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ABSTRACT

We describe a novel method for jointly estimating crossing-over and gene-conversion rates from pop-
ulation genetic data using summary statistics. The performance of our method was tested on simulated data
sets and compared with the composite-likelihood method of R. R. Hudson. For several realistic parameter
values, the new method performed similarly to the composite-likelihood approach for estimating crossing-
over rates and better when estimating gene-conversion rates. We used our method to analyze a human data
set recently genotyped by Perlegen Sciences.

MEIOTIC recombination is a fundamental biolog-
ical mechanism that leads to the exchange of

genetic material between homologous chromosomes.
This process is believed to be associated with some im-
portant cellular functions such as the formation of
synaptonemal complex and proper chromosomal seg-
regation at the time of meiosis. In evolutionary biology,
recombination is important because it generates novel
allelic combinations and increases the genetic diversity
within a population. The knowledge of how recombi-
nation levels vary across a genome is crucial for the
design of association-mapping studies as well as evolu-
tionary inference studies and is also of interest from
the point of view of basic molecular biology. Therefore,
characterizing this variation in the human genome has
been the focus of several current research efforts (e.g.,
Crawford et al. 2004; McVean et al. 2004; Fearnhead

and Smith 2005; Jeffreys et al. 2005; Myers et al. 2005).
In particular, such studies have been extremely useful
for detecting recombination hotspots across the ge-
nome as well as in identifying sequence features that
are associated with them.

Recombination rates can be estimated using a variety
of techniques, such as sperm typing (e.g., Jeffreys et al.
2001), pedigree studies (e.g., Kong et al. 2002), and pop-
ulation genetic methods. Although sperm typing can
provide estimates at the finest possible resolution, it is
currently not practical for whole-genome studies. Exist-
ing pedigree studies, on the other hand, can offer whole-
genome coverage but cannot provide the required
resolution (i.e., at the kilobase scale). Therefore, pop-
ulation genetic approaches have proved to be valuable.

These are faster and easier to implement than sperm-
typing techniques and can offer much higher resolution
than is possible from current pedigree studies.

Population genetic methods use polymorphism data
from DNA sequences sampled from a population. They
infer the population-scaled recombination rate r (¼ 4Nr)
(where N denotes the effective population size and r
denotes recombination fraction) on the basis of simpli-
fied models of population evolution. r estimation is a well-
studied problem in the field of population genetics and
many different estimators are currently available. The
simplest methods are based on ad hoc moment esti-
mators. These are quick and easy to compute but are
inaccurate since they do not use the available informa-
tion efficiently (e.g., Hudson 1987; Hey and Wakeley

1997; Wakeley 1997). In contrast, full-likelihood
methods are elegant (Griffiths and Marjoram 1996;
Kuhner et al. 2000; Nielsen 2000; Fearnhead and
Donnelly 2001) and make full use of the available
haplotype information, but prove to be computationally
infeasible for larger data sets (e.g., .15-kb regions in
humans). To overcome both these limitations, several
practically useful compromise approaches have been
proposed. These approaches try to avoid the computa-
tional expense of calculating exact likelihoods for the
observed data while maintaining some likelihood-based
framework (e.g., Wall 2000; Hudson 2001; Fearnhead

and Donnelly 2002; Li and Stephens 2003; Wall

2004).
The method used in Wall (2000) involves describing

data sets with one or more summary statistics and then
performing maximum-likelihood inference using the
reduced data. The success of this approach depends on
finding summaries that efficiently collect information
from the data. The combination of the number of dis-
tinct haplotypes and the minimum number of inferred
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recombination events (Hudson and Kaplan 1985)
has been found to work reasonably well (Wall 2000;
Hudson 2001).

The methods described by Hudson (2001), Fearn-

head and Donnelly (2002), and Wall (2004) utilize
composite likelihoods. In this approach, we break a
data set into smaller subsets, calculate full likelihoods
for these subsets, and then multiply these likelihoods
together to get ‘‘composite’’ likelihoods. For example,
Hudson’s method calculates the likelihoods of the
haplotype configurations for all possible SNP pairs
and multiplies these likelihoods together. Theoretical
results show that a simple modification to this method,
where SNP pairs are given weights that decay with
the distance between them, can give a consistent esti-
mator of the recombination rate (Fearnhead 2003).
The composite-likelihood curve can provide a good point
estimate of r. Because there is dependency between the
subsets, standard asymptotic maximum-likelihood assump-
tions do not apply and therefore the uncertainty in
estimates has to be calculated from simulations. The
method of Wall (2004) is similar to the method of
Hudson (2001) but considers all triplets of sites instead
of pairs. The Fearnhead and Donnelly (2002)
method is slightly different from the other two methods
and calculates full likelihoods for small nonoverlapping
windows along the sequence.

An alternate approach, proposed by Li and Stephens

(2003), consider the likelihood of r for a given data set
as a product of the conditional distributions of observ-
ing a haplotype, given a subset of the other haplotypes.
If H1, H2, . . ., Hn denotes a sample of n haplotypes, then

PðH1;H2; . . . ;Hn j rÞ
¼ PðH1 j rÞPðH1 jH2; rÞ

. . . PðHn jH1;H2; . . . ;Hn�1; rÞ;

where P denotes likelihood. Li and Stephens then de-
scribe computationally tractable approximations for the
conditional distributions on the right-hand side and esti-
mate r by maximizing their product. Since this method
is sensitive to the order in which the haplotypes are
considered, the authors estimated their likelihoods by
averaging over several possible orders. There are no
theoretical results available for this method.

Many of the estimation methods mentioned previ-
ously assume that recombination happens only in the
form of crossing-over events. However, this model is not
biologically realistic. Current meiotic recombination mod-
els allow for two different kinds of events (e.g., Szostak

et al. 1983). We call these two forms of recombination
‘‘crossing over’’ and ‘‘gene conversion,’’ respectively.
Crossing over refers to the reciprocal exchange of large
chromosomal fragments whereas gene conversion re-
fers to short exchanges between chromosomes that are
not accompanied by crossing over. Theoretical results
that incorporate both these mechanisms have been

developed before (e.g., Andolfatto and Nordborg

1998; Wiuf and Hein 2000). Using these models, it is
possible to generalize the composite-likelihood ap-
proach of Hudson (2001) for estimating both cross-
ing-over and gene-conversion rates (e.g., Frisse et al.
2001; Ptak et al. 2004). To do so, it is only necessary to
specify the effective recombination rate between a pair
of sites (from both crossing over and conversion) as a
function of distance (e.g., Andolfatto and Nordborg

1998 or Langley et al. 2000). The method of Wall

(2004) can also be used for jointly estimating both
crossing-over and gene-conversion rates and has been
shown to give more accurate estimates than the method
of Hudson (2001).

