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In this paper, we offer an explanation for how selectivity for
orientation could be produced by a model with circuitry that is
based on the anatomy of V1 cortex. It is a network model of layer
4Ca in macaque primary visual cortex (area V1). The model consists
of a large number of integrate-and-fire conductance-based point
neurons, both excitatory and inhibitory, which represent dynamics
in a small patch of 4Ca—1 mm2 in lateral area—which contains four
orientation hypercolumns. The physiological properties and cou-
pling architectures of the model are derived from experimental
data for layer 4Ca of macaque. Convergent feed-forward input
from many neurons of the lateral geniculate nucleus sets up an
orientation preference, in a pinwheel pattern with an orientation
preference singularity in the center of the pattern. Recurrent
cortical connections cause the network to sharpen its selectivity.
The pattern of local lateral connections is taken as isotropic, with
the spatial range of monosynaptic excitation exceeding that of
inhibition. The model (i) obtains sharpening, diversity in selectivity,
and dynamics of orientation selectivity, each in qualitative agree-
ment with experiment; and (ii) predicts more sharpening near
orientation preference singularities.

The mammalian primary visual cortex (area V1) marks the
first site along the ‘‘visual pathway’’ [Retina 3 Lateral

geniculate nucleus (LGN) 3 V1 3 And beyond], where selec-
tive response is observed to elementary features of visual scenes,
such as orientation and spatial frequency. Despite 40 years of
intense research effort, a detailed account of the neural basis for
this selectivity in V1 remains elusive. In this paper we focus on
orientation selectivity, the selective response of a single neuron
to some orientations of a bar or grating, and not to others. This
property of single cortical cells was discovered by Hubel and
Wiesel (1) in 1962; it is probably important for tasks such as edge
detection and contour completion (2). A basic question is still
unanswered: to what degree, and by what mechanisms, does
cortical processing contribute to orientation selectivity?

V1 is a layered structure, with different layers having different
tuning properties and functional architectures. Here, we focus on
layer 4Ca because it is an input layer for stimulus from the LGN
(magnocellular pathway). Data illustrating examples of orienta-
tion selectivity in an input layer in V1, 4Ca, are shown in Fig. 1
(D. Ringach, M. Hawken, and R.S., unpublished work). Fig. 1a
shows sample tuning curves for three simple cells in layer 4Ca,
in response to a drifting grating oriented at angle u (angles
separated by 180° designate gratings of the same orientation
drifting in opposite directions). These are tuning curves of the
steady-state firing rate averaged over many repeated periods of
drift. These curves hint at the great diversity observed in the
selectivity of 4Ca neurons. Two neurons show peaks at their
‘‘preferred angles,’’ with one weakly and the other more strongly
selective, whereas the third neuron is weakly selective for
orientation but is directionally selective. Such diversity is found
in all layers, although on average neurons in the input layers, 4Ca
and 4Cb, are somewhat less selective for orientation than cells
in other layers (3).

Originally it was proposed that the primary origin of the
orientation selectivity of a neuron in V1 is a ‘‘feed-forward’’
convergence of several LGN neurons onto a given cortical
neuron (1). The cortical-cooling experiments of Ferster et al. (4)
were interpreted as providing evidence for such a feed-forward
mechanism. However, note that, for drifting grating stimuli,
there is no orientation selectivity in the time-averaged steady-
state LGN input to a cortical neuron (2, 5). For such stimuli the
average firing rate of an individual LGN cell is not selective for
orientation, and so the sum of activities of many, averaged over
time, is also not selective, whatever their geometry (even very
elongated). The mechanisms in cortex underlying the observed
orientation selectivity remain unknown at present, and are the
subject of extensive investigation and debate (see refs. 2 and 6).
Cortical models have been used to show how steady-state
orientation selectivity could be produced in cortex, based on
‘‘center–surround’’ interactions in the orientation domain in the
cortical network (7–9). However, these theories did not attempt
to use realistic cortical circuitry.

Another kind of experiment on orientation selectivity is a
challenge for any theory of visual cortex. Through reverse time
correlation (RTC) experiments, Ringach et al. (3) obtained
information about the dynamical behavior of orientation selec-
tivity. A sample RTC measurement of the dynamics of orienta-
tion selectivity for a 4Ca neuron is shown in Fig. 2a. As in the
steady-state experiments, broad diversity is found in RTC ori-
entation selectivity and dynamics (3). The stimulus used in the
RTC experiments kept most of the measured cortical cells in a
persistently excited state. This is unlike the situation in the
drifting grating experiment, in which spike firing rate could be
zero at nonpreferred orientations. And so, a second major test
of a neuronal network model is to see how well it matches the
cortex’s dynamics of orientation selectivity measured in the RTC
experiments.

