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ABSTRACT

mus301 was identified independently in two genetic screens, one for mutants hypersensitive to chemical
mutagens and another for maternal mutants with eggshell defects. mus301 is required for the proper
specification of the oocyte and for progression through meiosis in the Drosophila ovary. We have cloned
mus301 and show that it is a member of the Mus308 subfamily of ATP-dependent helicases and the closest
homolog of human and mouse HEL308. Functional analyses demonstrate that Mus301 is involved in
chromosome segregation in meiosis and in the repair of double-strand-DNA breaks in both meiotic and
mitotic cells. Most of the oogenesis defects of mus301 mutants are suppressed by mutants in the check-
point kinase Mei41 and in MeiW68, the Spol1l homolog that is thought to generate the dsDNA breaks that
initiate recombination, indicating that these phenotypes are caused by activation of the DNA damage
checkpoint in response to unrepaired Mei-W68-induced dsDNA breaks. However, neither mei-W68 nor mei-
41 rescue the defects in oocyte specification of mus301 mutants, suggesting that this helicase has another
function in oocyte selection that is independent from its role in meiotic recombination.

ELLS need to transmit an intact genome to ensure
proper development, survival, and reproduction.

The accurate replication of their genome requires both
monitoring of DNA integrity and repairing of damages
to DNA. Double-strand breaks (DSBs) in the DNA arise
spontaneously during development or can be produced
by ionizing radiations or by mechanical stress. The re-
pair of DSBs is essential for genome stability and tumor
suppression, as interactions between the ends of dif-
ferent DSBs can give rise to tumorigenic chromosome
translocations (ELLioT and JasiNn 2002; AbpaMms el al.
2003; SH1ivj1 and VENKITARAMAN 2004). In eukaryotes,
checkpoints are in place to monitor the integrity of the
DNA and to avoid the propagation of genomic defects.
These checkpoints ensure that a subsequent step in the
cell cycle is not initiated in the presence of damaged
DNA, allowing additional time for the cell to correct the
damage and stimulate the activity of highly conserved
repair mechanisms. The DNA damage response in nor-
mal cells involves a series of signaling events thatinclude
sensors, transducers, and effectors. Central components
of these checkpoints in mammals are the ATM/ATR
family of phosphatidylinositol-3-OH-kinase-like serine/
threonine kinases and their identified targets the check-
point-1 (Chkl) and checkpoint-2 (Chk2) kinases (Kurz
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and Lees-MiLLER 2004). Homologs of these exist in
other eukaryotes where they play similar roles.
Recombination normally occurs during prophase I
of meiosis and plays a critical role in homolog segrega-
tion and in the formation of viable gametes. Current
models for meiotic recombination are based on the
double-strand break repair model (SzOSTAK et al. 1983;
BranTON and SEkELSKY 2004). In budding yeast, re-
combination starts with the formation of double-strand
DNA (dsDNA) breaks catalyzed by the type II DNA topo-
isomerase Spoll, the homolog of mei-W68 in Drosophila
(Cao et al. 1990; McKim and HAYAsSHI-HAGIHARA 1998).
Since the lack of function of mei-W68 abolishes meiotic
crossing over and gene conversion, it is likely that
recombination in the Drosophila ovary is also initiated
by the occurrence of DSBs (McKim et al. 1998). In
Drosophila, the repair of these dsDNA breaks is mon-
itored by a meiotic checkpoint that involves the activity
of the Mei-41 kinase (ATR homolog) (HARI et al. 1995)
and of the Drosophila Chk2 homolog maternal nuclear
kinase (mnk) (O1SHI et al. 1998; ABDU et al. 2002). Its ac-
tivation results in the modification of two effector pro-
teins, Vasaand Weel. As a consequence, the meiotic cell
cycle is regulated and the efficient translation of gurken
(grk) mRNA is prevented (GHABRIAL and SCHUPBAGH
1999; ABpU et al. 2002). Since Grk is required for the
proper establishment of axial polarity in oogenesis,
mutants unable to repair DSBs during recombination
lay eggs harboring polarity defects. In addition, oocytes
with unrepaired DSBs show an abnormal chromatin
condensation in the oocyte nucleus, a phenotype that



1274 R. McCaffrey, D. St Johnston and A. Gonzalez-Reyes

most probably reflects an arrest in meiotic prophase I
(GONZALEZ-REYES ¢t al. 1997). Interestingly, since both
the polarity defects and the abnormal nuclear morphol-
ogy are rescued in double mutants with me:-W68 and mei-
41, progression through meiosis is coupled to specific
patterning events during oogenesis (GONZALEZ-REYES
1999).

Several genes in Drosophila with a known role in
progression through meiosis and in early events of oo-
cyte selection and patterning have been identified. Most
of the spindlegroup of genes were initially identified as
maternal-effect mutants with altered eggshell morphol-
ogy (TEARLE and NUSSLEIN-VOLHARD 1987; SCHUPBACH
and WiEscHAUs 1989). Members of this group include
spindle (spn)-A, spn-B, spn-C, spn-D, and spn-E and vasa,
maelstrom, aubergine, and okra. In spite of the pattern de-
fects and the abnormal nuclear morphology of wvasa,
aubergine, and maelstrom mutants, these genes seem to be
involved only indirectly in meiotic progression. auber-
gine and maelstrom are required for translational silenc-
ing mediated by RNA interference and microRNAs
(WIiLsON et al. 1996; KENNERDELL et al. 2002; FINDLEY
et al. 2003), whereas vasa is a target of the mei-41-
dependent checkpoint pathway that occurs in response
to dsDNA breaks and acts as a translational regulator of
several maternally provided mRNAs, including grkmRNA
(STYHLER et al. 1998; ToMANCAK et al. 1998; GHABRIAL
and ScHUPBACH 1999).

