
done at resting potential unless stated otherwise. As

shown by Q-values ranging from 1.2 to 2.1 (Fig. 4B),
the impedance at the resonance maximum can be more
than twice as large as the input resistance for this cell
type. The distribution of resonance frequencies ranges
from 6 to 17 Hz with a mean value of 10.6 Hz and a
standard deviation of 2.5 Hz. These values suggest that
presynaptic inputs oscillating with a frequency of about
10 Hz are most effective in driving this type of neurone.
The high-frequency decay D (Fig. 4C) is between 0.53 and
1.44 with a mean of 1.0 ± 0.3. This implies that on average,
stellate cells are also integrating high frequency (around
20 Hz) inputs fairly well. The frequency range of the
integration region of each individual cell is characterized
by its half-band width HB, whose distribution is shown
in Fig. 4D. The values range from 6 to 24 Hz with a mean
of 11.6 and a standard deviation of 4.3 Hz. This indicates
that the region of preferable frequencies is rather wide.

These result differ strongly from those observed for EC
layer III pyramidal cells. The summary of their resonance
properties is shown in Fig. 4E–H . According to our criteria,
no cell identified as a layer III pyramidal cell exhibited
resonance behaviour. In fact, the highest Q-value observed
at rest was 1.2. The resonance profiles of these cells rather
resemble a low-pass filter. All cells show at least a 50%
decrease in impedance as a frequency of 20 Hz is reached,
two cells reach 50% decrease at 10 Hz (Fig. 4H).

Among the other cells, two neurones exhibited a weak
resonance with resonance frequencies of 7.4 Hz (Q = 1.28)
and 6.0 Hz (Q = 1.23). We also found five cells whose
impedance varied only a little between 1 and 20 Hz. Three
of these cells displayed membrane potential fluctuations
of up to 2 mV but a dominant frequency could not
be determined because of very low coherence of the
fluctuations. All other cells (n = 11) showed low-pass filter
properties with impedance values decreasing at 20 Hz
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to less than 60% of the value measured by a constant
current of the same amplitude. Two of these neurones
exhibited a 50% decrease in their impedance already at
10 Hz, five at frequencies below 15 Hz and four other cells
at frequencies between 15 and 20 Hz. Some of these cells
had a small impedance maximum at frequencies below
3 Hz with Q-values of less than 1.1. A typical example is
the multipolar cell of Fig. 3B and D.

Voltage dependence of the electrical resonance
and sag potentials

Neural dynamics are governed by voltage-dependent
conductances. A more accurate model description
of the resonance properties would therefore involve
voltage-dependent parameters. The required resonance
measurements at different values of the membrane
potential are shown in Fig. 5A. These measurements were
carried out in seven similar cells at several individually
adjusted levels of the membrane potential for each cell,
from a slightly hyperpolarized level to the maximum
possible subthreshold depolarization. For each resonance

Figure 4. Population data from EC layer II stellate cells (A–D) and EC layer III pyramidal cells (E–H)
A, distribution of resonance frequencies f res. For the tested stellate cells the distribution has a mean of 10.6 Hz
and a variance of 2.5 Hz. This implies that the cells preferentially integrate inputs in the upper theta range. B,
distribution of Q-values. With values ranging from 1.2 to 2.1, the maximal impedance is up to twice as large as
the input resistance. C, distribution of D-values. The observed values lie between 0.53 and 1.44 with a mean of
1.0 ± 0.3. On average, stellate cells thus integrate inputs with dominant frequencies of about 20 Hz approximately
as well as constant inputs. D, distribution of half-band widths HB. The observed values are of the same size or
larger than the resonance frequencies and indicate that the resonance curves are rather broad. E, distribution
of impedance maximum frequencies f res for EC layer III cells. For the tested cells the distribution has a mean of
1.1 Hz and a variance of 0.6 Hz. This implies that the cells preferentially integrate inputs at very low frequencies.
F, distribution of Q-values. The values range from 1.0 to 1.08 and show that this cell group does not exhibit an
impedance resonance. G, distribution of D-values. The observed values lie between 0.17 and 0.49 with a mean of
0.31 ± 0.11. On average, pyramidal cells thus operate as low-pass filters. H, distribution of half-decay frequencies
fHD. The measured neurones show a 50% decay in impedance at frequencies below 20 Hz, and two of the cells
even at frequencies around 10 Hz.

measurement, a separate fit to the model (eqn (A1))
was carried out. The changes of the various parameters
as the membrane potential was varied are presented
in Fig. 5B–F . Definitions of the parameters are given
in Method and the Appendix. Surprisingly, both the
resonance frequency f res and the sharpness Q remain
almost constant for each investigated cell (Fig. 5B and C).
The input resistance ρ and natural frequency f nat increase
slightly upon depolarization (Fig. 5D and E) whereas the
decay factor λ decreases (Fig. 5F).

