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ABSTRACT

We show how the idea of monotone coupling from the past can produce simple algorithms for
simulating samples at a nonneutral locus under a range of demographic models. We specifically consider
a biallelic locus and either a general variable population size mode or a general migration model for
population subdivision. We investigate the effect of demography on the efficacy of selection and the effect
of selection on genetic divergence between populations.

WHILE simulating from neutral population genet-
ics models is straightforward using the coales-

cent (Kingman 1982), even for complex demographic
models (see, e.g., Donnelly and Tavaré 1995; Hudson

2002), simulation from nonneutral models is much more
difficult. There are currently numerous approaches to
simulation for nonneutral models. These can be split
into two cases, simulating from the stationary distribu-
tion of the population or simulating from the population
at a specific time. Examples of the latter include sim-
ulating samples a specific time after the fixation of a
beneficial allele (e.g., Przeworski 2003). In this article
we focus on the former.

Fornonneutralmodels thatassumeparent-independent
mutation, constant population size, and random mat-
ing, the stationary distribution of allele frequencies is
known and can be simulated from directly, using re-
jection sampling (Donnelly et al. 2001) or numerical
integration methods (Fearnhead and Meligkotsidou

2004; Joyce and Genz 2006). For such models it is also
possible to simulate the genealogy of a sample and
linked neutral variation. This is possible by simulating
and conditioning on the frequency of the nonneutral
allele in the history of the population (Nordborg 2001;
Nordborg and Innan 2003; Coop and Griffiths 2004;
Spencer and Coop 2004) or by simulating from the con-
ditional distribution of the ancestral selection graphgiven
the allelic type of the sample (Slade 2000; Stephens and
Donnelly 2003; Fearnhead 2006).

For models that do not assume parent-independent
mutations, it is possible to use coupling from the past
(CFTP) (Propp and Wilson 1996; Kendall 2005) to
simulate samples from the ancestral selection graph
(Fearnhead 2001). Here we extend this idea. First we
introduce a simpler implementation of CFTP, which is
obtained by having a state space of unordered rather

than ordered samples. This means that we characterize
a sample by the number of alleles of each type, rather
than by the allelic type of each of an ordered set of
chromosomes. This has two advantages, first that as we
work on a smaller dimensional space, coupling should
be quicker. Second, for the models we consider, by work-
ing with unordered samples we obtain a monotonicity of
the sample space, which makes it more straightforward
to detect when we have obtained a sample from the
stationary distribution of interest and thus provides a
much simpler algorithm to implement.

Our second extension is to allow for a variety of
demographic models, including arbitrary variable pop-
ulation size models and models with multiple subpopu-
lations (demes). As far as we are aware, the method we
propose is the only current method for simulating from
such multiple-deme coalescent models in the presence
of selection. Our method is computationally efficient,
with, for example, 1000 samples of size 100 being sim-
ulated in ,40 sec for a 10-deme stepping-stone model
under a variety of selection models (see results).

METHODS

Monotone coupling from the past: Consider an ergo-
dic Markov chain Xt with state space {0, 1, . . . , K }. CFTP
(Propp and Wilson 1996) gives a method for simulat-
ing from the stationary distribution of Xt. The idea is
based on the fact that if we simulated the Markov chain
from time �‘ to time 0, then regardless of the initial
value of the chain, X�‘, we would have that X0 is a draw
from the stationary distribution of the chain. The idea
of CFTP is that it enables us to perform such simulation
in finite computing time.

To do this we first introduce some extra simulation, in
that we consider simulating the value of Xt11 for all
possible values of Xt. To simplify notation we define a
function Ft(�) that specifies all these transitions. So if we1Author e-mail: p.fearnhead@lancs.ac.uk
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are told that Xt¼ x, then we have Xt11¼ Ft(x). Note that
the function Ft is a realization of a random variable; the
stochasticity of the Markov chain is now encompassed
in the randomness of this function, but given a set of
realizations F�T, F�T11, . . . , F�1 we have a deterministic
relationship between X�T and X0.

We now have an idealized simulation algorithm:

a. For t ¼ �1, �2, . . . ,�‘ simulate the value of Xt11 for
all possible values of Xt and hence the function Ft(�).

b. Arbitrarily specify X�‘; and for t ¼ �‘, . . . ,�1 re-
cursively apply xt11 ¼ Ft(xt) to obtain x0, a draw from
the stationary distribution of the Markov chain.