A detailed analysis of the mutant phenotypes of spn-A,
spn-B, spn-C, spn-D; and spn-E demonstrated the in-
volvement of these genes in the four symmetry-breaking
steps that lead to the polarization of the two main body
axes of Drosophila (GONZALEZ-REYES et al. 1997). The
loss of function of the spindle genes in the germline
produces defects consistent with their role in the sel-
ection of the oocyte, the posterior positioning of the
oocyte within the egg chamber, and the polarization of
the anterior—posterior and dorsal-ventral axes of the
follicle (GILLESPIE and BERG 1995; GONZALEZ-REYES
et al. 1997; GHABRIAL et al. 1998; ABDU et al. 2003;
STAEVA-VIEIRA et al. 2003). The cloning of okra, spn-A,
spn-B, and spn-D established a clear link between these
genes and dsDNA break repair. They are all members of
the Radb2 epistasis group, a series of genes isolated
originally in Saccharomyces cerevisiae because of their role
in the response to irradiation damage and that were
subsequently found to be deficient in meiotic recombi-
nation as well (SymiNgTON 2002; RICHARDSON et al.
2004). okra encodes the Drosophila homolog of the
yeast DNA-repair protein Radb4, a chromatin-remodel-
ing dsDNA-dependent ATPase with a known function in
DSB metabolism; Spn-A is homologous to yeast Rad51, a
protein with an essential role in DNA repair and meiotic
checkpoint control; spn-Bis another Drosophila homo-
log of Rad51 and has been shown to participate in the
repair of meiotic DSBs; finally, spn-D encodes a Rad51C-
like protein required exclusively during meiosis. Fur-

thermore, since the patterning defects of okra, spn-A,
spn-B, and spn-D mutants can be suppressed by muta-
tions in mei-W68 and in mei-41, the primary defect in
these spn mutations seems to be a failure to repair DSBs
(GHABRIAL et al. 1998; ABDU et al. 2003; STAEVA-VIEIRA
et al. 2003; ROMEIN et al. 2005).

Mutations in the mutagen-sensitive 301 (mus301) gene
were recovered in a screen for mutants hypersensitive to
chemical mutagens (Boyp et al. 1981). During the
analysis of the contribution of spn-C to the repair of
DSBs in the female germline, it was found that spn-Cwas
allelic to mus301 (GHABRIAL and SCHUPBACH 1999).
(We have adopted the nomenclature proposed for this
locus and its alleles by FlyBase; therefore, we have
renamed the spn-Cgene mus301.) Since mus301 mutants
are associated with high sensitivity to chemical damage
and regulate progression through meiosis via the mei-41
checkpoint, it is likely that mus301 participates in the
repair of DSBs in mitotic and meiotic cells. Here we
report the identification of mus301 as a member of the
Mus308 subfamily of ATP-dependent helicases and
demonstrate its involvement in DSB repair. We also
show that the activation of the DNA damage checkpoint
triggered in mus30] mutants requires the function of
the checkpoint-2 kinase Mnk. Finally, we find that
mus301 has a role in oocyte selection independent of
its requirement for mei-W68induced DSB repair and
unrelated to the activation of the mei-¢41 DNA damage
meiotic checkpoint.

MATERIALS AND METHODS

Fly stocks: Following the nomenclature by FlyBase, the spn-
C", spn-C*?, and spn-C** alleles have been renamed mus301°*,
mus3017, and mus301°, respectively. These alleles had been
described as antimorphs because their phenotype in homozy-
gous or fransheterozygous conditions is much stronger than
any in trans to a deficiency (GONZALEZ-REYES et al. 1997).
Throughout the course of this work, it was discovered that the
original mus301°, mus301"?, and mus301°° chromosomes
carried an enhancer of the spindle phenotype that mapped
to the right of mus301. Cleaned-up mus301°”, mus301'%,
or mus301°°° chromosomes were obtained by recombining
the mutations onto a new background and were used in
our phenotypic analyses. Since all cleaned-up chromosomes
in trans to each other or to a deficiency show a similar pene-
trance of the mutant phenotypes, they all classify as genetic
nulls. The mus30I1”!, mus301”?, and mus301°? mutant alleles
have been reported elsewhere (Boyp et al. 1981). mus301°%”,
mus301°'” and mus301"7 are from the Zuker EMS collection
(KOUNDAKJIAN et al. 2004; LAURENGON et al. 2004) and were
kindly provided for by A. Laurengon. spn-D’*’, spn-D"’, spn-E"'°,
and spn-L”’ are described in detail elsewhere (TEARLE and
NUSSLEIN-VOLHARD 1987; GONZALEZ-REYES ef al. 1997). mei-
W68’ is a strong allele that eliminates meiotic recombination
(McKiM et al. 1998). mei-41", grp**’, and mnk™ are amorphic
alleles (FOGARTY et al. 1997; SIBON et al. 1999; BRODSKY et al.
2004). Df(2R)LL5 is a deficiency for mei-W68. Df(2L)pr65 is a
deficiency for mnk. Df(3L)66C-G28 and Df(3L)7ZP3 (66A9-12;
66B5-11, a gift from P. Mardy) are deficiencies that uncover
mus301.
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Rescue construct: An ~11.2-kb Smal fragment from cosmid
195B2 (European Drosophila Genome Project numbering) was
cloned into pBluescript and then digested with Xhol and
religated to give an ~6.2-kb Xhol-Smal fragment in pBlue-
script. This fragment contained the ~4.6 kb of CG7972 with
~700 bp upstream of the transcriptional start site and ~900 bp
downstream of the poly(A) site. This ~6.2-kb fragment was
cloned directionally into a P-element transformation vector to
test for rescue of mus301°° mutants.

Sequencing of mus301 mutant alleles: Twelve primer pairs
were designed to enable PCR amplification of the gene plus
~200 bp upstream of the transcriptional start and ~400 bp
after the translational stop. Genomic DNA was prepared from
homozygous or hemizygous mutant females and used as
template in PCR reactions that, after purification, were
sequenced directly using the PCR primers. At least two
independent PCR reactions were sequenced for each primer
pair and both strands were sequenced for each of the
mutations found.