According to the biophysical interpretation of the
mathematical model, λ should decrease with increasing
membrane potential and vanish at the firing threshold.
Similar, the natural oscillation frequency f nat should
approach the resonance frequency f res as the cell is more
and more depolarized and become equal to f res at the
firing threshold (see Appendix). Both predictions are in
agreement with the experimental data as shown by Fig. 5F
and by a comparison of Fig. 5E with Fig. 5B. When the
ZAP current was injected at more depolarized membrane
potentials action potentials were induced (Fig. 5A, top
trace, left panel). Nevertheless the impedance profile
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Figure 5. Influence of the holding potential on MPOs and resonance properties of EC layer II stellate
cells
A, determination of the cell impedance at different holding potentials. Left panels: cell responses to ZAP currents
of 100 pA with a variable DC component of 100 pA, 0 pA, −100 pA and −200 pA (from top to bottom). Right
panels: the corresponding impedance amplitude profiles. B–F, population data from 7 EC layer II stellate cells. Each
cell is represented by a different symbol. The cells shown in A is depicted by open diamonds. B, the resonance
frequency f res remains almost constant across the different membrane potentials. C, the sharpness of resonance
Q increases slightly upon depolarization. The dashed line indicates the resonance criterium, Q ≥ 1.2, used in this
study. D, the input resistance ρ tends to increase upon depolarization. E, the natural freqeuncy fnat, as predicted
by the model with parameters estimated at different levels of membrane potential, remains almost constant upon
hyperpolarization and increases slightly upon depolarization, approaching the resonance frequency f res shown in
C. F, the decay factor λ characterizes the exponential decrease of externally triggered oscillations, as estimated
from the model, and increases with hyperpolarization and decreases with depolarization. G, sag potentials in
response to step-current injections are predicted from the resonance profile. Voltage responses of the cell depicted
in A to step-current pulses whose size was varied from −250 to 150 pA in 50 pA steps are shown by continuous
lines. Parameters of the model obtained from the impedance resonance curve at the resting potential (A, second
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which now also reflects the generation of action potentials
still shows a peak near the subthreshold resonance peak
(Fig. 5A, right panels).

The frequency f (t) of the ZAP-function input (eqn (2))
increases linearly in time (eqn (3)) so that equal frequency
bandwidths are covered in equal time intervals. Taking
advantage of this property, we quantified the supra-
threshold neural response within four adjacent frequency
bands, each with a width of 5 Hz. The cell shown in
Fig. 5A generated a total of 229 spikes in the 10 trials:
14 (6.1%) in the frequency range from 0 to 5 Hz, 115
(50.2%) in the 5–10 Hz range, 96 (42.0%) in the 10–15 Hz
range, and 4 (1.7%) in the 15–20 Hz range. Across all
investigated stellate cells these ratios were: 3.3%, 48.1%,
43% and 5.6% for the four frequency bands, respectively.
Notably the cell with a resonance frequency around 17 Hz
(shown by the plus marks in Fig. 5B–E) did not spike
at all at frequencies below 5 Hz and produced 13.0%,
45.1% and 41.9% spikes in the remaining three consecutive
frequency bands. Together these findings suggest a close
relation between the subthreshold properties and the
suprathreshold firing characteristics.

Evidently, a minimal isopotential model that is based
on parameters obtained at one single level of the
membrane potential cannot fully describe the entire neural
subthreshold behaviour, e.g. sag potentials (Van der
Linden & Lopes da Silva, 1998). Nevertheless, we tried
to predict their size and time course, based on model
parameters obtained at the level of resting membrane
potential, as shown in Fig. 5G. As the model is linear
without voltage-dependent dynamics, deviations of the
measured sag potentials from the model predictions are
therefore clear indicators for such dynamics.

Close inspection of Fig. 5G reveals that for depolarizing
step currents, the overshooting transients are indeed
larger than the theoretical predictions, although the
cell’s long-term behaviour is in excellent agreement
with the model at all tested depolarization levels. For
hyperpolarizing step currents, on the other hand, the
entire voltage response confirms the model predictions
apart from an overall scaling factor. These findings
imply that currents with different dynamics are activated
depending on the level of the membrane potential. In the
hyperpolarized regime, the observed phenomena can be
explained by a rapidly activated and long-lasting current.
Such dynamics have been reported for the Ih current (see,
for example, Dickson et al. 2000a). In the depolarized
regime, however, the voltage-dependent conductance

row) were used to predict the size and time course of the cell responses (dashed lines). Deviations between
model and data indicate non-linear dynamics. For depolarizing currents, the overshooting deflections exceed the
theoretical predictions, but the long-term behaviour agrees with the model. For hyperpolarizing current steps, on
the other hand, the entire voltage response is scaled-down relative to the model predictions. As discussed in the
main text, both phenomena can be explained by an Ih-type current.

quickly inactivates after the initial transient. This may be
explained by a de-activation of the hypothetical Ih current
or an activation of a slow delayed-rectifier potassium
current, such as IKS, IM, or ID. All these currents have
been previously described in stellate cells (Eder et al. 1991;
White et al. 1993; Eder & Heinemann, 1994, 1996; Richter
et al. 2000; Shalinsky et al. 2002).

The filter characteristics of layer III pyramidal cells
remained about the same when the membrane potential
was varied, similar to the situation in stellate cells (Fig. 6).
The input resistance of the pyramidal cells increased
with increasing membrane potential (Fig. 6D), again in
accordance with the results from stellate cells (Fig. 5C).
Upon supra-threshold depolarization the cell of Fig. 6A
fired predominantly at frequencies around the modest
maximum of the resonance profile. The cell shown in
Fig. 6A produced 9–15 spikes in each of the 10 repetitions,
and a total of 131 spikes: 94 (71.8%) in the frequency
range between 0 and 5 Hz and 37 (28.2%) in the 5–10 Hz
range. Across all investigated cells this ratio was 86.3%,
and 13.7% for these two frequency bands. Notably, none
of the investigated cells spiked when presented with
ZAP frequencies above 10 Hz. Thus, as for stellate cells,
subthreshold properties strongly influence the firing
pattern above but close to the firing threshold.