This algorithm is obviously impracticable, as it involves
infinite computing time. However, we can perform this
simulation in finite computing time by doing this sim-
ulation a bit at a time. This gives the following CFTP
algorithm:

a. Arbitrarily choose a negative integer T0; set T ¼ T0

and S ¼ 0.
b. For t ¼ S � 1, S � 2, . . . , T, simulate Ft.
c. For each possible starting value x ¼ 0, 1, . . . , K, set

XT¼ x and recursively apply xt11¼ Ft(xt) to obtain x0.
If the value of x0 is identical for all starting values of
Xt, then output x0, a draw from the stationary dis-
tribution of the Markov chain; otherwise set S ¼ T,
T ¼ 2T and return to b.

The idea here is that we imagine that we are doing the
idealized simulation algorithm above. However, we first
simulate the dynamics of the chain from time T0 to time
0, then the extra dynamics from time 2T0 to time T0,
then the extra dynamics from time 4T0 to time 2T0, and
so on (step b). The coupling condition in step c enables
us to determine with certainty what the value of X0

would be if we had continued to simulate the dynamics
of the chain back to time �‘ (as in the idealized al-
gorithm). For example, imagine that the condition in
step c is satisfied after simulating back to time 4T0; this
condition says that regardless of the value of X4T0

, the
value of X0 will be the same (x0). Thus we do not need to
know the realization of the chain from time �‘ to time
4T0, as regardless of this we know that continuing the
realization on to time 0 will produce X0 ¼ x0. Thus the
value we output in step c is the same as the value we
would obtain in step b of the idealized simulation al-
gorithm and is thus a draw from the stationary distribu-
tion of the Markov chain.

Any choice for how to decrease T when coupling
does not occur would produce a valid algorithm, but
it has been argued that doubling T each time is opti-
mum (by its relationship with a binary search; see, e.g.,
Kendall 2005). Note that the validity of the approach
requires that we do not resimulate any of the dynamics
of the Markov chain if coupling does not occur in step
c. Furthermore, the algorithm requires only that the
functions Ft(�) are simulated in such a way that margin-

ally the dynamics of the Markov chain are correct, and it
is possible to have any amount of dependence in terms
of the value of Xt11 for different values of Xt. In some
cases it is possible to utilize this to obtain a more ef-
ficient way of determining whether coupling occurs in
step c. If we can find a distribution on Ft that margin-
ally has the dynamics of the Markov chain and that
satisfies the monotonicty condition that x $ y 0 F(x) $

F(y), then we can replace step c with:

c. For both x ¼ 0 and x ¼ K, set XT ¼ x and recursively
apply xt11 ¼ Ft(xt) to obtain x0. If the value of x0 is
identical for both starting values of Xt then output x0,
a draw from the stationary distribution of the Markov
chain; otherwise set S ¼ T, T ¼ 2T and return to b.

We call the resulting algorithm monotone CFTP. The
only difference is that we run the Markov chain only
forward in time for the minimal and maximal elements
of the state space. The monotonicity ensures that if these
two realizations couple, then all realizations from other
starting points (which lie between them) will also couple.

While in this example we have assumed a totally or-
dered state space, monotone CFTP will still apply if we
have only a partial order: if starting the chain at each of
the maximal and minimal elements of our state space
produces the same x0-value, then so must all other start-
ing values of the chain (which lie between the minimal
and maximal elements). We use this extension to partial
orderings in the multideme models we consider below.

An exampleof the CFTP algorithms is given in Figure 1.
Models: We consider coalescent models that include

selection, variable population size, and population struc-
ture and focus on a single biallelic locus. Details of how
selection is incorporated within a coalescent-type pro-
cess can be found in work on the Ancestral Selection
Graph (Krone and Neuhauser 1997; Neuhauser

and Krone 1997) or the Ancestral Influence Graph
(Donnelly and Kurtz 1999). For background on in-
corporating population growth or population structure
see, for example, Donnelly and Tavaré (1995) and
Hudson (1990) and references therein.

The coalescent model we consider is obtained in
the large population size limit to a range of forward
population-genetics models. We briefly describe how
the parameters are defined in the case of the Wright–
Fisher model. First define an effective population size
of N0 diploid individuals or equivalently 2N0 chromo-
somes. We measure time in units of 2N0 generations and
as is common define time in terms of time before the
present. We consider a population consisting of D demes,
with random mating within each deme. At time t in the
past, the population size of deme d is Nd(t) ¼ N0ld(t)
diploid individuals. For the case D . 1 we further define
a migration matrix by Mij ¼ 4N0mij for i 6¼ j, where mij

is the proportion of the population of deme i in a gen-
eration that have migrated there from deme j in the
previous generation. We define Mi ¼