MMS mutagenesis: MMS mutagenesis was performed as
described (GHABRIAL et al. 1998). Sensitivity to MMS was
expressed as a fraction of the percentage expected in the
treated vial vs. the percentage expected in the control:

[(Nmut/mut/A’mut/balanccr) X 1OO}IVL\/IS

Sensitivity to MMS = .
Y [(]Vmut/mut/Nmut/balan(:t!r) X 100]('(mtml

X chromosome nondisjunction: To determine the fre-
quency of Xchromosome nondisjunction, yw;+/+ males were
crossed to + /w; mus301/Df virgin females and F; larvae were
scored for the presence of y. If Xchromosome nondisjunction
occurs, exceptional yellow X0 larvae will be obtained, having
inherited the X chromosome from the male. The percentage
of nondisjunction was calculated as

[4X0/(N + 2X0)] X 100,

where X0 is the number of ylarvae obtained and Nis the total
number of larvae scored. (The number of X0 larvae is
multiplied by four to account for the Y0, the XXX, and the
XXY progeny that are lethal or cannot be scored. Twice the
number of X0 larvae are added to Nto account for the lethal YO
and XXX progeny that would not be counted as part of N.)

Staining procedures: Antibody, DNA, and rhodamine-
phalloidin stainings were performed according to standard
procedures. Detailed protocols are available upon request.
DNA was counterstained with DAPI (5 mg/ml; Sigma, St.
Louis). Antibodies were used at the following concentrations:
mouse monoclonal a-Grk (GHABRIAL and ScHUPBACH 1999),
1/10; rabbit a-yHIS2AV, 1/500 (a gift from K. McKim); mouse
a-Orb monoclonal antibodies 4H8 and 6H4 (LANTZ et al.
1994) from the Developmental Studies Hybridoma Bank (Uni-
versity of Towa), 1/200 each; guinea pig a-C(3)G (PAGE and
Hawrey 2001), 1/500; FITC, Cy2-, Cy3-, and Cy5-conjugated
secondary antibodies (Jackson Laboratories, West Grove, PA),
1/200.

RESULTS

mus301 is required for oocyte selection and pro-
gression through meiosis: The predominant phenotype
of mus301 mutant females is the production of ventral-
ized egg shells, with phenotypes ranging from fused
dorsal appendages to fully ventralized eggs with no dor-
sal appendages (Figure 1B; Table 1 shows a numerical
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F1Gure 1.—Phenotypes displayed by mus301 mutants. (A)
Wild-type egg shell. (B) Fully ventralized egg shell. (C)
Wild-type S9 egg chamber showing Gurken protein localiza-
tion. (D) Mutant egg chamber stained and imaged under
the same conditions as in C. No Gurken can be detected.
(E and G) Wild-type egg chambers stained with rhoda-
mine—phalloidin to visualize the morphology of cells. Both
oocytes (00) are located at the posterior of the egg chamber.
(F and H) Mutant egg chambers labeled with rhodamine—
phalloidin showing a misplaced oocyte (F) and a small, mis-
placed oocyte (H). (I) Wild-type follicle with the oocyte’s
chromatin condensed into a karyosome (open arrowhead).
(J) Mutant karyosome. (B and D) mus301°”/Df(3L)66C-G28.
(F) mus301"°/mus301°°. (H) mus301”" /mus301”. (J) mus301°°/
Df(3L)66C-G28.

representation of the mutant phenotypes in Figure 1).
This ventralization of the egg shell has been shown to
be a consequence of defects in the translation of grk
mRNA (GONZALEZ-REYES ef al. 1997; GHABRIAL and
ScatursacH 1999). In fact, a significant proportion of
mutant mus301 egg chambers from stage (S) 8 to S10 of
oogenesis present a strong reduction or complete ab-
sence of Grk protein (Figure 1D). The early and late
expression of Grk protein appear to be regulated inde-
pendently, because early Grk expression is not disrupted
in mus301 mutant females (data not shown). This is also
the case in spn-B mutants (GHABRIAL ef al. 1998). In a
low percentage of mus301 mutant egg chambers, the
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TABLE 1

Phenotypes of mus301 eggs and egg chambers

% egg chambers
with a mutant

% egg chambers
with mutant

% egg chambers
with misplaced

% egg chambers

% ventralized with small

Maternal genotype karyosome (n)“ Gurken levels (n)® oocytes (n) eggs (n) oocytes (n)
w 0 (56) 2 (25) 0 (151) 0 (123) 0 (151)
mus301°*'/Df(3L)66C-G28 100 (161) ND 2 (296) 49 (553) ND
mus3017°°/Df(3L)66C-G28 100 (41) 30 (86) 1 (77) 37 (921) ND
mus301°°°/Df(3L)66C-G28 100 (167) 20 (95) 4 (259) 30 (1251) 4 (123)
mus301°' /Df(3L)66C-G28 100 (122) ND 3 (219) 36 (1784) ND
mus301"°/Df(3L)66C-G28 100 (68) ND 4 (164) 67 (1209) ND
mus301"'/Df(3L)66C-G28 100 (98) ND 1 (193) 69 (675) ND
mus301°" /mus301°" 100 (168) ND 2 (263) 21 (1667) ND
mus301'% /mus301°! 100 (203) ND 2 (223) 57 (650) ND
mus301°°°/mus301°! 98 (167) ND 0 (198) 45 (1675) ND
mus301°2/mus301°* 99 (154) ND 15 (189) 21 (220) 12 (189)

ND, not determined.
“Karyosomes were scored in S3-S7 egg chambers.

*The levels of Gurken protein were found wild type in hemizygous mutant cysts up to S6; the strong reduction or complete ab-

sence of Gurken protein was scored in S8-S10 egg chambers.

oocyte is not localized posterior to the nurse cells
(Figure 1F), most probably as a consequence of a delay
in oocyte selection (GONZALEZ-REYES and ST JOHNSTON
1998). In addition, a low proportion of mutant oocytes
fail to reach a wild-type size (Figure 1H), indicating that
the defect in oocyte selection observed in mus301 mu-
tants may prevent the normal growth of this cell by
affecting the directional transport of cytoplasmic con-
stituents from the nurse cells into the oocyte. The most
penetrant phenotype of mus301 mutant egg chambers is
the lack of a karyosome, a solid sphere of compacted
chromatin. Nearly all of the mutant oocytes fail to com-
pact their chromatin into a karyosome. Instead, the
chromatin fibers of mutant oocytes adopt a frag-
mented, thread-like appearance (Figure 1]). Since the
fragmented karyosome phenotype is rescued by muta-
tions that prevent recombination or the activation of the
meiotic DNA damage checkpoint, it has been suggested
that mus301 plays a role in the regulation of meiosis
(GHABRIAL and ScHUPBACH 1999).