Interestingly, for all investigated cell types, resonance
frequencies can be predicted with high accuracy using just
the product of two cell parameters, the capacitance C and
inductance L (Fig. 7A), whereas the two resistances R and
RL play only a minor role. Furthermore, the half-band
width HB is roughly equal to the resonance frequency
f res (Fig. 7B), at least in the frequency range between 0
and 10 Hz. At higher resonance frequencies, HB increases
super-linearly. A positive correlation between resonance
frequency and half-band width is to be expected from the
model. Consider, for example, the effects of changing the
inductance L. Larger L-values imply longer effective delays
of the rectifying current and thus a more pronounced
resonance – higher Q and smaller HB values. At the same
time, increasing L (and thus decreasing the resonance
frequency of the ideal resonator) decreases f res (Fig. 7A).
Together, these two effects cause the half-band width to
correlate positively with the resonance frequency (Fig. 7B).

As has been pointed by Hutcheon & Yarom (2000),
resonance phenomena are closely related to membrane
potential oscillations, and manifest themselves not only in
the responses to oscillatory input but also in the responses
to step-current inputs. Following Richardson et al. (2003),
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we defined two parameters, α and β (see Appendix), that
allow one to characterize the neural responses within a
two-dimensional graphical representation (Fig. 8). Based
on the model framework, damped oscillations are expected
in a certain parameter region, which we call region A
(see Appendix and Fig. 8). Sag potentials should exist in
region A (multiple overshoots) as well as in region B-I
(single overshoots); see eqns (A13) and (A14), respectively.
Cells that fall into region B-II should not exhibit sag
potentials but rather approach the new holding potential
in a monotone fashion. Transitions between the expected
phenomena in the different regimes are smooth, as also
demonstrated by the schematic examples in the right
panels of Fig. 8. Furthermore, secondary and subsequent
overshoots (in parameter regime A) may hardly be visible
in recorded data as the oscillation amplitude rapidly

Figure 6. Influence of the holding potential on membrane potential resonances of EC layer III pyramidal
cells
A, left panels: voltage responses of a typical EC layer III pyramidal cell to ZAP-current inputs with an amplitude
of 100 pA and a DC level of 200 pA, 100 pA, 0 pA, and −100 pA (from top to bottom). Right panels: the
corresponding impedance profiles. B–D, data from three EC layer III pyramidal cells. Each cell is represented by
a different symbol. The example shown in A is depicted by open diamonds. B, the location of the impedance
maximum f res remains approximately constant across the different membrane potentials. C, apart from the two
supra-threshold responses, Q-values are always below the resonance criterion Q ≥ 1.2. The investigated cells thus
do not show resonance at subthreshold membrane potentials. D, as for stellate cells (see Fig. 5C), the input
resistance ρ increases with depolarization.

decreases for realistic values of the decay factor λ. Finally,
it is important to realize that the boundary between the
domain where sag potentials occur (regions A and B-I)
and where no sag potentials occur (B-II), does not coincide
with the curve that separates band-pass behaviour (Q > 1,
above the dashed line in Fig. 8) from low-pass behaviour
(Q = 1, below the dashed line) in resonance experiments,
cf. eqn (A21).

To test how these predictions relate to the observed
data, the parameters α and β (eqns (A15) and (A16))
were calculated for all neurones from the resonance
experiments. Putting each cell at its proper position in
the α/β-plane (Fig. 8) demonstrates that the different
cell classes cluster in different regions of this plane. All
stellate cells (filled circles) fall into region A, and far from
the boundary with region B-II. Based on data from the
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Figure 7. Generic properties of the impedance function in EC
neurones
A, relation between the measured resonance frequency and the
frequency of an ideal resonator (R = RL = 0) with the same
capacitance and inductance. The measured data form a continuum
and cluster in the vicinity of the main diagonal. Accordingly, resonance

resonance experiment only, the model thus predicts that
stellate cells exhibit prominent sag potentials, as indeed
observed (Fig. 4B).

All but one EC layer III pyramidal cell are below or
very near the dashed line, in accordance with Fig. 4G.
Some of these cells do fall into region A, but close to
the boundary with region B-II. The expected weak sag
potentials were not observed. This can be attributed to the
difficulty of clearly identifying sag potentials from voltage
traces in this transition zone. The remaining ‘other cells’
did show weak sag potentials, again as predicted by the
model.

Membrane potential oscillations

Upon depolarizing current injection to membrane
potential values near the firing threshold, spontaneous
membrane potential oscillations (MPOs) were displayed
by all stellate cells tested for this behaviour. In preliminary
experiments we had found that the generation of an action
potential generally resulted in subsequent MPOs with
larger amplitudes than those evoked after depolarization
that do not cause action potentials. To avoid any spurious
effects our data analysis is therefore exclusively based on
recordings that did not contain any action potentials.

Typical MPOs are depicted in Fig. 9A. They were
generated by the sample stellate cell of Fig. 1A in response
to a constant depolarizing current injection of 140 pA. A
characteristic feature of the observed subthreshold activity
is its irregularity compared to an ideal periodic oscillation.
This is also evident from the power spectral analysis which
generally resulted in broad frequency distributions. For
the particular cell shown in Fig. 9A, the peak frequency
is 8.9 Hz (Fig. 9B). The full width at half-maximum is
3.5 Hz (from 7.4 to 10.9 Hz). An auto-correlation analysis
(Fig. 9C) provides information on both the dominant
frequency and the coherence of the oscillations. In this
particular cell, the dominant frequency is 9.5 Hz, close
to the value obtained with the power spectral analysis.
The coherence of the MPOs, defined as the ratio of
the second to the first side peak in the auto-correlation
function, is 0.22. This ather low value is in accordance
with the cell’s power spectrum and typical for the whole
cell population (data not shown). A wavelet analysis
(Fig. 9D) reveals the time-resolved frequency distribution
of the membrane potential fluctuations. The time course