P
j 6¼i Mij .
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We denote the alleles at our locus by 1 and 2. As with
any biallelic model, mathematically we can describe the
mutation process in terms of parent-independent mu-
tations. We let u ¼ 4N0u, where u is the probability of
mutation per chromosome per generation, and let n ¼
(n1, n2) be the probability distribution of the mutant
allele. (Note that this model allows for ‘‘silent’’ muta-
tions, which do not change the allele at the locus; thus
the effective mutation rate of allele 2 to allele 1 is un1

and of allele 1 to allele 2 is un2.)
Finally we define the selection process. We assume

that the fitness of an ij genotype is 1 1 sij for i, j ¼ 1, 2,
with sij $ 0 and s12 ¼ s21. We can thus define selection
rates s*ij ¼ 4N0sij. We choose a different parameteriza-
tion of these selection rates where s*11 ¼ s11, s*12 ¼
sg 1 s12, and s*22 ¼ 2sg 1 s22. This is an overparamete-
rization of the selection process, and any choice of
sg $ 0 and sij $ 0 for i, j ¼ 1, 2 that gives the correct
values of s*ij could be used. We then define s¼max{s11,
s12, s22}.

The choices of defining the mutation process in terms
of a parent-independent mutation process, and the
parameterization of selection rates, have been made to
make the simulation algorithm detailed below as effi-
cient as possible. In particular, the parameterization of
the selection rates is in terms of a genic component
(given by the sg terms) and a nongenic component. The
efficiency of the simulation algorithm is increased by
choosing sg to be as large as possible subject to the

constraints on the positivity of the other selection rates.
(To do this we should label the alleles so that s*22 $ s*11.)

For ease of presentation we have assumed that the
selection rates are constant through time and across
demes, although it is straightforward to generalize to
the case where these rates vary. The coalescent process
for our above model can be described in terms of a
backward process for the history of our sample (which is
independent of the alleles in the sample) and condi-
tional on this backward process some forward dynamics
for the allelic types of the branches. If we simulated the
backward process until time t ¼ ‘, then for any initial
choice for the population frequency of the alleles at that
time, when we simulated the process forward we would
obtain a sample at the present time that is drawn from
the stationary distribution of the population. We now
describe these backward and forward processes and how
we can apply monotone CFTP.

Backward process: The backward process is a contin-
uous-time Markov chain, whose state N(t) ¼ (N1(t), . . . ,
ND(t)) is the number of branches in the underlying
coalscent-type process at time t in the past that come
from each deme. The transitions correspond to differ-
ent possible events in this coalescent-type process. To
ease notation, let the state at current time t be (n1,
n2, . . . , nD); then the rates of the possible events, and the
corresponding transitions, are:

i. Coalescence: deme d occurs at rate nd(nd � 1)/
(2ld(t)), with transition nd ¼ nd � 1.

ii. Migration: deme d to deme i occurs at rate ndMdi/2,
with transition nd ¼ nd � 1 and ni ¼ ni 1 1.

iii. Mutation: deme d occurs at rate ndu/2, with no
change to state.

iv. Genic selection: deme d occurs at rate ndsg/2, with
transition nd ¼ nd 1 1.

v. Diploid selection: deme d occurs at rate nds/2, with
transition nd ¼ nd 1 2.

(When describing the transition we have listed only the
elements of the state that change.) The initial value of
the state, N(0), is given by the number of chromosomes
sampled from each deme.

Forward dynamics and monotone CFTP: Assume
that we have simulated and stored T events in the back-
ward process above. We now consider the forward in
time dynamics; however, to apply CFTP we need to make
these forward dynamics deterministic, and thus for each
event that we simulate in the backward process we also
simulate and store a realization of an independent con-
tinuous uniform [0, 1] random variable. These realiza-
tions will then determine the specific forward transition
at each event.

Forward in time the state of our system is given by
the number of each type of allele in each deme in our
ancestral process. As we have stored the number of
branches in each deme at each event, we can define this
state solely in terms of the number of type 1 alleles in

Figure 1.—Example of monotone CFTP for a five-state
Markov chain. For each state at each time we imagine simu-
lating the transitions of the Markov chain (dashed lines). (In-
formally the monotonicity can be seen by the fact that no pair
of transitions crosses each other.) Initially in this example we
actually simulate these from times t ¼ �1, �2, . . . ,�4. We
then simulate forward in time from the maximal (4) and min-
imal (0) states at t ¼ �4. As simulating forward these states
produce different samples, we simulate the transitions for
times t ¼ �5, . . . ,�8 and repeat simulating forward in time
from the maximal and minimal states at t ¼ �8 (solid lines).
These both give the value X0 ¼ 0, and thus the Markov chain
has coupled and we have a draw from the stationary distribu-
tion of the chain. (Note that regardless of what value X�8

is, forward simulation produces the value X0¼ 0, and thus this
is the value we would have obtained if we had simulated the
Markov chain from time t ¼ �‘.)
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each deme, which we denote by n(1) ¼ (n1
(1), . . . , nD

(1)).
Our forward-in-time dynamics are determined by spec-
ifying an initial value for the state n(1). Then for the Tth
event, T � 1th event, . . . , first event in turn we update
this state as follows.