In this article, we introduce a novel method for jointly
estimating both crossing-over and gene-conversion rates
from single-nucleotide polymorphisms (SNPs) using sum-
mary statistics. We first tested the performance of this
method on simulated data sets and compared it with
that of the composite-likelihood approach (Hudson

2001). For this comparison, we simulated both phased
and unphased data with uniform and nonuniform re-
combination rates along the sequence. We then applied
our method to a human data set recently genotyped by
Perlegen Sciences (Hinds et al. 2005).

MATERIALS AND METHODS

Summary statistics method: Our approach to estimating
recombination rates from SNPs is similar to that of Wall

(2000) and we describe a data set with multiple summary sta-
tistics and then perform maximum-likelihood inference using
the reduced data. The summaries used here are similar to the
ones described in Padhukasahasram et al. (2004) for esti-
mating gene-conversion rates alone. These were based on
multilocus linkage patterns that are indicative of conversion
events in short-range data. Here, we extend this approach for
jointly estimating both gene-conversion and crossing-over
rates from haplotype and genotype data.

In the summary statistics method, we first define patterns
for SNPs on the basis of the absolute value of pairwise D9 (D9
denotes the normalized measure of linkage disequilibrium,
LD). For example, for a pair of SNPs A and B, D9(AB) , 1.0,
D9(AB) , 0.5, D9(AB) , 0.1, etc., denote patterns. Similarly,
for three SNPs A, B, and C, D9(AB) , 1.0 and D9(BC) , 1.0,
D9(AB) , 0.5 and D9(BC) , 0.5, etc., denote patterns. In-
formally, we try to summarize the distribution of LD levels for
all triplets or pairs of SNPs within a data set by calculating the
fraction that show any particular pattern. Since our summary
statistics are based on all triplets or pairs, our method uses ap-
proximately full sequence information. Note that the ex-
pectation of pairwise D9 and its distribution depends on the
underlying recombination rate. So, the probability of observ-
ing a given pattern increases monotonically with the recom-
bination rate.

Coestimating crossing-over and gene-conversion rates: Although
both mechanisms of recombination lead to the decay of LD,
the effects of crossing over and gene conversion are qualita-
tively different. While the rate of decay of LD by crossing over
increases as the distance between the markers increases, with
gene conversion it is independent of distance for markers that
are sufficiently far apart (Wiehe et al. 2000). Therefore, the
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effects of gene conversion are significant only for short-range
markers whereas the effects of crossing over dominate for
long-range markers (Andolfatto and Nordborg 1998;
Wiehe et al. 2000). To jointly estimate both these parameters,
we collect summary statistics from both long-range and short-
range data. This allows us to distinguish models with gene
conversion from those with crossing over alone.

For all the data sets considered here, we estimated rates
using the following patterns:

For three SNPs A, B, and C, ordered from left to right,
SNPs are defined to be in pattern I if D9(AB) , D9(AC) or

D9(BC) , D9(AC),
SNPs are defined to be in pattern II if D9(AB) , D9(AC) and

D9(BC) , D9(AC),
SNPs are defined to be in pattern III if D9(AB) , 0.5 and

D9(BC) , 0.5.
For two SNPs A and B, SNPs are defined to be in pattern IV if

D9(AB) , 1.0.

Let P5(I) and P5(II) denote the fraction of all triplets with
the outer SNPs within 5 kb of each other that show patterns I
and II, respectively. Let P10(II) denote the fraction of all
triplets with outer SNP pairs within 10 kb of each other that
show pattern II. These denote our short-range summary statistics.
Patterns I and II are indicative of gene-conversion events in
short-range data and can potentially arise from a single gene-
conversion event including the middle SNP in a triplet (Wiehe

et al. 2000; Padhukasahasram et al. 2004). Let P50(III) denote
the fraction of all triplets with outer SNPs within 50 kb of each
other that show pattern III and P50(IV) denote the fraction of
all SNP pairs within 50 kb of each other with D9 , 1.0. These
denote our long-range summary statistics.

Choice of patterns: The choice of summary statistics that
capture key features of full sequence information is important
for our method to work efficiently. To find such informative
summaries, we first tested the performance of many different
patterns (listed in appendix a) for simulated data sets. We
found that patterns that are too rare are not suitable estimators
for low recombination values because they are almost never
observed. Similarly, patterns that are too common are not
suitable estimators for high recombination values because
summaries based on them become almost insensitive to recom-
bination in that range. Using multiple patterns in both long-
range and short-range data worked better than any individual
summaries. In general, it appears that a few (two or three)
different patterns are sufficient to describe the distribution of
recombination levels in a data set accurately and can roughly
approximate full sequence information for a wide range of
recombination rates (e.g., as in Table 1). We selected a combi-
nation of patterns that performed well for the values considered
in Table 1. Adding more summary statistics to this combina-
tion did not bring any significant improvements in performance.
Therefore, we decided to use this set of patterns for comparing
our method with the composite-likelihood approach.

Rejection method: To jointly estimate crossing over (r) and
gene conversion (g) from a test data set, we calculate both
short-range and long-range summaries and use all of them in
a simple rejection-sampling scheme. In this scheme, we first
simulate a large number of data sets for a finite grid of param-
eter values and compute summary statistics for each. Then, we
accept a simulated data set if each one of its summaries lies
within 30% of the corresponding values observed in the test
data set (we chose a high acceptance rate so that we accept a
reasonably large number of the simulated data sets given the
summary combination chosen and the total number of data
sets simulated; see appendix b for performance for a few other
choices) and reject it otherwise. Likelihood for a parameter
value is approximated as the fraction of data sets (simulated at

that value) that are accepted (for more details about rejection
methods see Weiss and von Haeseler 1998 and Marjoram

et al. 2003).
Extension to genotype data: To extend our summaries to geno-

type data, we simply omit double heterozygotes (phase un-
known) when determining D9 between any pair of SNPs.

Simulations: DNA sequences were simulated under the
coalescent, assuming no population structure, a large constant
population size (N), no selection, and the infinite-sites model
for mutations The population mutation rate u (¼4Nu) was as-
sumed to be uniform along the sequence. Here, u denotes the
per-generation, per-sequence probability of a mutation event.