In this paper, we address these issues of orientation selectivity
through a network model of 4Ca that uses a more realistic
cortical architecture than has been previously studied. The
model consists of a small area (.1 mm2) of input layer 4Ca,
containing four ‘‘orientation hypercolumns’’ of excitatory and
inhibitory neurons. Convergent feed-forward input from many
LGN neurons sets up an orientation preference, laid out as
pinwheel patterns, each with an orientation preference singu-
larity at its center. The intracortical connectivity across the layer
is isotropic, with axonal length scales for excitation exceeding

Abbreviations: LGN, lateral geniculate nucleus; RTC, reverse time correlation; CV, circular
variance.
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those of inhibition. Through large-scale simulation, we find that
our model can achieve good orientation selectivity for both
steady-state (drifting grating) and dynamical (RTC) stimuli,
even though these two types of stimulation place the cortex at
very different ‘‘operating points.’’ Two consequences of the
cortical architecture are: First, in the neighborhood of pinwheel
centers, inhibition can be global in orientation coordinates,
yielding greater selectivity, despite being shorter-range in cor-
tical coordinates. Second, this correlation of selectivity with
proximity to pinwheel centers contributes to the observed di-
versity in our model and suggests new physiological experiments.

Materials and Methods
A Neural Model. Our model, shown schematically in Fig. 3, is a
two-dimensional layer of coupled excitatory (E) and inhibitory
(I) integrate-and-fire (I&F) neurons. In the model, 75% of the
neurons are excitatory, and 25% are inhibitory, in rough agree-
ment with anatomical data (10). A neuron’s membrane poten-
tial, v E(or I)

j , is the fundamental variable. The superscript j 5 ( j1,
j2) indexes the spatial location of the neuron within the cortical
layer. Membrane potential changes are induced by conductance

changes. We specify several cellular biophysical parameters,
using commonly accepted values (11): the capacitance C 5 1026

Fzcm22, the leakage conductance gR 5 50 3 1026 V21zcm22, the
leakage reversal potential VR 5 270 mV, the excitatory reversal
potential VE 5 0 mV, and the inhibitory reversal potential VI 5
280 mV.

The spike-generation mechanism for an integrate-and-fire
neuron is as follows: The voltage across the cell membrane is
driven up and down by ionic currents. When the cell’s voltage
becomes more positive than the threshold v# 5 255 mV, that time
is recorded (the ‘‘spike time’’), and the cell voltage is reset to v̂
5 VR (rest and reset potentials are taken as equal). Conductance
changes are then induced in other neurons, relative to this spike
time. Neurons’ voltages evolve by the coupled system of differ-
ential equations which, after normalization in which only time t
retains dimension, takes the form:

dvs
j

dt
5 2gRvs

j 2 gsE
j ~t!@vs

j 2 VE# 2 gsI
j ~t!@vs

j 2 VI#, [1]

where s 5 E or I indexes excitatory or inhibitory neurons. In this
equation, 22y3 # v E

j , v I
j # 1. (This normalization sets the spiking

threshold v# to unity, the reset voltage v̂ to zero, VE 5 14y3, and
VI 5 22y3.)

Conductances. The time-dependent conductances (excitatory
g EyI,E

j (t) and inhibitory g EyI,I
j (t) arise from the LGN input, from

noise to the layer, as well as from the cortical network activity
of the excitatory and inhibitory populations. They have the form:

g EE
j ~t! 5 F~t! 1 SEEO

k

aj2k O
l

GE~t 2 tl
k!,

g EI
j ~t! 5 fI

0~t! 1 SEI O
k

bj2k O
l

GI~t 2 Tl
k!,

g IE
j ~t! 5 F~t! 1 SIE O

k

cj2k O
l

GE~t 2 tl
k!,

g II
j ~t! 5 fI

0~t! 1 SII O
k

dj2k O
l

GI~t 2 Tl
k!.

[2]

Fig. 1. Sample orientation tuning curves from drifting grating stimuli: (a)
Experiment (three 4Ca simple cells). The response is measured as time-
averaged firing rate and is plotted in units of impulses per sec. Stimuli were at
optimal temporal frequency for each neuron, 2210 Hz). (b) Model (excitatory
neurons, 8 Hz). The model results also include the orientation selectivity
obtained by an uncoupled neuron (long-dash line, the ‘‘feed-forward re-
sponse’’), normalized for comparison to a peak response of 40 spikes per sec.
As shown, some of the model’s neurons may be directionally selective (dash-
es), as are some 4Ca cells.

Fig. 2. P(u, t) from RTC at several times t, showing the dynamics and
sharpening of orientation selectivity. A time series for the stimulus is con-
structed by choosing a fixed-wavelength sinusoidal standing grating (param-
etrized by orientation and a spatial phase) randomly from a stimulus set.
Stimuli are shown successively, each for 17 msec. The spike train of a visually
responsive neuron is recorded and is correlated against the stimulus time
series. The normalized correlation, P(u, t), is the probability that t msec before
a spike was produced, an image with angle u was presented. The graph’s left
vertical scale is probability, whereas the vertical scale on the right, for the
rightmost boxes only, is in units of circular variance. (a) Experiment (4Ca simple
cell, 18 angles). (b) Model (16 angles). The rightmost boxes show circular
variance CV[P(z, t)] (see Eq. 4). The dashed CV[P] curve in b is that for an
uncoupled model neuron, and it shows that feed-forward input by itself
produces only a small reduction in CV in the RTC experiment.