Consider the jth event. Let u denote the realization of
the uniform random variable associated with this event.
Assume that the current state is n(1) and the number of
branches in each deme is n ¼ (n1, . . . , nD). Then the
dynamics depend on the type of the jth event as follows:

i. Coalescence, deme d: if u , nd
(1)/nd, then let nd

(1) ¼
nd

(1) 1 1.
ii. Migration, deme d to deme i: if u , ni

(1)/ni, then let
nd

(1) ¼ nd
(1) 1 1 and ni

(1) ¼ ni
(1) � 1.

iii. Mutation, deme d: if u , (nd � nd
(1))n1/nd, then let

nd
(1) ¼ nd

(1) 1 1; if u . 1 � nd
(1)n2/nd, then let nd

(1) ¼
nd

(1) � 1.
iv. Genic selection, deme d: if u , 1� (nd � nd

(1))(nd �
nd

(1) � 1)/(nd(nd � 1)), then let nd
(1) ¼ nd

(1) � 1.
v. Diploid selection, deme d: if

u ,
n
ð1Þ
d ðn

ð1Þ
d � 1Þðnð1Þd � 2 1 ðs� s11 1 s12Þðnd � n

ð1Þ
d Þ=sÞ

ndðnd � 1Þðnd � 2Þ ;

ð1Þ

then let nd
(1) ¼ nd

(1) � 2; otherwise, if

u , 1� ðnd � n
ð1Þ
d Þðnd � n

ð1Þ
d � 1Þðnd � n

ð1Þ
d � 2 1 ðs� s22 1 s12Þnð1Þd =sÞ

ndðnd � 1Þðnd � 2Þ ;

ð2Þ
then let nd

(1) ¼ nd
(1) � 1.

We have described the dynamics purely in terms of
changes in n(1). The changes in the number of branches
in each deme are given by the reverse of the dynamics of
the backward process. These dynamics come from the
different possible events in the coalescent process that
would affect n(1). For i this is a coalescent event to a
branch of allele 1, for ii a migration of an allele 1 branch
from population i to d, for iii a mutation of an allele 2
branch to allele 1 or vice versa, for iv a selection event at
which an allele 1 branch is nonancestral (which occurs
unless both incoming and continuing branches have
allele 2), and for v a selection event at which both non-
ancestral branches have allele 1 or only one has it. (See
appendix a for the calculation of the probabilities in
this case.)

We can now use CFTP to simulate a sample from the
stationary distribution of the population. The dynamics
specified above satisfy a monotonicity condition (see
appendix b) if 2s21 # s 1 s11 1 s22. (This can always be
achieved by, if necessary, choosing s . max{s11, s12,
s22}; for example, if s11 ¼ s22 ¼ 0 as in heterozygote
advantage then we choose s ¼ 2s12.) The partial order-
ing of this monotonicity is that (n1, . . . , nD) $ (n91, . . . ,
n9D) if and only if nd $ n9d for d ¼ 1, . . . , D.

Thus the monotone CFTP algorithm described above
can be applied, whereby to check coupling we need only

run the process forward in time from two values of the
state: n(1) ¼ (n1, . . . , nD), all branches in all demes carry
allele 1, and n(1) ¼ (0, . . . , 0), no branches in any deme
carry allele 1. If we obtain the same sample from each of
these initial conditions, then that sample is drawn from
the population at stationarity. If not we have to simulate
the backward process further into the past and repeat
until coupling occurs.

Programs implementing CFTP both for single-pop-
ulation variable population size and for multiple-deme
constant-population-size models were written in a com-
bination of R and C. These are available from http://
www.maths.lancs.ac.uk/�fearnhea.

Verifying the CFTP results: To check the validity of
the programs implementing this monotone CFTP algo-
rithm we ran the programs under two special cases. First
we considered the neutral case and compared the results
of our program with those obtained by the program ms
(Hudson 2002). Note that this program defines time in
units of N0 generations, rather than the 2N0 used here. It
assumes an infinite-sites mutation model—this output
can be converted into a two-allele model with n ¼ (0.5,
0.5) by (i) setting the mutation rate at u/2 and (ii)
assuming that each mutation changes the allele of the
chromosome so that the allele of a chromosome is de-
termined by whether it has an odd or an even number of
mutations. For the constant population size and a single
panmictic population (D¼ 1) we compared results with
those based on simulating from the known stationary
distribution of the population frequency of allele 1, us-
ing rejection sampling (see Donnelly et al. 2001).