For modeling gene conversion, we used the coalescent with
both crossing over and gene conversion, as described by Wiuf

and Hein (2000). Gene-conversion tract lengths are assumed
to be geometrically distributed with a mean length L. The
population crossing-over rate r (¼4Nr) and population gene-
conversion rate g (¼4Nc) are assumed to be uniform along the
sequence. Here, r denotes the per-generation, per-sequence
probability of a crossing-over event, and c denotes the per-
generation, per-sequence probability of a gene-conversion
event. Note that this model is equivalent to the assumption
that events occur at a total rate of r 1 g and that each
recombination event results in crossing over with probability
r/(r 1 g) and in gene conversion otherwise. The ratio of gene
conversion to crossing over is denoted by f (¼g /r).

In addition to the standard model of gene conversion, we
also simulated data under some alternate models where either
crossing over alone or both conversion and crossing over were
nonuniform along the sequence. For modeling nonuniform
recombination, we assumed that recombination rates are ele-
vated for some 1-kb regions (called hotspots) that occur at
certain fixed locations along the sequence. A significant frac-
tion of events occur within these hotspots, whereas the rest of
the events occur in the intervening regions. Recombination
within hotspots as well as within non-hotspot regions was as-
sumed to be uniform. All hotspots have identical (higher)
levels of recombination. Similarly, all non-hotspot regions
also have identical (lower) levels of recombination.

To compare estimation methods, we tested them on 50-kb
DNA sequences simulated with u set to 0.8/kb (estimates for
human data from Innan et al. 2003) and sample size of n ¼ 18
for haplotype data and 2n ¼ 36 for genotype data. It is usually
difficult to estimate both gene-conversion rates and tract lengths
from SNPs (Padhukasahasram et al. 2004). Therefore, conver-
sion rates were always estimated with the tract length (L) fixed
at 500 bp and this also facilitates comparisons with previous
studies (such as Frisse et al. 2001; Padhukasahasram et al.
2004; Ptak et al. 2004). For smaller tract lengths, the estimated
conversion rates are expected to be much higher. To summarize
the performance of methods, we used the following criteria:

1. The accuracy (g), which is defined as the proportion of
estimates that lie within a factor of 2 of the true value (Wall

2000).
2. The nature of bias (B), which is defined as the proportion

of estimates lower than the true value, given that it is not
equal to the true value. This statistic shows whether any
method overestimates or underestimates a recombination
parameter more often. A value close to 0.5 would indicate
that the estimator is roughly unbiased.

3. Error (V), which is defined as the root mean square relative
error for the estimates.

4. Average (E), the arithmetic mean of the estimated values.

Unphased data sets were generated by first simulating
haplotypes and then grouping random pairs of chromosomes
together into individuals. We then assumed that within any
individual, phase is unknown for double heterozygotes. For
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estimating rates from the human genotype data set, we sim-
ulated 50 kb DNA sequences with u set to 0.8/kb and sample
size 2n ¼142.

The Perlegen data set: Perlegen genotyped �1.6 million
SNPs across the human genome that are likely to be common
in individuals of diverse ancestry (Hinds et al. 2005). These
SNPs were identified by performing array-based resequencing
of 24 diverse human DNA samples. Seventy-one unrelated in-
dividuals from three populations were genotyped: 24 Euro-
pean Americans, 23 African Americans, and 24 Han Chinese
from the Los Angeles area. These 71 individuals were not re-
lated to the individuals previously used for SNP discovery.

Ascertainment and missing data: We omit haplotypes with
missing data while calculating our summaries for real data.
The proportion of missing data in the Perlegen genotypes is
extremely small (,2%) and thus our estimates are not sig-
nificantly affected by ignoring these. In addition, when esti-
mating rates for human data, SNPs with low minor allele
frequency (,9%) were removed from both real and simulated
data sets. To simulate the effects of ascertainment, we retained
only those SNPs that were polymorphic in a randomly chosen
sample of 24 chromosomes of the simulated data (the same 24
chromosomes for all SNPs).

Maxhap and Maxdip: Maxhap and Maxdip are programs
for estimating recombination rates from haplotype and geno-
type data, respectively, on the basis of the composite-likelihood
approach of Hudson (2001). We used them for estimating re-
combination rates from simulated data sets and compared
their performance with our summary statistics method.

RESULTS

Performance with haplotypes for the standard model
of gene conversion: First, we tested the performance of
our method on data simulated under a simple model
where both crossing-over and gene-conversion rates are
uniform along the sequence. We simulated 500 phased
data sets of 50-kb DNA sequences with u set to 0.8/kb,
n ¼ 18, and L fixed at 500 bp.

For each simulated data set, we estimated gene-
conversion and crossing-over rates using our rejection
method (described in materials and methods) as well
as using Maxhap. Estimates for both the methods
were obtained by calculating likelihoods for a finite
grid of r-and g-values (identical grids were used for both
methods). The grids of r and g used for the first three
rows and next three rows in Table 1 were (0.1, 0.50, 1.00,
2.50, 5.00, 7.50, 10.0, 15.0, 20.0, 30.0, 40.0, 60.0, 80.0,
100.0, 120.0, 140.0) and (0.0001, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180,
190, 200, 220, 240), respectively. Likelihoods for the
summary statistics method were approximated using
40,000 simulated data sets (for each r, g combination)
for the first grid and using 10,000 data sets for the
second. We did not smooth likelihood surfaces for ob-
taining the maximum-likelihood estimates.

Likelihoods for the two-locus configurations in Max-
hap were based on 2 3 106 replicates. Estimating rates
for 500 data sets using our method took �868 sec once
the data for approximating the likelihoods have been
simulated (which took �111 hr for the first and 245 hr
for the second grid) on a 2-Ghz Xeon processor

machine. Estimating rates using Maxhap took �2.25
and 5.2 sec/50-kb data set for the first grid (with 256
values) and the second grid (with 529 values).

Table 1 summarizes accuracy (g), nature of bias (B),
and error (V ) for both these methods. We found that for
estimating gene-conversion rates, the summary statistics
method has higher accuracy than Maxhap, which tends
to underestimate the conversion rate more often. For
estimating crossing-over rates, both the methods have
similar accuracy and nature of bias. The root mean squ-
are relative error was also roughly similar for both the
methods.