frequencies are well predicted by the values of the elements C and L of
the equivalent electrical circuit. B, relation between the resonance
width HB and the location f res of the impedance maximum. At least
for small frequencies, both quantities are almost identical.
C, sample-averaged impedance profiles for the two main investigated
cell classes. EC layer III pyramidal cells have low-pass filter properties,
whereas EC layer II stellate cells exhibit pronounced resonance
phenomena.
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is characterized by a waxing and waning of different
frequency components within the MPOs, in agreement
with the low MPO coherence of this cell. The temporal
average of the wavelet spectrum from Fig. 9D is depicted
in Fig. 9E. Its peak frequency of 8.7 Hz is close to the values
obtained from the power spectrum and auto-correlation
analysis. To reduce spurious effects due to possible artefacts
of each individual method, oscillation frequencies f osc were
always determined as the average obtained from the three
methods. For all but three cells the three different measures
agree well (Fig. 9F–H) so that we may use average values
to reduce potential numerical artifacts. A summary of the
oscillation frequencies f osc from all analysed stellate cells
(n = 30) is shown in the inset of Fig. 10. The distribution
of measured f osc values extends from 3 to 14 Hz with
a mean value of 9.0 Hz and a standard deviation of
2.2 Hz.

As demonstrated by these results, intrinsic subthreshold
activity in the investigated stellate cells is characterized
by oscillations with a pronounced peak in the power
spectrum but low temporal coherence. The shape of
the power spectrum and, in particular, the location of

Figure 8. Representation of the response characteristics of the different cell types
The subthreshold behaviour of a cell can be characterized by two parameters, α and β (see the Appendix for details).
Four main classes can be identified for the voltage response to an input current step (boundaries between the
regions are represented by the continuous lines): damped oscillations, i.e. sag potentials with multiple decreasing
overshoots (A), sag potentials with a single overshoot (B-I), monotonic relaxations (B-II), and unstable solutions (C).
The dotted line represents the boundary between formal resonance and non-resonance, where resonance is defined
by the mathematical criterion Q > 1. Examples of different response types, based on the minimal mathematical
model, are shown on the right panel. The simulations were performed with fixed input impedance and time
constant, and thus reflect only the shape of the response, but not the amplitude and actual time course of a
biological cell response. Numbers in the main panel indicate the parameter values used for these eight examples.
Each data point in the main panel indicates a single measured cell. Stellate cells are represented by circles, pyramidal
cells by triangles and non-identified cells by open diamonds. For stellate and pyramidal cells, black symbols show
the measurements at resting potential and grey symbols denote measurements above and below resting potential.
Data points from the same cell are connected by arrows that point towards increasing membrane potentials. As
shown by this representation, the different cell types cluster in parameter space.

its maximum are reminiscent of membrane impedance
curves – cf. Figs 9B and 1C. To examine this relationship,
we compared f osc with f res (Fig. 10) for all investigated cells.
Our data indicate that the resonance frequencies f res are
always higher than the MPO frequencies f osc. In addition,
there was a strong correlation between both frequencies
(r = 0.83, t = 7.27, d = 28, P < 0.001).

Within the model framework, these findings are readily
explained. According to eqn (8), the power spectrum of
the observed MPOs is equal to the product of the intrinsic
noise power spectrum and the squared impedance profile.
This profile is known from the resonance experiments
(Fig. 1C). We did not attempt to measure the detailed
frequency dependence of the noise spectrum as we were
primarily interested in the relative positions of the maxima
of |V |(f ) and |Z |(f ). However, it is well known that channel
noise generates a rather smooth spectrum that gradually
falls off with increasing frequency f (Hille, 1992; White
et al. 1998). Equation (8) then predicts that f osc, i.e. the
frequency at which |V |(f ) has its maximum, is smaller than
f res, i.e. the frequency at which |Z |(f ) has its maximum.
This prediction is in full agreement with the measured
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data for every single neurone (Fig. 10). The difference
between f res and f osc varies from cell to cell, which may
be due to slight variations of the intrinsic noise spectrum.
Care should be taken, however: membrane potential
oscillations were measured near threshold whereas the
resonance profiles were derived from data close to the
resting potential. Thus |V |(f ) and |Z |(f ) correspond to
different neural states. However, as shown in Fig. 5B,

Figure 9. Membrane potential oscillations (MPOs) of a typical EC layer II stellate cell (the same neurone
as depicted in Fig. 1)
A, sample trace of the membrane voltage evoked by a near-threshold depolarizing current injection of 140 pA.
B, MPO power spectrum; the spectrum has a pronounced peak at 8.9 Hz. C, auto-correlation function. The
dominant frequency is 9.5 Hz, and the small size of the side-peaks indicates a low MPO coherence. D, wavelet
spectrum; the dashed contour lines indicate the 95% confidence interval. The time-resolved frequency distribution
is characterized by a waxing and waning of the different frequency components and confirms the low MPO
coherence. E, time-averaged wavelet spectrum; the dashed line indicates the 95% confidence interval for the
global wavelet spectrum. The peak frequency (8.7 Hz) is close to the values obtained in B and C and indicates
that the different measures result in similar values. F–H, comparison of the three methods from population data.
Except for three cells, the measured values agree well. The dotted straight lines represent the identity where the
two respective measures are equal.

the resonance frequency is almost independent of the
membrane potential so that f res and f osc may, indeed, be
directly compared.