The mus301 gene encodes a new member of the
Mus308 subfamily of helicases: mus301 had been map-
ped to 66B8-11, a region uncovered by two overlapping
deficiencies, Df(3L)ZP3 and Df(3L)66C-G28. The break-
points of the above deficiencies were mapped onto a
contig of Pl clones from the Berkeley Drosophila Ge-
nome Project using the available sequence-lfagged sites
(STSs). Next, two P elements inserted in the vicinity of
66B were mapped onto the P1 walk, P{lacW}0903/14
and P{lacW}0898/11 (DEAK ef al. 1997), in the area de-
leted by deficiencies Df(3L)ZP3 and Df(3L)66C-G28.
Male-mediated recombination (PREsTON and ENGELS
1996) placed mus301 distal to the P{lacW}0903/14 in-
sertion point and proximal to the Df(3L)ZP deficiency
breakpoint. We then mapped a cosmid contig from the

European Drosophila Genome Project (SIDEN-K1iAMOS
et al. 1990), spanning mus301 onto the P1 contig using
cosmid STSs and thereby defining the area in which
mus301 must lie to a >120-kb region. Meiotic map-
ping, combined with the use of two restriction fragment
length polymorphisms discovered in the region, placed
mus301 within an ~50-kb fragment. One of the open
reading frames predicted to lie in this region (CG7972)
encodes a polypeptide very similar to the C-terminal
domain of mus308, a helicase involved in DNA crosslink
repair (HARRTIS et al. 1996). Taking into account the role
of mus301 in DNA repair (GHABRIAL and SCHUPBACH
1999), we tested the possibility that mus301 was an allele
of CG7972. We first demonstrated that a genomic
construct containing CG7972 is able to rescue the egg
shell and karyosome phenotypes of the mus301° allele
(not shown). Second, the sequencing of six mutant
alleles of mus30I revealed missense mutations within
the coding region of CG7972 (Figure 2 A and Table 2).
From these observations we conclude that the CG7972
gene encodes Mus301, a finding in agreement with
recent results that identified mus301 as being allelic to
CG7972 (LAURENGON et al. 2004).

mus301 is predicted to encode a 105l-amino-acid
(117-kDa) protein with a strong sequence similarity to
Drosophila Mus308. Mus308 is a 229-kDa protein in-
volved in the repair of DNA crosslinks whose amino ter-
minal domain contains the seven motifs characteristic
of DNA and RNA helicases, and the carboxy terminal
domain shares similarity with the polymerase domains
of prokaryotic DNA polymerase I-like enzymes (HARRIS
et al. 1996). Like Mus308, Mus301 contains a series
of conserved motifs characteristic of ATP-dependent
DNA/RNA helicases belonging to the superfamily 2
(SF2). These regions of Mus301 are mostly distributed
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FIGURE 2.—The SF2 helicase Mus301 is a member of the Mus308 subfamily. (A) The genomic structure of mus301 (CG7972);
boxes represent exons; shaded boxes indicate conserved motifs of SF2 helicases. Mus301 possesses nine conserved motifs char-
acteristic of SF2 helicases, and motif IVa, present in the Mus308 subfamily of helicases. The Q motif'is split between exons 1 and 2.
The rest of the motifs are contained in exons 2, 3, and 4. The molecular lesions identified in six mus301 mutant alleles are shown.
Missense amino acid substitutions or base changes and allele numbers (in parentheses) are indicated. The solid box represents
the 3'-UTR. (B) Alignment of the helicase domains of D. melanogaster Mus301 and Mus308 and human HEL308. Open arrowheads
indicate the conserved G and Q residues of the Q motif; asterisks denote the unique amino acid variations found in the Mus308

subfamily of helicases.

along exons 2, 3, and 4 and include the nine best-
conserved motifs in SF2 helicases, the Q box, and do-
mains I, Ia, Ib, II, III, IV, V, and VI. In addition, Mus301
also contains both the IVa motif—an amino acid stretch
present in the Mus308 subfamily—and a subset of in-
variant residues that characterize the Mus308 subfamily
but that are unusual among other DEAD-box helicases

TABLE 2

Molecular characterization of some mus301 alleles

Base change

Allele no. (+1ATG) aa change Maps to
094 G2101A G637Q Fourth exon
422 G3652A Fifth intron
660 T2185A M665K Fourth exon
2255 T1479G Y455D Third exon
G3143T Q811H Fifth exon
3198 A3658G Fifth intron
4875 A1038G S237G Second exon
T1479G Y455D Third exon

The 094, 422, and 660 alleles were isolated in the Tiibingen
mutagenesis (TEARLE and NUSSLEIN-VOLHARD 1987); the
2255, 3198, and 4875 alleles are from the Zuker EMS collec-
tion (KOUNDAKJIAN et al. 2004).

(Figure 2) (GORBALENYA et al. 1989; HARRIS et al. 1996;
TANNER et al. 2003; TuTtEja and TuTtgja 2004). Thus,
Mus301 is a new member of the Mus308 subfamily of
SF2 helicases.

The analysis of the molecular lesions in several
mus301 mutant alleles is shown in Figure 2 and Table
2. The mus301°* allele is a missense mutation in the
highly conserved G637 of motif VI and behaves as a
genetic null. Like mus301°”, the mus301°%, mus301°*7,
and mus301"*” alleles map to exons and affect positions
conserved in Drosophila melanogaster Mus308 and in
human, mouse, and Caenorhabditis elegans homologs of
mus301 (Figure 2B and data not shown). Of the
remaining sequenced alleles, mus301"* introduces a
G-to-A change in the conserved splice donor site +5 of
intron 5; mus301?*” contains a second missense muta-
tion in exon b and mus301°"* harbors a base substitution
in the fifth intron (Table 2). Since three of the strongest
mus301] mutant alleles, mus301°, mus301", and
mus301°°, are viable over a deficiency for the locus, or
in trans-heterozygous combinations, we conclude that
mus301 is not an essential gene.