Confidence intervals and their coverage properties:
We constructed �90% confidence intervals for the
gene-conversion and crossing-over rate estimates ob-
tained using our method and examined their coverage
properties. For doing this, we first simulated 5000 data
sets each for five different parameter combinations and
estimated gene-conversion and crossing-over rates on
the basis of the first grid used for Table 1. Because this
grid is coarse and we did not use smoothing, it is difficult
to obtain precise confidence intervals for our method.
We increased the interval width around the estimated
conversion or crossing-over rate until it included at least
90% of the total sum of the likelihoods. Then, we chose

TABLE 1

Performance for models with uniform recombination
rates with phased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite likelihood method
5 5 0.246 0.696 0.555 0.611 8.917 5.097 2.842 0.994
10 10 0.324 0.828 0.609 0.580 12.590 11.140 1.769 0.829
20 20 0.368 0.792 0.671 0.590 19.250 21.650 1.274 0.770
40 40 0.468 0.874 0.638 0.512 34.880 43.490 0.936 0.591
80 80 0.460 0.840 0.691 0.490 59.820 92.520 0.766 0.624
100 100 0.518 0.820 0.665 0.462 77.190 115.04 0.727 0.604

Summary statistics method
5 5 0.242 0.746 0.574 0.394 7.768 5.735 2.402 0.914
10 10 0.358 0.842 0.533 0.588 14.230 10.543 1.752 0.694
20 20 0.522 0.842 0.580 0.601 22.717 20.810 1.215 0.662
40 40 0.638 0.888 0.543 0.498 43.060 43.540 0.937 0.567
80 80 0.604 0.860 0.514 0.534 89.060 86.640 0.839 0.562
100 100 0.652 0.846 0.484 0.491 109.58 109.32 0.743 0.554

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for which
the estimates of gene conversion (ĝ) and crossing over (r̂) lie
within a factor of 2 of the true values (i.e., g and r), respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.
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a subset (�1000) of these simulated data sets for which
the confidence intervals contained 90–91% of the total
and calculated the fraction of such data sets for which
these intervals included the true value (Table 2). This
crude coverage study suggests that the actual coverage
probabilities obtained from the rejection method used
here may differ slightly from the nominal probabilities.
Note that we assume a uniform prior distribution for the
parameters along the grid values used and confidence
intervals were calculated jointly for both the recombi-
nation parameters.

Performance with genotype data for the standard
gene-conversion model: To test the performance of our
method with genotypes, we simulated 500 unphased
data sets of 36 chromosomes for the same model as in
Table 1. For each simulated data set, we estimated gene-
conversion and crossing-over rates using our rejection
method as well as using Maxdip. Estimates were ob-
tained by calculating likelihoods for a finite grid of r

(0, 10, 20, 30, 40, . . . , 90) and g (0, 10, 20, 30, 40,
60, . . . , 200) values and likelihoods in our method were
approximated using 10,000 simulated data sets (for
each combination of r and g in this grid). Likelihoods
for the two-locus configurations for Maxdip were based
on 2 3 106 replicates.

Table 3 summarizes the accuracy (g), nature of bias
(B), and error (V ) for unphased data. We find that for
estimating conversion rates our method has similar ac-
curacy and higher error compared to Maxdip, which
tends to underestimate more often, whereas for estimat-
ing crossing over it has lower accuracy, higher error, and
similar nature of bias.

Note that both Maxhap and Maxdip tend to under-
estimate the gene-conversion rate more often whereas
our method is roughly unbiased. Therefore, when esti-
mating conversion rates our method tends to have rela-
tively higher error for many parameters. However,
because of the lower bias, the accuracy tends to be
higher compared to Hudson’s method.

Comparison between haplotype and genotype data: We also
simulated 500 phased data sets (Table 4) for a sample
size of 18 chromosomes for comparison with Table 3
and estimated rates using our method and Maxhap.
From this comparison, we find that the accuracy of
estimates using Maxdip and 18 genotypes was higher
than the accuracy obtained with Maxhap and 18 haplo-
types. For the summary statistics method, the accuracy
with 18 genotypes was slightly lower than the accuracy
obtained from 18 haplotypes. The nature of bias was
roughly similar for both unphased and phased data sets
for both the methods (Tables 3 and 4).

Models with nonuniform crossing over and uniform
gene conversion: The simulations for Tables 1, 3, and 4
assumed that recombination rates are uniform along
the sequence. However, this assumption is not real-
istic. For example, there is considerable evidence that
crossing-over rates vary across the human genome at all
scales (e.g., Fullerton et al. 1994; Dunham et al. 1999;
Jeffreys et al. 2001; Innan et al. 2003). To examine the
effects of nonuniform crossing over, we simulated data
under a model where crossing over is nonuniform and
gene conversion is uniform along the sequence. This
model assumes that 50% of all crossing-over events
happen in 1-kb hotspots that occur once every 25 kb
along the sequence. We simulated 500 phased and
unphased data sets for this alternate model of recom-
bination for the same parameters as in Tables 3 and 4
and estimated rates similarly. Tables 5 and 6 show the
summaries of accuracy (g), nature of bias (B), and error
(V) for these data sets.

When estimating gene-conversion rates, the perfor-
mance of the composite-likelihood method appears
to be slightly sensitive to the presence of crossing-over
hotspots. In particular, the tendency to underestimate
the gene-conversion rate increases and the accuracy is a
little lowered compared to data simulated with uniform
crossing-over rates. In contrast, our method’s perfor-
mance seems to be relatively unaffected in these re-
gards (compare Tables 3 and 5 and Tables 4 and 6).
For estimating crossing-over rates, both methods seem
to be reasonably robust to the nonuniform crossing-over
model considered here and the accuracy of estimation
did not change significantly (compare Tables 3 and 5
and Tables 4 and 6). However, the tendency to un-
derestimate the crossing-over rate appears to be higher
for some parameter combinations.

Models with nonuniform crossing over and non-
uniform conversion: Sperm-typing experiments of
Jeffreys and May (2004) have revealed the presence
of highly localized gene-conversion activity in some
crossing-over hotspots in humans. Thus, both conver-
sion and crossing over may be elevated for some regions
in the human genome. We also tested the performance
of our method and Maxhap for phased data simulated
under models where both crossing over and gene conver-
sion are nonuniform along the sequence. This model

TABLE 2

Coverage probabilities of confidence intervals obtained
using the summary statistics method

ga ra P(g)b P(r)b

5 5 0.941 0.927
10 10 0.966 0.899
15 15 0.913 0.919
20 20 0.871 0.925
30 30 0.887 0.940

a g and r denote the true values of the gene-conversion and
crossing-over rates under which data sets were simulated.

b P(g) and P(r) denote the fraction of the data sets for
which the true values of conversion or crossing over lie within
the confidence intervals with 90–91% of the total posterior
probability.
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assumes that 50% of both conversion and crossing-over
events happen in 1-kb hotspots that occur once every 25
kb along the sequence. We simulated 500 data sets for
this nonstandard model of recombination for the same
parameters as in Tables 3 and 4 and estimated rates
similarly. Table 7 shows results for these data sets.