RESULTS

Single-population model: First we used the CFTP al-
gorithm to simulate from a series of single-population
models. There are many demographic models that have
been suggested or inferred for human or other pop-
ulations (e.g., Wakeley et al. 2001; Wall et al. 2002;
Marth et al. 2004; Schaffner et al. 2005). We consid-
ered four different scenarios for the variation in pop-
ulation size and four different selection models. In each
case we set N0 ¼ 10,000 diploid individuals, u ¼ 1, and
n ¼ (0.9, 0.1) (based loosely on appropriate mutation
models for disease genes; see Pritchard 2001). The
four population size scenarios are:

Constant: a constant population size.
Growth: an exponentially growing population with l(t)¼

exp(�0.7t) (based on an inferred model for b-globin,
see Harding et al. 1997).

Bottleneck: a population bottleneck from t¼ 0.15 to t¼
0.175. During the bottleneck the effective population
size is 1000, and prior to it it is 5000 (based on a model
from Marth et al. 2004).

Complex: a more complicated scenario based loosely on
the population size of a non-African population in the
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model of Schaffner et al. (2005). It includes recent
exponential growth and a bottleneck.

Plots of l(t) ¼ N(t)/N0 for each of these models are
given in Figure 2.

The selection models are defined in terms of the
selection rates s* ¼ (s*11, s*12, s*22). Our four selection
models are (i) neutral s* ¼ (0, 0, 0), (ii) genic s* ¼ (0,
5, 10), (iii) heterozygote advantage s* ¼ (0, 10, 0),
and (iv) heterozygote overdominance s* ¼ (0, 20, 10).
For each combination of population size scenario and
selection model we simulated 10,000 samples. The CPU
cost varied across the 16 pairs we considered. In the
constant-population-size case, on a 3.4-GHz laptop, it
took 0.3, 1, 15, and 25 sec to simulate 1000 samples for
the four selection models, respectively. CPU times were
reduced by around a factor of 2 for the growth and
bottleneck scenarios and were increased by around a
factor of 1.5 for the complex scenario.

Histograms of the frequency of allele 1 in a sample of
size 50 (conditional on the allele segregating) are given
in Figure 3. These histograms agree with other simula-
tion results for the cases that include constant popula-
tion size (see Verifying the CFTP results). The different
population-size scenarios have little effect on the fre-
quency spectrum in the neutral case, but quite a notable
effect for each of other selection scenarios. The effect is
most pronounced for the heterozygote advantage case
where the growth and bottleneck scenarios have sub-
stantially reduced any effect of selection.

Two-deme model: We now consider a model based on
two demes each containing a constant-sized panmictic
population with migration between the demes. For sim-
plicity we assume that each deme has the same popu-

lation size and an identical migration rate from deme 1
to deme 2 and vice versa. We assume a total sample of
size 100, with 50 chromosomes sampled from each
deme. We assume n ¼ (0.5, 0.5) and present results for
u ¼ 0.1. We obtain very similar results for smaller values
of u except that the probability of the allele segregating
in the population is reduced.

We present results for four selection models and four
migration rates. Again we summarize the selection mod-
els in terms of s* ¼ (s*11, s*12, s*22). Our four selection
models are (i) neutral s* ¼ (0, 0, 0), (ii) genic s* ¼ (0,
5, 10), (iii) heterozygote advantage s* ¼ (0, 10, 0), and
(iv) recessive s* ¼ (0, 10, 10). The four migration rates
(the values of M12 ¼ M21) are 10, 2, 0.5, and 0.1.

We simulated 10,000 samples for each of the 16 com-
binations of selection model and migration rate. We
verified the results for the neutral model with other
simulation methods (see Verifying the CFTP results). The
CPU costs of the simulation varied little with migration
and were �0.4, 0.7, 10, and 4 sec per 1000 samples for
the four selection models, respectively (CPU times for a
3.4-GHz laptop). The frequency spectrum for samples
of size 50 within a single deme, conditional on the allele
segregating, are shown in Figure 4. The amount of mi-
gration appears to have little effect except in the case of
heterozygote advantage, when smaller migration rates
appear to reduce the effect of selection.

We also studied the effect of selection on the degree
of divergence in gene frequency between the demes.
Table 1 gives the mean Fst-values for samples under a
SNP ascertainment model that requires two randomly
chosen chromosomes (across both demes) to segregate.
If the observed frequencies of type 1 alleles in the demes
were p1 and p2, respectively, and p ¼ (p1 1 p2)/2, then

Figure 2.—Plots of l(t)¼
N(t)/N0 for the four popu-
lation-size scenarios. (Note
the different scale for the
complex scenario.)
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the Fst-value for that sample was (p1 � p)2/(p(1 � p))
(see, e.g., Section 2.3 of Nicholson et al. 2002). The
weight given to a sample is proportional to p(1� p) and
gives more importance to samples whose minor allele
frequency is close to 0.5.