Let us finally turn to the oscillatory properties of
non-stellate neurones: pyramidal cells did not exhibit
MPOs, as described earlier for layer III projection cells
by Gloveli et al. (1997a, 1999) and Van der Linden &
Lopes da Silva (1998). We also found five ‘other’ cells
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whose impedance varied only a little between 1 and
20 Hz, and three of these cells displayed fluctuations of
membrane potential of up to 2 mV. However, a dominant
frequency could not be determined reliably because of very
low coherence of the membrane potential fluctuations.
Therefore, within the studied cell classes, pronounced
membrane potential oscillations seem to be a characteristic
feature of stellate cells.

Discussion

Our findings about the intrinsic dynamics of different
neurones within the superficial layers of the entorhinal
cortex can be summarized as follows: EC layer II
stellate cells exhibit both a prominent peak of
their frequency-resolved membrane impedance
and noise-driven subthreshold membrane potential
oscillations in the upper theta frequency range. Contrary
to this situation, non-oscillatory EC layer III cells
(pyramidal neurones and ‘other cells’) have at most a small
impedance maximum at a frequency below the theta range
or display only pure low-pass filter characteristics. In
accordance with the theoretical predictions, all resonant
cells react with a prominent sag potential upon both
depolarizing and hyperpolarizing current injections and
all oscillatory cells exhibit resonance. The frequency
of near-threshold MPOs in stellate cells is similar but
always lower than their resonance frequency, measured
at the resting potential. Extending and complementing
previous findings, these data suggest that different cell

Figure 10. Resonance and MPO frequencies in EC layer II
stellate cells
The relation between oscillation fosc and resonance f res frequencies for
the all investigated EC layer II stellate cells is shown. In every measured
cell the MPO frequency (obtained as averages from the power
spectrum, auto-correlation function and wavelet analysis) is lower than
the resonance frequency. Both quantities are strongly correlated. Inset:
population histograms for both oscillation (filled bars) and resonance
(open bars) frequencies.

types in the entorhinal cortex vary significantly with
respect to their integrative properties in the temporal
domain. As EC layer II stellate cells provide the major
input to the dentate gyrus while EC layer III pyramidal
cells mainly project directly to area CA1, our results also
suggest that time-structured information is transmitted
in a differential and frequency selective way to different
down-stream regions of the hippocampal formation.

Membrane potential oscillations

Previously, MPOs had been reported for stellate cells
of layer II of the entorhinal cortex (Alonso & Llinas,
1989; Van der Linden & Lopes da Silva, 1998; Dickson
et al. 1997, 2000a), for deep-layer projection cells of the
entorhinal cortex (Schmitz et al. 1998; Dugladze et al.
2001; Gloveli et al. 2001) and for cells of the perirhinal
cortex (Bilkey & Heinemann, 1999). Oscillatory properties
of CA1 pyramidal cells have also been observed upon
depolarization to values very close to or above firing
threshold (Buhl et al. 1996; Pike et al. 2000). In addition,
many cortical pyramidal cells display membrane potential
oscillations when depolarized or exposed to carbachol
(Metherate et al. 1992; Amitai, 1994). Frequencies range
from 4 to 16 Hz and can thus be classified as theta activity
according to the rodent literature (for a review see, for
example, Gottesmann, 1992a,b). It has also been suggested
that such MPOs are involved in the generation of network
oscillations in the same frequency range (Alonso & Llinas,
1989). Conductance-based models suggest that MPOs
can depend on a variety of ionic currents determined
by the cell type (Wang, 1993; Desmaisons et al. 1999).
MPOs in stellate cells have been analysed by Dickson
et al. (2000a,b). The model proposed by these authors
suggests that the interplay between a persistent sodium
current and a hyperpolarization-activated cationic current
(Ih) is responsible for the observed MPOs. Within the
authors’ deterministic framework, MPOs are then inter-
preted as limit-cycle oscillations of a non-linear dynamical
system. Based on the observation of highly regular MPOs
in systems such as the inferior olive, this view has also been
put forward by various other authors (see, e.g. Lampl &
Yarom, 1997; Hutcheon & Yarom, 2000).

In accordance with previous investigations (White et al.
1998, 2000), the irregularity and low coherence of the
subthreshold oscillations observed in our study requires
a different explanation and suggests that intrinsic noise
sources play a paramount role for the generation of
MPOs in the entorhinal cortex. This precludes the use of
deterministic models to describe MPOs and alters their
mechanistic interpretation. In fact, our data indicate that
MPOs are not caused by an instability of the equilibrium
state of a low-dimensional deterministic system but rather
by stochastic forces that are most likely to be due to
channel noise. Thus although the same or similar ionic
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currents may be involved as in the picture of Lampl &
Yarom (1997), Dickson et al. (2000a,b) or Hutcheon &
Yarom (2000), these currents do not cause deterministic
periodic oscillations but exhibit stochastic fluctuations.
The striking difference between the entorhinal cortex and
inferior olive may partly be due to the self-entrainment
caused by electric couplings in the inferior olive.