The presence of nonuniform gene conversion re-
duces the accuracy of both the methods considerably
and biases them toward underestimating the gene-
conversion rate (compare Tables 4 and 7). The accuracy
of estimating crossing-over rates did not change much
for either method whereas the tendency to under-
estimate the crossing-over rate seems to increase for
some parameter combinations in the summary statistics
method.

Recombination in human data: To illustrate our
method in real data, we applied it to the Perlegen
genotype data set and estimated gene conversion and
crossing over along human chromosome 1 (Figure 1).
Likelihoods were calculated by simulating 10,000 data
sets each for a grid of r (0, 5, 10, 20, 40, 60, 80, 100, 120,
140, 160, 180, 200, 220, 240, 260, 280, 300, 320) and g

(0, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220,
240, 260, 280, 300, 320) values. Gene-conversion and
crossing-over rate estimates averaged over all 50-kb
windows (with $ 30 SNPs) in chromosome 1 are

0.00066 and 0.00038/bp, respectively ( f ¼ 1.736),
assuming that L¼ 500 bp. These are similar to estimates
for chromosome 21 haplotypes in Padhukasahasram

et al. (2004). Note that conversion estimates are highly
sensitive to the assumed conversion tract length and
estimates are expected to be much higher for smaller
tract lengths (e.g., compare estimates for different tract
lengths in Padhukasahasram et al. 2004).

Myers et al. (2005) recently applied the method of
McVean et al. (2004) to this Perlegen data set and
estimated recombination rates across the human ge-
nome. They also used the pedigree data from Kong et al.
(2002) to estimate rates in humans. To compare our
results with this study, we estimated recombination rates
for 50-kb regions along chromosomes 1–22 under a
model with uniform crossing over alone using only
the long-range summary statistics. Rates were first esti-
mated for all 50-kb windows with at least 10 SNPs and
then averaged over 5-Mb intervals. At these scales, esti-
mates obtained using our method are highly correlated
(Pearson’s coefficient R ¼ 0.9181, P > 10�2) with those
obtained from the pedigree data used in Myers et al.
(2005) (Figure 2). Myers et al. found that pedigree-
based estimates and those obtained using the McVean

et al. (2004) method are almost equivalent when aver-
aged over such large intervals in humans.

TABLE 4

Comparison between haplotype and genotype data:
performance for models with uniform
recombination rates with phased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
20 20 0.382 0.916 0.669 0.550 20.06 20.86 1.396 0.624
60 20 0.626 0.890 0.589 0.481 51.56 23.44 0.672 0.765
80 20 0.672 0.856 0.717 0.431 62.19 25.36 0.600 0.869
20 40 0.326 0.890 0.696 0.496 18.94 42.49 1.557 0.519
40 40 0.440 0.862 0.686 0.495 33.48 43.00 0.994 0.550

Summary statistics method
20 20 0.610 0.944 0.482 0.523 26.48 21.76 1.427 0.635
60 20 0.740 0.922 0.478 0.530 67.46 21.74 0.714 0.661
80 20 0.804 0.894 0.509 0.492 83.16 22.80 0.566 0.717
20 40 0.440 0.914 0.489 0.560 30.06 40.06 1.742 0.471
40 40 0.642 0.892 0.534 0.498 43.56 42.76 0.929 0.510

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for which
the estimates of gene conversion (ĝ) and crossing over (r̂) lie
within a factor of 2 of the true values (i.e., g and r), respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.

TABLE 3

Comparison between haplotype and genotype data:
performance for models with uniform
recombination rates with unphased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
20 20 0.452 0.968 0.600 0.573 22.060 20.170 1.273 0.495
60 20 0.692 0.954 0.545 0.491 55.259 21.594 0.650 0.573
80 20 0.794 0.962 0.626 0.543 74.119 20.908 0.534 0.564
20 40 0.420 0.968 0.662 0.484 19.919 42.000 1.345 0.426
40 40 0.572 0.960 0.619 0.534 36.620 40.880 0.863 0.417

Summary statistics method
20 20 0.580 0.910 0.445 0.498 27.600 22.700 1.387 0.715
60 20 0.732 0.850 0.454 0.453 70.278 24.090 0.763 0.822
80 20 0.748 0.838 0.468 0.514 89.940 23.226 0.654 0.872
20 40 0.488 0.904 0.516 0.521 28.076 42.582 1.673 0.512
40 40 0.600 0.828 0.501 0.541 51.814 43.050 1.169 0.590

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for
which the estimates of gene conversion (ĝ) and crossing over
(r̂) lie within a factor of 2 of the true values (i.e., g and r),
respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.
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In addition to this, we compared the patterns of
crossing-over estimates obtained using the summary
statistics method (using only long-range summary
statistics) for overlapping 50-kb regions in the human
chromosome 6 MHC region (where sperm typing shows
evidence of hotspots) with estimates obtained for the
same region in Myers et al. (2005), using the McVean

et al. (2004) method (Figure 3). Because we estimated
average rates for 50-kb windows, it is not possible to di-
rectly compare recombination intensities. Nonetheless,
there is broad agreement between the recombination
patterns obtained using these two different methods
and there is considerable overlap between the positions
of the peaks in Figure 3.

Are gene-conversion and crossing-over rates corre-
lated? We investigated the relationship between gene-
conversion and crossing-over rates in our data. This
issue has been addressed previously in Drosophila by
Langley et al. (2000) and by Andolfatto and Wall

(2003). Our data set is much larger than the data sets
used in these previous studies. To examine the relation-
ship between the two different mechanisms of recom-
bination, we first chose 232 nonoverlapping 50-kb
windows with high SNP density ($70 SNPs) from
chromosome 1–22 and estimated recombination rates
for a tract length of L¼ 500 bp. Then, we calculated the
correlation coefficient between the estimated rates of
gene conversion and crossing over. We found that these

estimates were not strongly correlated (Pearson’s co-
efficient R ¼ 0.102, P ¼ 0.12).

Because the level of uncertainty associated with our
estimates is high, it is not clear how high a correlation
should be expected even if these two parameters hap-
pen to be perfectly correlated across the genome. To
get an idea of this, we first simulated 100 data sets of
232 independent 50-kb windows each, with crossing-
over rates set to corresponding estimates in real data
and f set to the ratio of the average conversion rate to
average crossing-over rate estimated from the 232
windows in humans. Recombination rates were assumed
to be uniform within windows in these simulations. For
each simulated data set, we estimated rates as we did
for the human data set and computed the correlation
coefficient between conversion and crossing over. The
lowest value of R observed in these simulations was 0.50.