As noted by Hughes et al. (2005), the effect of se-
lection is to reduce the amount of variation in allele fre-
quencies, and hence Fst-values, across demes. The effect
is most pronounced as migration rates are decreased.

(Measuring the variation in allele frequencies using the
d-statistic of Nei 1987 produced similar results.)

We further tested the effect of different selection re-
gimes within the two demes. For simplicity we assumed
neutrality within deme 1 and the three selection models
above within deme 2. The mean Fst-values in this case
are given in Table 2. As expected, Fst-values increased
as compared to the case of the same selection regime
within each population, although only in the genic

Figure 3.—Histograms of the frequency of allele 1 in a sample of size 50 (conditional on the allele segregating) for each pair of
variable-population-size scenario and selection model. See text for full details of the models.

Figure 4.—Histograms of the frequency of allele 1 in a sample of size 50 from a single deme (conditional on the allele seg-
regating) for each pair of migration rate and selection model. See text for full details of the models.
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selection case are Fst-values consistently greater than in
the completely neutral case.

Stepping-stone model: We now consider a linear (cir-
cular) stepping-stone model . We assume 10 ordered
demes, each of equal population size. Migration events
are possible between neighboring demes, with Mi,i11 ¼
Mi11,i ¼ 1 for i ¼ 1, . . . , 9 and M1,10 ¼ M10,1 ¼ 1. We
consider the same mutation model and each of the four
selection models used in the two-deme case and simulate
samples of size 100, with 50 chromosomes sampled from
deme 1 and 50 from deme 1 1 c for c ¼ 1, 2, 3, and 4.
We are interested in the degree of correlation in allele
frequencies for differing degrees of physical separation
of the demes (c) and differing selection models.

Again we simulated 10,000 samples for each combi-
nation of selection model and c. CPU costs were affected
only slightly by c and were 0.5, 1.4, 40, and 20 sec per
1000 samples for the neutral, genic, heterozygous ad-
vantage, and recessive selection models, respectively
(on a 3.4-GHz laptop). We calculated Fst-values in the
same way as for the two-deme case (above), once again
under a SNP ascertainment scheme that requires two
randomly chosen chromosomes from our sample of size
100 to be carrying different alleles.

Results are given in Table 3. Again the effect of
selection is to reduce the amount of variation in allele

frequencies between demes. Most strikingly, for these
selection models the amount of variation in allele fre-
quencies depends little on the spatial separation of the
demes, which is not the case for the neutral case. We
further investigated this effect by simulating samples
under the genic model for a range of smaller selection
values: sg ¼ 1, 2, 3, and 4 (see Table 4). The effect that
Fst-values depend little on spatial separation is notable
for sg $ 2.

DISCUSSION

We have presented a method for simulating samples
from the stationary distribution of a class of nonneutral
population-genetic models. The method is simple com-
pared to other approaches based on CFTP (Fearnhead

2001) due to the monotonicity inherent in the problems
we consider. Thus simulating samples requires only (i)
to simulate the number of branches within the ancestral
selection graph back in time and (ii) to simulate the
number of these branches (within each deme) that
carry allele 1 forward in time for two initial configu-
rations: all branches initially carrying allele 1 and all
branches initially carrying allele 2. The resulting algo-
rithm has been shown to be computationally efficient
and enables simulation of a large number of samples

TABLE 1

Mean Fst-values (based on 10,000 samples) under a two-deme
model for each combination of selection model and

migration rate (M)

M ¼ 10 M ¼ 5 M ¼ 0.5 M ¼ 0.1

Neutral 0.035 0.123 0.326 0.650
Genic 0.031 0.070 0.127 0.218
Het Adv 0.031 0.080 0.159 0.295
Recessive 0.033 0.083 0.149 0.199

A weighted mean was calculated with the Fst-value from each
sample being weighted by the probability that two randomly
chosen chromosomes carry different alleles. See text for full
details of the models. Het Adv, heterozygote advantage.

TABLE 2

Mean Fst-values (based on 10,000 samples) under a two-deme
model with different selection regimes within each deme

M ¼ 10 M ¼ 5 M ¼ 0.5 M ¼ 0.1

Genic 0.036 0.122 0.367 0.706
Het Adv 0.034 0.110 0.253 0.439
Recessive 0.033 0.115 0.330 0.654

We assumed neutrality within deme 1 and the genic, hetero-
zygote advantage (Het Adv), or recessive selection model for
deme 2. Results are given for different migration rates (M). A
weighted mean was calculated with the Fst-value from each
sample being weighted by the probability that two randomly
chosen chromosomes carry different alleles. See text for full
details of the models.