Mus301 is the Drosophila ortholog of human
HEL308: Dm Mus301 is 20% similar and 11% identical
at the amino acid level over its full length to Dm Mus308.



R. McCaffrey, D. St Johnston and A. Gonzalez-Reyes

FIGUurE 3.—Sequence comparisons of
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Drosophila Mus301 with other Mus308
subfamily helicases. (A) The complete
sequence of D. melanogaster Mus301
was compared to that of Dm Mus308, hu-
man HEL308, mouse HEL308, and C. el-
egans YbbBIAL.3a. The percentages of
similarity and identity (in parentheses)
are indicated. (B) Percentages of simi-
larity and identity (in parentheses) in
the helicase region of Dm Mus301 and
that of other homologs. Solid boxes rep-
resent the SF2 helicase motifs present in
Dm Mus301. Dm Mus308 is not drawn to
scale. (C) Phylogenetic analysis of Dm
Mus301 and related proteins. The
tree-building method was “neighbor
joining,” using the ‘best tree’ mode;
numbers represent uncorrected distan-
ces. The Drosophila helicase L(2)35Df
is a divergent member of the Mus308
subfamily and is shown for comparison.
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This low similarity is due to the fact that Dm Mus301
lacks the C-terminal polymerase domain of Dm Mus308
and is considerably shorter (1052 aa of Mus301 vs. 2059
aa of Mus308). The helicase domains of Mus301 and
Mus308 are more highly conserved (57% similar and
36% identical). In an attempt to isolate mammalian
proteins involved in DNA crosslink repair, a human and
a mouse homolog of Mus308 were identified (MARINI
and Woobp 2002). A BLAST search shows that Homo
sapiens HEL308 and Mus musculus HEL308 are more
similar to Dm Mus301 than to Mus308 (Figure 3, A and
B). In fact, the analysis of the phylogenetic tree of the
helicase domains of Dm Mus301, Dm Mus308, Hs
HEL308, Mm HEL308, and C. elegans Y55B1AL shows a
branched clade in which Dm Mus301 and Ce Y55B1AL

are more closely related to their mammalian counter-

parts than Dm Mus308 (Figure 3C). On the basis of
sequence similarity, we conclude that Dm Mus301 is the
structural ortholog of HEL308 in mammals.

mus301 is required for chromosome segregation in
oogenesis: To assess a possible role for mus301 in mei-
osis, we analyzed whether the mutants affect the dis-
junction of the X chromosome. mus301 hemizygotes
were used as they lay some wild-type eggs that give rise to
viable larvae. All three mutant alleles analyzed show a
high level of X chromosome nondisjunction compared
to the wild type (w) control (Table 3). The percentage of
X chromosome nondisjunction observed in our exper-
imental conditions is significantly larger than that
reported in the initial isolation of the mus301 alleles
(Boyp et al. 1981). This difference could be due to the
hemizygous conditions utilized in our experiments or to

TABLE 3

X chromosome nondisjunction in mus301 hemizygous females

Genotype of Total no. No. of wild-type No. of y larvae % X chromosome
mothers larvae (N) larvae (X0 progeny) nondisjunction
w 3305 3304 1 0.12
mus301°”'/Df 328 313 15 17
mus301"?/Df 1600 1495 105 23
mus301°°/Df 202 176 26 41
mus301°”'/Df (3L)ZP3 303 291 12 15
mus301"/Df(3L)ZP3 148 138 10 24
mus301°°°/Df (3L)ZP3 188 163 25 42

Females of a given genotype were crossed to y males and the presence of ylarvae was scored, indicating that X
chromosome nondisjunction had occurred. To avoid unspecific effects due to genetic background, the exper-
iment was repeated with a second deficiency for mus301, Df(3L)ZP3.
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the fact that previous studies measured nondisjunction
of only viable adult progeny, which could introduce a
bias for progeny that has disjoined properly. From our
observations, we conclude that failure to undergo mei-
otic recombination in mus301 mutants (see below) most
probably causes a disruption of chromosome segrega-
tion during meiosis. Similarly, mutations in spn-A, spn-B,
spn-D, and okra also impair meiotic recombination and
they have been shown to have high levels of X chromo-
some nondisjunction (GHABRIAL et al. 1998; STAEVA-
VIEIRA et al. 2003).

mus301 is required for mitotic dsSDNA break repair:
Given the phenotypic similarities between mus301 and
okra, spn-A, spn-B, and spn-D and the involvement of the
latter group of genes in the repair of dsDNA breaks, it
seems possible that mus301 also encodes a protein re-
quired for DSB repair. To test if this is the case, mutant
larvae were assayed for sensitivity to MMS, a mutagen
thatinduces dsDNA breaks. Crosses producing different
combinations of mus301 mutant larvae were fed a solu-
tion of 0.8% MMS and the survival of the treated larvae
was compared to that of untreated controls. In agree-
ment with the characterization of the original mus301
alleles (BoyD et al. 1981), we found that mus301 mutants
are sensitive to MMS, suggesting that mus301 is involved
in mitotic DSB repair, similar to spn-A, spn-B, and okra
(Figure 4). Further confirmation of a role for mus301 in
DSB repair comes from the fact that mus301 mutants are
sensitive to X-rays, which, like MMS, also induce DSBs
(OLIVERI et al. 1990).

mus301 mutants are defective in meiotic dsDNA
break repair: During oogenesis, the oocyte is specified
in a stepwise manner from a cyst of 16 sibling cells,
which are interconnected through actin-rich cytoplas-
mic bridges called ring canals. Initially, two cells, each

mus3019947 mus307104

and spn-E are not required for DSB re-
pair in mitotic cells and are shown for
comparison. Df, Df(3L)66C-G28.