Fine-scale recombination rate variation within win-
dows can greatly increase the levels of uncertainty
associated with our estimated rates. To see if R is
expected to be much lower for some plausible models
with nonuniform recombination, we simulated another
set of 100 data sets where the overall recombination
rates were set to the same values as before. In these
simulations, we allowed both crossing-over and gene-
conversion rates to vary within windows, assuming that a
significant fraction (x) of events happen in hotspots that
occur at certain fixed locations along the sequence.

TABLE 6

Performance for models with nonuniform crossing over and
uniform gene conversion with phased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
20 20 0.360 0.930 0.800 0.522 12.59 21.35 1.164 0.603
60 20 0.548 0.902 0.683 0.538 42.21 21.74 0.713 0.684
80 20 0.612 0.860 0.776 0.476 54.12 23.72 0.608 0.797
20 40 0.226 0.894 0.839 0.593 10.99 39.24 1.187 0.489
40 40 0.380 0.898 0.787 0.555 22.22 39.98 0.907 0.476

Summary statistics method
20 20 0.566 0.936 0.524 0.486 25.66 22.08 1.410 0.628
60 20 0.748 0.912 0.562 0.504 61.88 22.48 0.688 0.714
80 20 0.780 0.894 0.502 0.473 84.60 23.08 0.602 0.733
20 40 0.482 0.898 0.555 0.625 23.82 36.64 1.380 0.465
40 40 0.668 0.902 0.588 0.602 39.54 37.98 0.837 0.465

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for which
the estimates of gene conversion (ĝ) and crossing over (r̂) lie
within a factor of 2 of the true values (i.e., g and r), respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.

TABLE 5

Performance for models with nonuniform crossing over and
uniform gene conversion with unphased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
20 20 0.420 0.972 0.780 0.509 12.499 20.320 0.986 0.448
60 20 0.592 0.958 0.763 0.413 39.479 22.390 0.668 0.533
80 20 0.636 0.948 0.776 0.418 59.159 22.102 0.611 0.535
20 40 0.288 0.964 0.841 0.654 9.440 37.000 1.047 0.360
40 40 0.384 0.984 0.853 0.578 18.940 39.720 0.856 0.356

Summary statistics method
20 20 0.578 0.938 0.501 0.528 24.482 21.220 1.208 0.598
60 20 0.732 0.866 0.529 0.498 66.330 22.578 0.745 0.773
80 20 0.772 0.832 0.518 0.486 84.518 24.412 0.600 0.911
20 40 0.458 0.894 0.549 0.695 25.312 36.030 1.462 0.457
40 40 0.608 0.88 0.561 0.623 42.800 38.464 0.974 0.503

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for which
the estimates of gene conversion (ĝ) and crossing over (r̂) lie
within a factor of 2 of the true values (i.e., g and r), respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.

Estimating Recombination Rates 1523



x was given values of 0.25 or 0.5 or 0.75 with equal fre-
quency among the 232 windows. Note that in this model
conversion and crossing over covary in an identical
pattern, so that f remains uniform along the sequence.
We then looked at the distribution of the correlation
coefficient between the estimated conversion and cross-
ing-over rates for these data sets. The lowest value of R
observed in these simulations was 0.245 and values ,0.3
were observed in only 3 of the 100 simulated data sets.
These results seem to suggest that our data set deviates
significantly from models where crossing-over and gene-
conversion rates are pefectly correlated with one an-
other and therefore that either the parameter f or the
conversion tract length (L) may vary along the human
genome.

Relationship between GC content and recombina-
tion rates: We also calculated GC percentage for 50-kb
windows with high SNP density ($70 SNPs) and looked
at the correlation with the estimated crossing-over and
gene-conversion rates. At this scale, crossing-over rates
are positively correlated with the GC content (Pearson’s
coefficient R¼ 0.3138, P¼ 9.224 3 10�7) whereas gene-
conversion rates for L ¼ 500 bp are less strongly asso-
ciated (Pearson’s coefficient R ¼ 0.1269, P ¼ 0.05195).
However, note that gene-conversion estimates may be
highly unreliable because they are sensitive to assump-
tions about tract lengths.

DISCUSSION

We have described a novel method for jointly esti-
mating crossing-over and conversion rates from popu-
lation genetic data. In this method, we collect summary
statistics that use approximately full sequence informa-
tion from both short-range and long-range data and use
all of them simultaneously in a simple rejection scheme.
For estimating uniform rates from phased data sets, a
comparison with the pairwise composite-likelihood ap-
proach proposed by Hudson (2001) suggests that the
methods are roughly comparable (Tables 1 and 3; also
see appendix b). The summary statistics approach gen-
erally worked better for estimating the gene-conversion
rate (at least for some subset of parameters considered
here; also see Padhukasahasram et al. 2004). It seems
that the pairwise composite-likelihood estimator tends
to underestimate the gene-conversion rate more often
whereas our method is less biased. However, similar to
results obtained in Wall (2004), we found that both
methods are not efficient on an absolute scale for es-
timating gene-conversion rates. For estimating crossing-
over rates, the summary statistics method performed
similarly to the composite-likelihood method for the
parameters considered in this study. Overall, our ap-
proach represents a computationally feasible alternative
to existing methodologies for co-estimating crossing-
over and gene-conversion rates from SNPs.

In contrast to other approximate-likelihood methods
that also utilize full sequence information (such as
Hudson 2001; Fearnhead and Donnelly 2002; Li and
Stephens 2003), the uncertainty in estimates in the sum-
mary statistics method can be evaluated directly. An-
other important advantage of our approach could be its
flexibility. It is relatively easy to extend our method to
any complex demographic scenario provided that data
can be simulated under that scenario within the co-
alescent framework. Demography can affect the perfor-
mance of some of the other currently available methods
(e.g., see Smith and Fearnhead 2005). Our method can
be made more robust to such effects if we first estimate
demographic parameters from the data and then infer
recombination rates under a suitable model (or alter-
nately estimate both recombination rates and demog-
raphy jointly).