TABLE 3

Mean Fst-values (based on 10,000 samples) under a stepping-
stone model for each combination of selection model and

spatial separation of the two demes (c)

c ¼ 1 c ¼ 2 c ¼ 3 c ¼ 4

Neutral 0.19 0.27 0.32 0.34
Genic 0.09 0.10 0.10 0.10
Het Adv 0.09 0.11 0.11 0.12
Recessive 0.11 0.12 0.13 0.14

A weighted mean was calculated with the Fst-value from each
sample being weighted by the probability that two randomly
chosen chromosomes carry different alleles. See text for full
details of the models.

TABLE 4

Mean Fst-values (based on 10,000 samples) under a stepping-
stone model for genic selection and different spatial

separation of the two demes (c)

c ¼ 1 c ¼ 2 c ¼ 3 c ¼ 4

sg ¼ 1 0.16 0.22 0.23 0.25
sg ¼ 2 0.13 0.17 0.19 0.17
sg ¼ 3 0.11 0.13 0.14 0.14
sg ¼ 4 0.10 0.11 0.12 0.11

A weighted mean was calculated with the Fst-value from
each sample being weighted by the probability that two ran-
domly chosen chromosomes carry different alleles. See text
for full details of the models.
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from complex selection and demographic models within
practicable CPU time. The main limitation on the sim-
ulation algorithm is the mutation rate u, with the CPU
cost appearing to increase proportional to 1/u for small
u. Thus simulation for very small values of the mutation
rate can be prohibitive.

The monotonicity characteristic of our models occurs
because we consider only a single selective locus that
carries two different alleles. For more general models,
monotonicity will not necessarily apply, but simulating
unordered samples as done here should still be easier
and more efficient than simulating ordered samples as
in Fearnhead (2001).

The examples we considered assumed either a single
population and variable population size or a constant
population size and multiple demes. There are alterna-
tive approaches for analyzing and simulating under the
former class of models: in some cases direct simulation
is possible by simulating the ancestral selection graph
back in time until there is a constant population size and
then simulating the alleles on the branches at that time
from the known stationary distribution of the constant
population size model. Alternatively, recent work by
Evans et al. (2006) calculates the frequency spectrum
under variable-population-size models and an infinite-
sites mutation model, and the method used with SelSim
(Spencer and Coop 2004) could easily be adapted to
this situation.

However, simulating samples from nonneutral mod-
els with multiple demes is much more challenging, and
we know of no other current coalescent-based simula-
tion methods in this case. Some methods exist for spe-
cial cases; for example, diffusion approximations for the
island model in the limit as the number of demes tends
to infinity (Cherry 2003; Cherry and Wakeley 2003).

Motivation for this work came from the International Centre for
Mathematical Sciences workshop on Mathematical Population Genet-
ics, March 2006. This research was supported by Engineering and
Physical Sciences Research grant no. C531558.
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APPENDIX A: DIPLOID SELECTION DYNAMICS

Fix a deme and let n be the number of branches located in that deme and n(1) be the number that carries allele 1.
The dynamics at a diploid selection event are as follows (see Neuhauser and Krone 1997): (i) choose three branches
at random, call the first the incoming branch, the second the continuing branch, and the third the checking branch;
(ii) denote by ij the genotype given by the incoming and checking branch; and (iii) with probability sij/s the
incoming branch is parental—otherwise the continuing branch is parental.

First consider the probability of the nonancestral branches at a diploid selection event both carrying allele 1. This
corresponds to the first condition on u given by (1). This occurs if either (a) all three branches chosen in i carry allele
1 or (b) two of these branches carry allele 1 and they are nonancestral. The probability of a is n(1)(n(1) � 1)(n(1)� 2)/
(n(n � 1)(n � 2)). The probabilitiy of b is

3nð1Þðnð1Þ � 1Þðn � nð1ÞÞ
nðn � 1Þðn � 2Þ

s12

3s
1

s� s11

3s

� �
;

where the first term is the probability of choosing two branches carrying allele 1 and one carrying allele 2, the second
term is the probability of the branch carrying allele 2 being the incoming branch and being ancestral, and the final
term is the probability of the branch carrying allele 2 being the continuing branch and being ancestral.

Combining these probabilities gives the expression on the right-hand side of (1).
The right-hand side of (2) is one minus the probability of the two nonancestral branches carrying allele 2 and is

calculated in an identical manner. The probability of u satisfying (2) but not (1) is thus the required probability of the
precisely one nonancestral branch carrying allele 1.