The primary physiological function of intrinsic
membrane potential oscillations might be an
augmentation of synaptic inputs that are in synchrony
with ongoing MPOs (Volgushev et al. 1998). This is
particularly important when cells are depolarized for
prolonged periods of time to membrane potentials near
their firing threshold, for example during cholinergic
input. But intrinsic oscillations may also support network
oscillations, particularly if mechanisms exist which
synchronize the individual MPOs in neural ensembles.
This could be accomplished by a phase-resetting
mechanism, for example by synchronous inhibitory
synaptic input to a group of cells or by electrical coupling
between those cells. In our histological preparations we
rarely observed dye coupling between stellate cells; a more
focused study would be required to identify mechanisms
by which MPOs could be synchronized. By interaction
with interneurones, MPOs in a given set of cells might
also be translated into superimposed higher frequencies,
as suggested by findings of Gloveli et al. (1999). In this
study, carbachol application to deep layer cells in the
EC induced rhythmic synaptic potentials in superficial
entorhinal cortex cells containing both theta and gamma
frequencies.

Resonance properties

In many early studies of single-neurone properties only
stationary input resistances were determined. However,
once researchers started to expose cells to oscillating
current injections it became evident that the cell
impedance may strongly depend on the stimulation
frequency (Falk & Fatt, 1964; Cole, 1968; Mauro et al.
1970; Nelson & Lux, 1970). A number of cell types in the
mediodorsal thalamus (Puil et al. 1994), the inferior olive
(Lampl & Yarom, 1997) or the entorhinal cortex (Haas &
White, 2002) were found to display resonant properties.
With improved understanding of the underlying cellular
physiology, it was then realized that MPOs and neural
resonance are closely related phenomena, as reviewed by
Hutcheon & Yarom (2000).

As shown by our study, MPOs do occur in neuro-
nes that are intrinsically resonant while resonance itself
is not sufficient for MPO generation. This finding
implies that one has to carefully distinguish between the
conditions under which neurones exhibit resonance and
those for subthreshold oscillations; even in an intrinsically
resonant cell MPOs are simply not possible if the intrinsic

noise level is so low that there are not enough ionic
current sources to trigger measurable voltage fluctuations.
Together with the irregular nature of MPOs, these findings
underscore the importance of stochastic descriptions of
subthreshold phenomena (for a review, see White et al.
2000). As demonstrated by our modelling results, a simple
two-dimensional linear model can account quantitatively
for the observed phenomena.

The cell classes investigated in this study differ widely
in their resonance behaviour. Stellate cells from layer II
of the entorhinal cortex possess a resonance with an
impedance increase between 20% and more than 100%
at the resonance frequency while for other cell types the
impedance function either has only a small peak or simply
decays with increasing frequency. Pyramidal neurones of
EC layer III exhibit clear low-pass filter properties and
thus differ significantly from the stellate cell population
(t = 7.6, d = 41, P < 0.001). The cut-off frequency of
the low-pass filter was always less than 5 Hz with a
half-decay frequency of less than 20 Hz. This implies that
EC layer III pyramidal cells integrate synaptic input best for
frequencies below 5 Hz while stellate cells integrate input
best in the frequency range from 5 to 15 Hz. Note also that
our heuristic resonance criterion (Q ≥ 1.2) nicely reflects
the dichotomy seen in the population data (cf. Fig. 3B
and G).

The frequency-dependent information transfer
between two neurones can be strongly influenced by
the synaptic properties of the presynaptic cell (see, e.g.
Markram et al. 1997). As demonstrated by the large
differences of the resonance properties of EC layer III
pyramidal cells and EC layer II stellate cells, respectively,
the integrative properties of the postsynaptic cell may be
an equally important factor.

In the current study we did not make an attempt
to identify ionic currents responsible for the resonance
behaviour through pharmacological methods. Possible
candidates for these currents are slowly activated currents
that oppose changes of the membrane voltage. In CA1
pyramidal neurones two different resonance currents (IM

and IH) have been identified as acting upon depolarization
and hyperpolarization (Hu et al. 2002). Those currents
have also been identified in stellate cells. Simulations
have shown that a model that includes IM, IH and INap

in addition to the classical Hodgkin-Huxley currents
INa, IK and IL (Hodgkin & Huxley, 1952) provides a
good description of the observed resonance characteristic
for an average stellate cell. Nevertheless, the other
voltage-dependent currents observed in stellate cells (Eder
et al. 1991; White et al. 1993; Eder & Heinemann, 1994,
1996; Bruehl & Wadman, 1999; Magistretti & Alonso,
1999; Richter et al. 2000; Shalinsky et al. 2002) may
also play a role in precisely tuning the cell frequency
profile and may also help to explain the large variability
of the individual cell frequency preferences. As ion
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channels may be differentially distributed on dendritic
and other cellular compartments, differences in resonance
properties are expected not only between individual cells
but also between structural regions within the same cell.
Indeed, when comparing dendritic and somatic recordings
of cortical pyramidal cells, significant differences in
resonance behaviour were observed by Ulrich (2002).

We have found a number of EC cells whose impedance
was approximately constant over the whole investigated
frequency range. We have not identified these ‘other’ cells.
It could be that they are GABAergic cells. Furthermore,
we cannot exclude the possibility that some of the
recordings may have resulted from measurements in
dendrites.

From single-cell to network oscillations

Average impedance profiles for the two identified cell
groups are depicted in Fig. 7C. On average, EC layer III
pyramidal cells integrate low-frequency inputs best in the
range below 5 Hz, while stellate cells are more responsive
to inputs at higher frequencies. When we applied a
ZAP input at strongly depolarized membrane potentials,
action potentials were generated at the frequencies close
to the resonance frequency. This is in agreement with
previous studies on frequency preferences in the
entorhinal cortex. For example, during repetitive synaptic
subthreshold stimulation with frequencies below 5 Hz, the
pathway from the EC layer II to the dentate gyrus remains
quiet and is preferentially activated with frequencies
above 5 Hz (Gloveli et al. 1997b). In contrast, EC layer
III cells projecting to the subiculum and CA1 area
respond preferentially to low stimulus frequencies (below
10 Hz) and are strongly inhibited when stimulated with
higher frequencies (Heinemann et al. 2000). Both cell
classes possess a common range of frequencies between
5 and 10 Hz where integration of synaptic inputs is
similarly effective. It would be interesting to investigate
how this finding is related to the ease of theta-rhythm
induction in the hippocampal formation and to study
the implications of impedance resonance for synaptic
plasticity.