We have used a simple rejection-sampling scheme for
estimating the recombination parameters in this study.
The main limitation of rejection-sampling methods is
that only a small number of summary statistics can
usually be handled. Otherwise, acceptance rates be-
come prohibitively low or tolerance levels must be
increased, which can distort the approximation of
likelihoods. The efficiency of rejection methods such
as ours can be improved by using techniques like
smooth weighting and regression adjustment (e.g., by
using local linear regression) described in Beaumont

et al. (2002). The key benefit of these techniques is

TABLE 7

Performance for models with nonuniform crossing over and
nonuniform gene conversion with phased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
20 20 0.294 0.914 0.844 0.524 9.419 21.40 1.020 0.627
60 20 0.332 0.868 0.835 0.465 24.279 23.49 0.803 0.746
80 20 0.340 0.902 0.892 0.427 32.260 23.98 0.746 0.732
20 40 0.210 0.900 0.874 0.535 8.120 39.48 1.136 0.464
40 40 0.260 0.878 0.881 0.545 13.820 40.50 0.906 0.493

Summary statistics method
20 20 0.486 0.946 0.704 0.553 17.78 20.80 1.397 0.596
60 20 0.528 0.920 0.842 0.489 34.52 22.66 0.664 0.683
80 20 0.494 0.910 0.879 0.484 42.10 22.80 0.635 0.696
20 40 0.418 0.882 0.724 0.729 16.08 32.94 1.331 0.438
40 40 0.454 0.912 0.835 0.698 22.18 34.56 0.828 0.426

a g and r denote the true values of the gene-conversion and
crossing-over rates under which 500 data sets were simulated.

b g(g) and g(r) denote the fraction of the data sets for which
the estimates of gene conversion (ĝ) and crossing over (r̂) lie
within a factor of 2 of the true values (i.e., g and r), respectively.

c B(g) and B(r) denote the fraction of times the estimates of
gene conversion and crossing over are lower than the true val-
ues, given that they are not equal to the true values.

d E(ĝ) and E(r̂) denote the mean of the estimates of gene-
conversion and crossing-over rates.

e V(g) and V(r) denote the root mean square relative error
for the estimates.
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that they use approximations that are insensitive to
tolerance and this can permit us to increase the num-
ber of summary statistics used and also widen the toler-
ance levels.

The population mutation parameter was assumed to
be uniform along the sequence for our simulations. A
better way to use our method might be by simulating
data sets conditional on the observed number of segre-
gating sites (S) in the same positions as in real data. This
approach was first proposed in Hudson (1993) and can
be useful for surveys of regions with intervening gaps.

Figure 1.—Recombination rate esti-
mates for 50-kb overlapping windows
across a 50-Mb region in chromosome 1.
(Top) The population gene-conversion
rates and (bottom) the population
crossing-over rates, estimated under a
model with uniform recombination for
a mean conversion tract length (L) of
500 bp. The shaded bars represent con-
fidence intervals with at least 90% of the
total mass and are constructed around
the estimated values at positions corre-
sponding to the centers of the windows.

Figure 2.—Comparison of recombination rates estimated
from population genetic data using the summary statistics
method with those obtained from human genetic maps (data
from Kong et al. 2002 used in Myers et al. 2005). A scatter plot
is shown of the estimates of population-scaled crossing-over
rate with thedeCODEpedigree-based estimates (centimorgans
per megabase) for 5-Mb regions across the human genome.
The correlation coefficient between these estimates is 0.9181.

Figure 3.—Crossing-over estimates in a 3.3-Mb MHC re-
gion in human chromosome 6. The red curve shows estimates
(centimorgans per megabase) obtained in Myers et al. (2005)
using the McVean et al. (2004) method. The blue curve shows
sliding-window population crossing-over estimates (multiplied
by some constant) for overlapping 50-kb regions along chro-
mosome 6 obtained using the summary statistics method.
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Although using a fixed S scheme will result in a null
model that is slightly different from the standard coales-
cent model, simulation studies (Wall 2000) suggest
that the performances of estimation methods do not
change much.

When estimating rates from unphased data sets
(Table 4), we expected that the relative performance
of our method would drop because we simply ignored
double heterozygotes in such data sets. Maxdip, on the
other hand, considers all genotypes exactly for estimat-
ing rates. In agreement with this expectation, we found
that the accuracy of gene-conversion estimates using
our method was similar to that of Maxdip, whereas
estimates of crossing over were less accurate. However,
note that reconstructing the phase first by using some
phase-estimating program (such as PHASE) and then
using our method or Maxhap on the resulting data set
may yield more accurate estimates than Maxdip for
unphased data sets (see Smith and Fearnhead 2005).

S. Ptak, M. Przeworski and R. R. Hudson (unpub-
lished results cited in Ptak et al. 2004) have reported
that using k genotypes should work better than k haplo-
types for estimating recombination rates using Hudson’s
composite-likelihood method. Our simulation results
support this conclusion. We found that the accuracy of
estimates for Maxdip using 18 genotypes was higher
than the accuracy obtained from Maxhap using 18 hap-
lotypes. In contrast, since the summary statistics method
is inexact for genotype data, we found that the accuracy
with 18 genotypes was slightly lower than the accuracy
obtained from 18 haplotypes.

Given that recombination rates vary substantially along
the genome on a fine scale, we also tested the perfor-
mance of methods for data simulated with recombination
hotspots. For models with nonuniform crossing-over
and uniform gene-conversion rates, the performances
of Maxhap and Maxdip seem to be slightly sensitive
to variation in the crossing-over rates. In particular,
the accuracy of estimating conversion rates and the
tendency to underestimate gene conversion became a
little worse compared to data simulated with uniform
recombination. In contrast, the performance of our
method appears to be relatively unaffected in these re-
gards. We note that in the summary statistics approach,
we estimate conversion rates on the basis of the differ-
ence between long-range and short-range summary
statistics. The robustness of our method to nonuni-
form crossing over suggests that this difference (between
long-range and short-range data) depends mainly on
the gene-conversion rate and may be insensitive to
moderate deviations from the uniform crossing-over
model. For models with nonuniform gene conversion
and nonuniform crossing over, the accuracy of estimat-
ing gene-conversion rates decreased substantially for
both methods and there is considerable bias toward
underestimating the gene-conversion rate. This may be
because gene-conversion hotspots may sometimes not

contain any SNP and in these cases a majority of con-
version events do not leave a trace in the sample. On the
other hand, both methods generally appear to be more
robust to nonuniform crossing over and the accuracy of
estimating crossing-over rates did not change much for
the nonstandard models considered here.