APPENDIX B: MONOTONICITY

For notational simplicity we drop the (1) superscript for the state. Consider two values for the states n and n9 that
satisfy n $ n9. To demonstrate monotonicity we need to show that for any possible event and value of u this ordering of
the states is preserved.

Monotonicity at coalescence, mutation, and genic selection events holds trivially. Assume that one of these events
occurs to a branch in deme d. Either nd ¼ n9d, in which case the dynamics at this event are identical for both states, or
nd $ n9d 1 1, in which case the ordering is preserved as the transition changes the nd- and n9d-values by either 0 or 1.

Monotonicity also follows for migration events. Consider a migration from deme i to deme d. We need consider only
ni 6¼ n9i, as otherwise the dynamics at this event are identical for both states. However, in this case the ordering is
preserved in deme i by the same argument as above and is also preserved in deme d as nd $ n9d and the dynamics mean
that whenever n9d increases by one then so does nd.

Finally, consider diploid selection in deme d. By the same arguments as above monotonicity trivially holds if nd¼ n9d
or nd $ n9d 1 2, so we focus on nd¼ n9d 1 1. The key point is to check that it is never possible for n9d to be unchanged at
this event at the same time as nd is being decreased by 2. Again, for ease of exposition, we slightly change notation and
denote the number of branches in deme d by n. For such a transition to occur we would need

u ,
ndðnd � 1Þðnd � 2 1 ðs� s11 1 s12Þðn � ndÞ=sÞ

nðn � 1Þðn � 2Þ ðB1Þ

for the nd to be decreased by 2 (see Equation 1) and

u . 1� ðn � nd 1 1Þðn � ndÞðn � nd � 1 1 ðs� s22 1 s12Þðnd � 1Þ=sÞ
nðn � 1Þðn � 2Þ ðB2Þ

for n9d to be unchanged (using Equation 2 and n9d¼ nd� 1). Now let a¼ (s�s11 1 s12)/(3s) and b¼ (s�s22 1 s12)/
(3s). Inequalities (B1) and (B2) can simultaneously hold for the same u if and only if

ndðnd � 1Þðnd � 2 1 3aðn � ndÞÞ
nðn � 1Þðn � 2Þ . 1� ðn � nd 1 1Þðn � ndÞðn � nd � 1 1 3bðnd � 1ÞÞ

nðn � 1Þðn � 2Þ :

Thus for monotonicity we need to show that this cannot occur and thus that for all n and nd

nðn � 1Þðn � 2Þ$ ndðnd � 1Þðnd � 2Þ1 3ndðnd � 1Þðn � ndÞa
1 ðn � nd 1 1Þðn � ndÞðn � nd � 1Þ1 3ðn � nd 1 1Þðn � ndÞðnd � 1Þb:
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Now consider the right-hand side; this can be rewritten as

ndðnd � 1Þðnd � 2Þ1 3ndðnd � 1Þðn � ndÞ � 3ndðnd � 1Þðn � ndÞð1� aÞ
1 ðn � ndÞðn � nd � 1Þðn � nd � 2Þ1 3ðn � ndÞðn � nd � 1Þ
1 3ðn � ndÞðn � nd � 1ÞðndÞ1 3ðn � ndÞð3nd � n � 1Þ
� 3ðn � nd 1 1Þðn � ndÞðnd � 1Þð1� bÞ:

Now the first, second, fourth, and sixth terms of this expression sum to n(n� 1)(n� 2), so we get that the inequality
we required simplifies to

0 $ �3ndðnd � 1Þðn � ndÞð1� aÞ1 3ðn � ndÞðn � nd � 1Þ
1 3ðn � ndÞð3nd � n � 1Þ � 3ðn � nd 1 1Þðn � ndÞðnd � 1Þð1� bÞ

¼ 3ðn � ndÞððn � nd � 1 1 3nd � n � 1Þ � ð1� aÞndðnd � 1Þ
� ð1� bÞðn � nd 1 1Þðnd � 1ÞÞ

¼ 3ðn � ndÞðnd � 1Þ½2� ð1� aÞnd � ð1� bÞðn � nd 1 1Þ�:

Now this inequality trivially holds for nd¼ 1 and for n¼ nd. For larger values of nd and n� nd the term in the brackets
is decreasing with both nd and n� nd (as both a , 1 and b , 1). So we need only show that the inequality holds for nd¼
2 and n � nd ¼ 1. The bracket term in this case is 2(a 1 b � 1); and the inequality a 1 b � 1 , 0 holds if and only if
2s21 # s 1 s11 1 s22.
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