spn-D150/ spn-p34°9
spn-E816/ spp-£653

containing four ring canals, behave like “pro-oocytes” as
they accumulate oocyte-specific markers. Later on, one
of them is selected as the oocyte, while the remaining 15
cells of the cyst acquire a nurse-cell fate. In 16-cell cysts
of region 2a of the germarium, the two pro-oocytes and
several nurse cells enter meiosis and form synaptonemal
complexes (SC), which are proteinaceous structures
that connect aligned homologous chromosomes that
can be visualized by staining for the SC component
C(8)G (CARPENTER 1979; PAGE and HAwLEY 2001). In
region 2b, only the oocyte and an adjacent nurse cell
show a distinguishable SC. As the cyst matures, meiosis is
restricted to the presumptive oocyte and the SCis found
in this cell only in germarial region 3 cysts. By S5-S6 of
oogenesis, the SC is disassembled (Figure bA and data
not shown). To determine if the meiotic defects seen in
mus301 mutants are due to a failure in SC formation, we
stained mutant germaria with o-C(3)G. As in the wild-
type, C(3)G is visible in four cells of region 2a cysts. In
contrast to the gradual reduction in the number of
C(3)G-positive cells in wild-type cysts, the C(3)G stain-
ing persists in several cells per cyst until S2 (Figure 5B
and data not shown). Later on, the C(3)G signal is re-
stricted to one cell and disappears at ~S5-S6. These
results indicate that the SC forms normally in mus301
mutant cysts. There is, however, a delay in the restriction
of the SC to a single cell, most probably reflecting the
late selection of the oocyte characteristic of this mutant.
A similar abnormal distribution of the SC was reported
for mus301 mutant cysts using an antibody against an
unknown component of the SC (Huynu and St
JonnsTon 2000).
Double-strand breaks in the DNA are produced
during meiotic recombination in germline cells of early
cysts. One of the earliest known responses to DSB in
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mus301

Reg. 2b/3

mus301

F1GURE 5.—A role for mus301 in recombinational DSB repair. Wild-type (A) and mutant (B and C) germaria showing the dis-
tribution of y-HIS2AV (red), C(8)G (green), and Orb (blue) proteins. (A) One cyst each from region 2b, region 2b/3, and region
3 is shown (see Figure 6 for a schematic of these germarial stages). y-HIS2AV foci are abundant in region 2b oocytes, but they are
lost in successive stages and are barely detectable in region 3 oocytes. (B and C) y-HIS2AV foci are visible in region 2b/3 and
region 3 mutant oocytes. The sibling nurse cells also possess increased y-HIS2AV staining compared to wild type. All images
are projections of several confocal sections. Dashed lines delineate individual cysts. Arrowheads point toward oocytes. (B and

C) mus301°*/ Df(3L)66C-G28. Bar, 10 um.

mammals and S. cerevisiaeis the phosphorylation of H2A
histone variants in the nucleosomes situated in the
vicinity of the break. In Drosophila, the phosphoryla-
tion of the single histone variant HIS2AV can be
detected as soon as 1 min after DSB induction in
somatic cells and is removed after 3 hr of exposure to
the DSB-inducing agent, thus making this variant
histone an excellent marker to study the dynamics of
DSB repair (MADIGAN et al. 2002). To monitor the
presence of DSBs in germline cells of both wild-type
and mus301 mutant cysts, we made use of an antibody
that recognizes a phosphorylated form of HIS2AV,
v-HIS2AV. In wild-type female meiosis, y-HIS2AV stain-
ing appears in region 2a of the germarium after the
initiation of SC formation. As meiosis proceeds and
the DSBs are repaired, the v-HIS2AV-positive foci
disappear, and by germarial region 3 there is no detect-
able signal in the oocyte (Figure 5A) (JANG et al. 2003).
Consistent with a role for Mus301 in DSB repair, a large
proportion of mutant oocytes show a dramatic accumu-
lation of yv-HIS2AV foci in their nuclei compared to wild-
type controls. In addition, these foci persist after region
3 until S3-S4, when they disappear prior to SC disas-
sembly (Figure 5, B and C). A similar increase in the
number and persistence of foci can be detected in
nurse-cell nuclei. Since the phosphorylation of HIS2AV
indicates the presence of DSBs (MADIGAN et al. 2002;
JANG et al. 2003), our observations strongly suggest that
DSBs are not processed efficiently in mus301 mutant
oocytes.

mus301 mutant oocytes activate a Mei-41/Chk2-
dependent checkpoint: The cell cycle and patterning
defects observed in okra, spn-A, spn-B, and spn-D mutants
result from the activation of the checkpoint kinase Mei-
41 (GHABRIAL and ScHUPBACH 1999), but there are
conflicting data on the identity of the downstream
kinases that transduce this signal. On the one hand, it
has been shown that Mei-41 acts through the Drosophila
Chk2 homolog Mnk1, since mnkl mutants suppress the
ventralization of okra, spn-A, spn-B, and spn-D mutants
(ABDU et al. 2002; STAEVA-VIEIRA et al. 2003). On the
other hand, MASROUHA et al. (2003) have observed that
mnkl does not suppress the ventralization of spn-B or
mus301 mutant alleles. We therefore reexamined this
issue by generating mnkl; mus301 double mutants.
Consistent with the results of ABDU et al. (2002), we
find that double-mutant egg chambers for mnk and
mus301 show nearly wild-type levels of Grk protein and a
normal karyosome (Table 4), strongly suggesting that,
as in the case of okra, spn-A, spn-B, and spn-D, Dm Chk2
is a transducer of the meiotic checkpoint activated in
mus301 mutant oocytes.

Similarly, we analyzed the role of grapes (grp), a pu-
tative serine/threonine kinase with extensive homology
to Chkl kinase in Schizosaccharomyces pombe (FOGARTY
et al. 1997; S1BON et al. 1999) in the Mei-41 checkpoint
activated in mus301 mutants. Since grp; mus301 mutants
lay a large proportion of ventralized eggs (<70%, n =
196), produce a low frequency of misplaced oocytes
(3%, n = 363), and fail to form a normal karyosome
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TABLE 4

Phenotypes of double-mutant combinations of mus301 with grp/DmChkl or mnk/DmChk2

Maternal genotype

% egg chambers with
mutant karyosomes (n)

% egg chambers with
mutant Gurken levels (n)

SA4

mus301°°°/Df(3L)66C-G28

arp™*; mus301°°°/Df(3L)66C-G28
mnk"/CyO; mus301°°/TM3
mnk™/Df(2L)pr65; mus301°°/TM3
mnk"/CyO; mus301°°°/Df(3L)66C-G28

mnk" /Df(2L)pr65; mus301°°°/Df(3L)66C-G28

0 (107) ND
100 (105) ND
100 (193) ND

0 (103) 3 (18)

1 (96) 3 (36)
100 (35) 28 (18)

4 (23) 7 (14)

Karyosomes were scored in S3-S7 egg chambers. The levels of Gurken protein were scored in S9 and S10 egg
chambers. grp; mus301 double mutants lay ventralized eggs with a similar frequency to mus301 single mutants

(not shown). ND, not determined.