Appendix

In what follows, we derive basic properties of the
deterministic model used to analyse mean neural responses
when time-varying external inputs are applied to a
neurone. We then discuss the model predictions for fitting
data obtained from experiments with oscillatory and
step-current inputs. Most of the results can also be found in
previous publications (see, e.g. Puil et al. 1986; Hutcheon
et al. 1996a; Richardson et al. 2003). We therefore do
not provide an in-depth derivation but rather present

the various results using one unified nomenclature. The
stochastic extension of the model is described in the Results
section.

Stability of steady state solutions and natural
oscillation frequency

We analyse the membrane potential dynamics within the
RLC-circuit framework described by eqns (5) and (6).
Here, C, R, L and RL are phenomenological quantities
that may change their value as the holding potential is
varied. By definition, the effective cell capacitance C is
always positive. However, the other parameters could,
in principle, change their sign. As we will see shortly,
certain parameter combinations have to do so when the
membrane potential of the model cell looses stability
– which corresponds to the firing threshold in a real
neurone.

We first analyse the conditions under which stable steady
state solutions (i.e. stable resting potentials) are possible.
To this end, we rewrite eqns (5) and (6) as:

C
d2

dt2
V (t) + γ

d

dt
V (t) + δV (t) = RL

L
I (t) + d

dt
I (t)

(A1)

with

γ = 1

R
+ RLC

L
(A2)

and

δ = 1

L

(
1 + RL

R

)
= RL

Lρ
(A3)

For vanishing input current, I(t) = 0, the solution of this
differential equation is given by:

V (t) = V1 exp(−λ1t) + V2 exp(−λ2t) (A4)

where V 1 and V 2 are determined by the initial values of V
and dV/dt and λ1 and λ2 are given by:

λ1/2 = γ ± √
γ 2 − 4Cδ

2C
(A5)

The constant solution V (t) = 0 is stable, i.e. perturbations
of V do not grow in time, if and only if the real parts of λ1

and λ2 are negative or zero. Inspection of eqn (A5) shows
that two main dynamical regimes have to be distinguished
(see also Fig. 8):

(A) If γ 2 − 4Cδ < 0, the square root in eqn (A5) has an
imaginary solution which implies that any time-varying
solution V (t) must exhibit oscillatory behaviour (see also
Puil et al. 1986). Stability requires that these oscillations do
not grow in time which is true if and only if γ ≥ 0. Under
this condition, the solution eqn (A5) may be rewritten as

V (t) = V0 cos(2π fosct + ϕ0) exp(−λt) (A6)
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V 0 and ϕ0 are constants to satisfy initial conditions, the
decay factor λ is the real part of λ1 in eqn (A5):

λ = γ

2C
= 1

2

[
1

RC
+ RL

L

]
> 0 (A7)

and the oscillation or ‘natural’ frequency, f nat, is given by
imaginary part of λ1:

fnat = 1

2π
×

√
4Cδ − γ 2

2C
= 1

4π

√
4

C L
−

(
1

RC
− RL

L

)2

(A8)

(B) If γ 2 − 4Cδ ≥ 0, the square root has a real-valued
solution, and as C > 0, the larger of the two λ values is
negative or zero if and only if −γ + √

γ 2 − 4Cδ ≤ 0.
Because the square root in eqn (A5) is non-negative
in this scenario, γ has to obey γ ≥ 0. Solving −γ +√

γ 2 − 4Cδ ≤ 0 and taking the positivity of C into
account, we obtain a second necessary and sufficient
condition, δ ≥ 0, which is not required in the first scenario
(A). For completeness of this characterization, we denote
by C the region of parameters that correspond to unstable
solutions.

This analysis shows that a negative γ causes instability.
On the other hand, stability does not imply positive L,
R and RL. However, for all cells analysed, the circuit
parameters were positive. We therefore only treat this case
in the following sections.

Resonance behaviour

Let us now derive the impedance–frequency curve needed
to fit voltage traces obtained from measurements with
ZAP input currents. To calculate the model response
to a sinusoidal input with oscillation frequency f , we
insert I(t) = I0 exp(2iπ ft) into eqn (A1) and search for
oscillatory solutions of the type V theory(t) = V theory(f )
exp(2iπ ft). In terms of its amplitude Atheory and relative
phase ϕtheory, the complex-valued function V theory(f ) is
given by V theory(f ) = Atheory(f ) exp[iϕtheory(f )]. Solving
eqn (A1) leads to the theoretical impedance–frequency
curve, defined as Z theory(f ) = V theory(f )/I0 (see also
Hutcheon et al. 1996b):

Z theory( f )

= 1

C

√√√√ (2π f )2 L2 + RL
2[

L
RC + RL

]2
(2π f )2 + [

1
C

(
1 + RL

R

) − (2π f )2 L
]2

(A9)

The impedance Z theory(f ) decays with increasing frequency
f if the circuit parameters obey:

L2 + 2RL L

(
RLC + L

R

)
≤ RL

4C2 (A10)

If eqn (A10) is not fulfilled, the impedance has a maximum
at a non-zero resonance frequency f res:

fres = 1

2π

√[
1

C2 L2
+ 2RL

C L2

(
RL

L
+ 1

RC

)]1/2

− RL
2

L2

(A11)

Response to step-current inputs

To analyse the response to an external step-current input,
let us assume that at t = 0, the current is stepped from 0
to the value I step, i.e. I(t) = 0 for t < 0 and I(t) = I step for t
> 0. As we assume that the cell operates in its stable regime,
the membrane potential will relax to a new value V ∞ for
long times, so that dI/dt , dV/dt and d2V/dt2 vanish in
this limit. Equation (A1) then implies:

V∞ = ρ Istep (A12)

in accordance with the interpretation of ρ as the cell’s input
resistance.