Although both gene conversion and crossing over
are thought to arise from common intermediates (i.e.,
Holliday junctions), the relationship between these two
processes has not been clear so far. Some recent results
have challenged the original Holliday model that was
proposed for the mechanisms underlying conversion
and crossing over (Allers and Litchen 2001). While
meiotic crossing over is believed to be essential for
the precise disjunction of homologous chromosomes
(because it maintains physical connections between
homologous DNA) and creates genetic diversity, the
significance of meiotic gene conversion is not well un-
derstood. Because gene-conversion estimates are highly
sensitive to the assumed tract length and human data
on the distribution of tract lengths are limited, it is dif-
ficult to draw any strong conclusions about the rela-
tionship between these two different recombination
mechanisms from our data set. If conversion and
crossing-over rates are indeed not strongly correlated
across the human genome, this could be because the
biological pathways leading to these mechanisms might
be different (e.g., see results in yeast in Allers and
Litchen 2001).
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APPENDIX A

For long range, we tested summaries based on the
following patterns for the 50-kb range:

For two SNPs A and B:
D9(AB) , 1.00, D9(AB) , 0.75, D9(AB) , 0.50,

D9(AB) , 0.25, D9(AB) , 0.10.
For three SNPs A, B, and C, ordered from left to right:

D9(AB) , 1.00 and D9(BC) , 1.00, D9(AB) , 0.75 and
D9(BC) , 0.75,

D9(AB) , 0.50 and D9(BC) , 0.50, D9(AB) , 0.25 and
D9(BC) , 0.25,

D9(AB) , 0.10 and D9(BC) , 0.10, D9(AB) , 1.00
and D9(AC) , 1.00,

D9(AB) , 0.75 and D9(AC) , 0.75, D9(AB) , 0.50 and
D9(AC) , 0.50,

D9(AB) , 0.25 and D9(AC) , 0.25, D9(AB) , 0.10 and
D9(AC) , 0.10.

For short range, we tested the following patterns for
both the 5-kb and the 10-kb range for outer SNPs in
triplets:

For three SNPs A, B, and C, ordered from left to right:
D9(AB) , D9(AC) or D9(BC) , D9(AC), D9(AB) ,

D9(AC) and D9(BC) , D9(AC),
D9(AB) , 1.00 or D9(BC) , 1.00, D9(AB) , 0.75 or

D9(BC) , 0.75,
D9(AB) , 0.50 or D9(BC) , 0.50, D9(AB) , 0.25 or

D9(BC) , 0.25,
D9(AB) , 0.10 or D9(BC) , 0.10, D9(AB) , 1.00

and D9(BC) , 1.00,
D9(AB) , 0.75 and D9(BC) , 0.75, D9(AB) , 0.50 and

D9(BC) , 0.50,
D9(AB) , 0.25 and D9(BC) , 0.25, D9(AB) , 0.10 and

D9(BC) , 0.10.
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TABLE B2

Performance for models with uniform recombination rates with phased data for some additional parameters
[n ¼ 50, L ¼ 125 bp, 50-kb sequences with u ¼ 40.0, grid (0, 2, 4, 6, 8, . . . , 50)]

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite-likelihood method
12 12 0.172 0.915 0.618 0.535 14.66 12.28 1.616 0.459
16 8 0.206 0.884 0.592 0.553 17.35 8.24 1.261 0.570

Summary statistics method
12 12 0.328 0.895 0.484 0.511 18.05 12.62 1.499 0.505
16 8 0.404 0.857 0.478 0.528 20.28 8.50 1.083 0.595

a g and r denote the true values of the gene-conversion and crossing-over rates under which 1000 data sets were simulated.
b g(g) and g(r) denote the fraction of the data sets for which the estimates of gene conversion (ĝ) and crossing over (r̂) lie within

a factor of 2 of the true values (i.e., g and r), respectively.
c B(g) and B(r) denote the fraction of times the estimates of gene conversion and crossing over are lower than the true values,

given that they are not equal to the true values.
d E(ĝ) and E(r̂) denote the mean of the estimates of gene-conversion and crossing-over rates.
e V(g) and V(r) denote the root mean square relative error for the estimates.

TABLE B1

Performance for models with uniform recombination rates with phased data

ga ra g(g)b g(r)b B(g)c B(r)c E(ĝ)d E(r̂)d V(g)e V(r)e

Hudson’s composite likelihood method
5 5 0.246 0.696 0.555 0.611 8.917 5.097 2.842 0.994
10 10 0.324 0.828 0.609 0.580 12.590 11.140 1.769 0.829
20 20 0.368 0.792 0.671 0.590 19.250 21.650 1.274 0.770
40 40 0.468 0.874 0.638 0.512 34.880 43.490 0.936 0.591
80 80 0.460 0.840 0.691 0.490 59.820 92.520 0.766 0.624
100 100 0.518 0.820 0.665 0.462 77.190 115.04 0.727 0.604

Summary statistics method: acceptance rate ¼ 15%
5 5 0.265 0.647 0.547 0.408 12.1873 9.7706 4.619 4.024
10 10 0.398 0.766 0.589 0.520 14.7102 13.4611 2.075 1.590
20 20 0.483 0.816 0.594 0.572 23.1785 21.957 1.282 0.771
40 40 0.588 0.868 0.476 0.462 48.44 44.90 1.046 0.639
80 80 0.576 0.850 0.488 0.479 91.54 90.08 0.843 0.581
100 100 0.648 0.852 0.480 0.472 109.68 112.82 0.742 0.563

Summary statistics method: acceptance rate ¼ 30%
5 5 0.242 0.746 0.574 0.394 7.768 5.735 2.402 0.914
10 10 0.358 0.842 0.533 0.588 14.230 10.543 1.752 0.694
20 20 0.522 0.842 0.580 0.601 22.717 20.810 1.215 0.662
40 40 0.638 0.888 0.543 0.498 43.060 43.540 0.937 0.567
80 80 0.604 0.860 0.514 0.534 89.060 86.640 0.839 0.562
100 100 0.652 0.846 0.484 0.491 109.58 109.32 0.743 0.554

Summary statistics method: acceptance rate ¼ 60%
5 5 0.233 0.783 0.565 0.463 6.913 4.856 2.020 0.754
10 10 0.407 0.832 0.568 0.656 12.446 9.655 1.514 0.631
20 20 0.555 0.823 0.571 0.673 23.043 18.874 1.197 0.558
40 40 0.654 0.908 0.567 0.593 39.66 39.10 0.858 0.496
80 80 0.634 0.872 0562 0.623 80.14 79.12 0.739 0.520
100 100 0.68 0.822 0.570 0.556 98.66 101.74 0.690 0.539
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