(Table 4), the abnormal patterning and the defective
meiosis of mus301 mutant egg chambers most probably
do not involve the activity of Dm Chkl. This result adds
to the finding that Grp is not the transducer of the
pachytene checkpoint in okra, spn-D, or spn-B mutants
(ABDU et al. 2002).

mus301 is required for oocyte specification indepen-
dently of Mei-W68 and of Mei-41 checkpoint activation:
During meiosis, DSBs are made to enable recombina-
tion to take place. Since a defect in the initial stages of
meiosis is likely to occur prior to the defects in pattern
formation observed in mus301 mutant ovaries, we de-
cided to investigate if the latter were a consequence of a
failure to proceed through meiosis correctly by analyz-
ing double mutants for mei-W68 or mei-41 and mus301.
In agreement with previous results (GHABRIAL and
ScHUPBACH 1999), we find that mei-W6S8, mus301, and
mei-41; mus301 double mutants possess essentially wild-
type karyosomes and Grk protein levels (data not
shown). In contrast, the analysis of double mutants
shows that the delay in oocyte selection observed in
mus301 mutants is not a consequence of unrepaired
DSBs. A fraction of mus301 mutant cysts accumulate
oocyte-specific markers such as Orb protein in the two
pro-oocytes until germarial region 3 when compared to
wild-type controls (Figure 6). This delay in oocyte sel-
ection most probably accounts for the occurrence of
misplaced oocytes in older mutant egg chambers (Table
1) (GONZALEZ-REYES and ST JOHNSTON 1998). mei-W6S;
mus301 mutants behave in this regard like single mus301
mutants and still show a delay in choosing one pro-oocyte
to become the oocyte and display a low percentage
of misplaced oocytes (Figure 6; 4% of double-mutant
region 2b/3 and region 3 cysts show misplaced oo-
cytes; m =13b). Similarly, mei-41; mus301 cysts also
present a delay in Orb accumulation in a single cell
(Figure 6D). Thus, the delay in oocyte selection char-
acteristic of mus301 mutants is not a consequence of
the activation of the mei-41 checkpoint. Altogether,
our results suggest a role for the Mus301 helicase in
oocyte specification independent of the initiation of

meiotic recombination by Mei-W68 and the DNA dam-
age checkpoint.

DISCUSSION

Several helicases are involved in the repair of dsDNA
breaks. One of the best characterized is the RecBCD
complex of eubacteria, which possesses a bipolar heli-
case activity with a defined role in the homologous
recombination repair pathway. The RecBCD recombi-
nase is able to process DNA ends using a combination
of helicase and nuclease activities (ANDERSON and
KowALczYROWSKI 1997; SINGLETON ¢ al. 2004). Also
in Escherichia coli, RecG helicase has been reported to
promote DSB repair subsequent to the activity of
RecBCD and RecA (MEDDOWS el al. 2004) . In eukaryotic
cells, defects in DSB repair have been associated with
cancer predisposition and genomic instability. For in-
stance, Bloom’s syndrome is a rare disorder in hu-
mans caused by mutations in the RecQ helicase BLM
that results in a predisposition to cancers of all types
(Hrckson 2003). Evidence for a role of this helicase in
DSB metabolism comes from its involvement in homol-
ogous recombination-dependent repair of damaged
replication forks (Wu and Hickson 2003) and from
the fact that mending of dsDNA breaks in the absence of
BLM results in defective products with large deletions
(RUNGER and KRAEMER 1989; GAYMES et al. 2002). The
ortholog of BLM in Drosophila is encoded by mus309
(KusaNo et al. 2001), a gene identified in a screen for
hypersensitivity to chemical DNA-damaging agents such
as nitrogen mustard, a mutagen that induces inter-
strand DNA crosslinks, and MMS (Boyp et al. 1981). In
this screen, a total of 11 complementation groups were
isolated, including mus301 and mus308. In contrast to
mus308, mus301 is strongly sensitive to both mutagens,
implicating Mus301 in the repair of interstrand cross-
links and double-strand breaks. We have identified
Mus301 as a new member of the Mus308 subfamily of
ATP-dependent helicases and present evidence for a
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mus301

ras”
*

*

mei-41:-mus301 mei-W68; mus30T

Genotype Total % of % 2x oocytes % 2x oocytes
2x oocytes (n) region 2b/3 (n) region 3 (n)
w 6 (34) 15 (13) 0 (21)
mei-W68'/Df 7 (27) 20 (10) 0(17)
mus301994/Df 14 (28) 23 (13) 7 (15)
mei-W68'/Df: mus301994/Df 33 (57) 50 (28) 18 (29)
mei-4103; mus301094/Df 26 (27) 30 (10) 23 (17)

*
+ "'f‘ 4
mei-W68; mus301

FIGURE 6.—mei-W68 does not rescue the two-oocyte phenotype of mus301 mutant cysts. (A) Scheme of a wild-type germarium to
show the arrangement of region 2b, region 2b/3, and region 3 cysts. (B-E) Germaria double stained to visualize filamentous actin
and Orb protein. (B) Wild-type germarium showing Orb accumulated in a single cell in region 2b and region 3 cysts. (C) Mutant
germarium carrying region 2b and region 3 cysts, each containing two cells that accumulate Orb. (D and E) Double-mutant ger-
maria showing region 3 cysts with two cells containing high levels of Orb protein. (F) Double-mutant egg chambers stained with
anti-Orb to show a misplaced oocyte. The white bars mark the anterior—posterior axes of the follicles. (G) Germaria of different
genetic combinations were analyzed and the number of region 2b/3 and region 3 cysts containing two cells with increased levels of
the oocyte marker Orb and each possessing four4 ring -canals (as visualized with rRhodamine—pPhalloidin) were counted as “2X
oocyte” cysts. (B) Wild type. (C) mus301°°"/Df(3L)66C-G28. (D) mei-41"°/ Df(2R)LL5; mus301°”'/Df(3L)66C-G28. (E and F) mei-
Wo68'; mus301°”'/ Df(3L)66C-G28. Asterisks label the cells with highest Orb contents. Bar, 10 pm.

role of Mus301 in the repair of the dsDNA breaks that
arise during recombination.