Depending on the circuit parameters, the model shows
qualitatively different transients before steady state is
reached. In scenario (A), defined by γ 2 − 4Cδ < 0, solving
eqn (A1) leads to

V (t) = Istep

[
ρ − exp(−λt)

2π fnatC
cos

(
2π · fnatt + arg tan

×
(

1
2RC + 1

RLC − RL

2L

2π fnat

))]
(A13)

where, as before, the membrane potential is measured
relative to the holding potential. λ and f nat are defined
in eqns (A8) and (A9), respectively, and depend on the
membrane potential. For small I step one may, nevertheless,
try to use values λ and f nat obtained at the holding
potential.

In scenario (B), defined by γ 2 − 4Cδ > 0, solving
eqn (A7) leads to

V (t) = Istepρ + Istepρ

λ2 − λ1

[(
1

ρC
− λ2

)
exp(−λ1t)

−
(

1

ρC
− λ1

)
exp(−λ2t)

]
(A14)

where λ1 and λ2 are given by eqn (A5). As this solution
involves the difference of two exponential functions, it can
either have a single extremum (B-I) or decay without an
extremum (B-II) (see also Richardson et al. 2003). The
first case implies an overshooting membrane potential, so
that V (t) = I stepρ is obtained not only for t → ∞ but
also at some finite t (see Fig. 8, insets 1–7). This occurs
if the parameters allow the expression in square brackets
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in eqn (A13) to vanish for finite t which is true if and
only if L > CRRL. (There is a second condition, namely
LC−1RL

−2 > 0, but as the cell parameters were always
positive, this constraint is not important here.)

With respect to step-current inputs, there are thus
three qualitatively different classes of membrane-potential
responses that relax to stable solutions (see also
Fig. 8):

(A): multiple overshoots of the membrane potential
whose amplitude decay in time.

(B-I): a single overshoot of the membrane potential,
followed by a monotone decay.

(B-II): a monotone decay of the membrane potential
without any overshoot.

Depending on the size of the decay factor λ and the
cell’s or measurement’s noise level, the damped oscillations
following the initial overshoot in scenario (A) may not
be visible in a physiological recording. There is thus no
clear-cut experimental distinction between response class
(A) and (B-I) possible. As both scenarios show an over-
shooting membrane potential, they should be classified as
sag potentials. Furthermore, as can be seen from Fig. 8,
the existence of a sag potential (parameter regions A and
B-I) implies an impedance resonance, but as the dashed
line separating resonant from non-resonant behaviour lies
above the B-I–B-II boundary, an impedance resonance
does not imply the existence of a sag potential.

Note that the decay factor and natural frequency capture
the neurone’s response to brief or step-like perturbations,
as used in the experiments. On the other hand, when the
cell is exhibiting MPOs in response to ongoing fluctuations
of ionic channel currents, the oscillation frequency f osc is
determined both by the intrinsic noise spectrum and the
cell’s resonance properties, as discussed in Results. Thus
f nat and f osc differ in general.

Finally, an elaborate in-depth analysis of eqns (A8) and
(A11) reveals that within region (A), the natural oscillation
frequency f nat is smaller than the resonance frequency
f res (Müller, 2000). In addition, the model exhibits a
so-called Hopf bifurcation when λ vanishes; this occurs
in the limit where R → ∞ and RL → 0, corresponding to
an undamped oscillator. Consequently, the stationary rest
state loses its stability for λ = 0 and a periodic oscillation
appears. At this very point f res and f nat become equal and
obey:

fres = fnat = 1

2π

√
1

C L
(A15)

Graphical representation of the different
dynamical regimes

The time course of solutions generated by eqns (5) and
(6) depends on L, C, R and RL. For positive parameter

values – true for all measured cells – the qualitative
behaviour depends only on two combinations of the
original parameters (Richardson et al. 2003), namely:

α = L

C R RL
(A16)

and

β = L

C R2
L

(A17)

This simplification allows us to visualize the
different dynamical regimes in a two-dimensional
representation, see, e.g. Fig. 8, and we obtain the following
characterizations:
(A):

α > −1 and β >
1

4
(α − 1)2 (A18)

(B-I):

α ≥ +1 and 0 ≤ β ≤ 1

4
(α − 1)2 (A19)

(B-II):

α ≥ −1, α + β ≥ 0, 0 ≤ β ≤ 1

4
(α − 1)2

and β < 0 if α ≥ +1 (A20)

In terms of α and β, condition (A10) reads:

β ≤
√

(α + 1)2 + 1 − (1 + α) (A21)

In Fig. 8, the boundary (eqn (A21)) between resonant
and non-resonant behaviour is shown as a dashed line.
Note that this line differs from those separating the
different dynamical regimes for responses to step-current
inputs.
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