A role for mus301 in DSB repair and oocyte spec-
ification: Recombination begins with the occurrence
of dsDNA breaks on one chromatid, catalyzed in
budding yeast by the Spoll protein. Subsequently, the
DSB is resected to produce an intermediate with a 3’-
overhanging single-strand DNA (ssDNA) tail. Rad51
and Dmcl proteins then bind to this ssDNA to form a
filamentous structure that promotes a search for ho-
mologous, nonsister DNA to prime repair DNA synthe-
sis. The requirement of the strand-invasion protein
Radb1 in dsDNA break repair is demonstrated by the
hypersensitivity to ionizing radiation conferred by mu-
tations in Rad51 (SymiNGcTON 2002). The Drosophila
genome has five Rad51 family members (spn-A, spn-B,

spn-D, CG2412, and CG6318) (STAEVA-VIEIRA et al.
2003) and mutations in three of these have confirmed
their role in the early aspects of DSB repair, as the
absence of Spn-A, Spn-B, or Spn-D function leads to the
activation of a meiotic checkpoint triggered by unre-
paired dsDNA breaks or unresolved recombination
intermediates. Furthermore, some of these genes are
partially redundant, as double-mutant combinations
display stronger phenotypes than single mutants alone
(GONZALEZ-REYES et al. 1997). In this context, our find-
ing that, like spn-A, mus301 mutants do not process DSBs
efficiently suggests that Mus301 acts in the same step
of DSB repair as Spn-A. Moreover, since mus301 and
several of the Rad5I-like genes interact genetically, as
demonstrated by the enhancement of the mutant phe-
notypes observed in the double mutants mus301 spn-A or
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mus301 spn-B (GONZALEZ-REYES et al. 1997), it is likely
that mus301- and rad5I-like genes do not act in a linear
pathway. Rather, they seem to collaborate in the
formation of stable recombination intermediates nec-
essary for efficient DSB repair. In such a scenario, it is
interesting to note that mus30I is the Drosophila
ortholog of Hs HEL308, a single-stranded DNA-depen-
dent ATPase and DNA helicase of unknown function
that in vitro is able to translocate on DNA with 3'-5’
polarity and to displace 20- to 40-mer duplex oligonu-
cleotides (MARINI and Woob 2002). The considerable
sequence similarity (73%) between the helicase domain
of Mus301 and that of Hs HEL308 raises the possibility
that mus301 possesses a DNA-unwinding activity with 3'—
5' polarity. In support of our model, budding yeast mer3
encodes an ATP-dependent DNA helicase that unwinds
dsDNA with a 3'-5" polarity and that stimulates 3'-5'
heteroduplex extension by Rad51 in crossover recom-
bination (MAZINA et al. 2004). Finally, okra, a gene
required for the repair of DSB after P-element excision
and for DNA repair during oogenesis (KOOISTRA et al.
1997; GHABRIAL ¢! al. 1998; KooisTRA ef al. 1999;
ROMEI)N et al. 2005), is the Drosophila homolog of yeast
Radb54, a SWI2/SNF2 chromatin-remodeling dsDNA-
dependent ATPase that binds Radb1 directly and that
stimulates DSB repair in both meiotic and mitotic cells
(MAzIN et al. 2000; KRoGH and SYMINGTON 2004). Since
Okra, Mus301, Spn-A, and, to a lesser extent, Spn-B are
also involved in the repair of DNA damage caused by
MMS treatment and ionizing radiation in mitotic cells
(this work; OLIVERI et al. 1990; STAEVA-VIEIRA ef al.
2003), it is likely that the Mus301-Rad51-Okra interac-
tion is also maintained in DSB repair in the soma.

In contrast to the situation in S. cerevisiae, the rad52-
group genes okra, spn-A, spn-B, and spn-D were isolated
because of their role in egg chamber polarization in
oogenesis. Their molecular characterization allowed
the establishment of a clear link between DNA repair
and pattern formation in the female germline in
Drosophila. Additional experiments that involved dou-
ble-mutant combinations defined the realm of action of
the spindle genes. They act after the induction of dsDNA
breaks by Mei-W68 and are necessary for DSB repair, as
demonstrated by the rescue of the meiotic phenotypes
of okra, spn-A, spn-B, and spn-D mutants in the absence of
mei-W68 or mei-41. The phenotypic analysis of mus301
places this gene at the same level as these spindlegenesin
the recombination pathway. Lack of function of mus301
prevents the efficient processing of DSBs, thus trigger-
ing the activation of the meiotic checkpoint, which in
turn induces a Chk2-dependent cell cycle delay similar
to the situation in spn-A, spn-B, and spn-D mutants (ABDU
et al. 2002; STAEVA-VIEIRA et al. 2003). In addition, our
experiments involving double-mutant combinations for
mei-W68 or mei-41 and mus301 have revealed a novel role
for mus301in oocyte selection independent of initiation
of recombination and of DNA damage checkpoint

activation during cyst formation. Although the mecha-
nisms by which mus301 regulates oocyte development
independently of mei-W68 or mei-41 are unclear, they
most probably involve Mus301 helicase activity, since the
mus301 allele used in these experiments carries a mis-
sense mutation in a conserved glycine of helicase do-
main VI and there are not other recognizable domains
in the protein. Since there are no detectable meiotic
DSBs in the absence of Mei-W68 activity (McKim et al.
1998; JANG et al. 2003), our observation suggests a new
function for Mus301 unrelated to DSB repair in oocyte
specification. In this regard, it would be interesting to
know if mutations in other genes involved in recombi-
national DNA repair and in oocyte selection, such as
okra, spn-A, spn-B, and spn-D, also affect oocyte specifi-
cation independently of mei-W68 and mei-41.
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