Fig. 3. Schematic of a model layer 4Ca hypercolumn (Left), with axonal (gray
circle) and dendritic (dark circle) arbor widths indicated for excitatory (E) and
inhibitory (I) cells. The neuron along the ray at angle 2u (emanating from the
pinwheel center) in the cortex inherits its orientation preference on the basis
of convergent input from a distribution of ONyOFF cells (Upper Right). The
distribution’s orientation at angle u in the visual field sets the orientation
preference. In this inset, the OFF cells are indicated by filled circles. The Lower
Right graph shows the LGN temporal kernel G.

8088 u www.pnas.org McLaughlin et al.



Here tl
k (Tl

k) denotes the time of the lth spike of the kth excitatory
(inhibitory) neuron. The input conductances are F(t) 5 glgn(t; u,
k, f) 1 fE

0 (t), for excitation, and fI
0(t) for inhibition (described

below). We describe next the visual stimuli we have studied, and
the spatial and temporal pattern of LGN input to the cortex in
the model.

Visual Stimuli. The visual stimulus is a sinusoidal grating with
intensity pattern I(xW, t) 5 I0[1 1 « sin[kWzxW 2 vt 1 f]]. Here kW 5
k(cos u, sin u), with u [ [2p, p) the orientation of the grating,
f [ [0, 2p) its phase, v its drifting frequency, I0 its intensity, and
« its contrast. We use two types of stimuli: (i) a drifting grating
(v . 0); and (ii) f lashed, randomly oriented gratings, as used in
the RTC experiments of Ringach et al. (3), for which v 5 0 and
u [ [0, p). Refreshed every 17 msec, each pattern is taken
randomly and independently from a collection of patterns with
N values of the orientation {u 5 kpyN, k 5 1, zzz, N} and M values
of the phase {f 5 k2pyM, k 5 1, zzz, M}.

LGN Response to Visual Stimuli. In response to visual stimuli, LGN
neurons produce spikes that impinge on 4C. Visual properties of
macaque LGN neurons in the magnocellular layers are estimated
from experimental studies (12, 13) as follows: LGN neurons have
(i) no orientational selectivity; (ii) a center–surround receptive
field; and (iii) a temporal impulse response of the center
mechanism that increases to peak at approximately 40 msec,
followed by a delayed undershoot that bottoms at approximately
60 msec; and (iv) this LGN temporal impulse response has zero
integral.

Consistent with these experimental observations, our model
represents the firing rate of the nth LGN neuron, caused by a
stimulus I(xW, t), as

Rn
6~t! 5 HRB 6 E

0

t

ds E
R2

d2xG~t 2 s!A(uxWn 2 xWu)I(xW, s)J1

,

[3]

where {R}1 5 R, R . 0; {R}1 5 0, R # 0. Here Rn
1 represents

an ‘‘on-center’’ and Rn
2, an ‘‘off-center,’’ xWn denotes the center of

the receptive field of this neuron, and xW is the coordinate of the
visual plane. To mimic the findings i and ii above, A(xW) is taken
as a difference of Gaussians with parameters like those used in
other recent models (5, 9). To mimic findings iii and iv for the
magnocellular input to 4Ca, the response function G(t) approx-
imates measured zero-integral LGN cell kernels (12, 13).

Convergence of LGN Output into 4C. Consider a single neuron in the
input layer 4Ca and a set of LGN neurons (call it C) whose
output converges to this cortical neuron. A typical spatial
distribution of such ONyOFF centers is shown in Fig. 3 (14). If
XW denotes the center of the receptive field of this cortical neuron,
the centers of the receptive fields of the LGN neurons conver-
gent to it are all located near XW . Experimental evidence suggests
that the total number of convergent LGN neurons in C should
be approximately 20, and in the model we use 17 (14). The
orientation (and spatial phase) preference of each cortical
neuron is encoded in the model through the locations and layouts
of the assembly of LGN inputs. The summed LGN input to a
cortical cell is thus:

glgn~t; u, k, f! 5 O
n[C

Rn
6~t!.

Our model does not currently incorporate in the LGN input any
mean drift in receptive field center nor any diversity in the
arrangement of ONyOFF subregions. To mimic spatial phase
shifts associated with varying ONyOFF subregion arrangements

and receptive field location, we choose XW randomly, and inde-
pendently, for each cortical neuron.

Note that, for drifting gratings, there is no orientation selec-
tivity of the LGN input to each cortical neuron, if time-averaged
input rate is the measured response variable (2, 5). Nevertheless,
as discussed below in Results, the temporal modulation of the
LGN input is tuned, and this is what confers the orientation
preference on the cortical cells in the model.

Pinwheel Centers and the Orientation Map. Optical imaging mea-
surements (15–18) show in superficial layers 2y3, ‘‘pinwheel’’
patterns of orientational preference on the cortex; neurons of
like-orientation preference reside along the same radial spoke of
a pinwheel, with the preferred angle sweeping through 180° as
center of the pinwheel is encircled. These pinwheels tile the
cortical layer, with their centers located (statistically) near the
centers of ocular dominance columns, separated from each other
by approximately 500 mm (approximately the width of the ocular
dominance columns).

While imaging shows these pinwheel patterns in the outer
layers, we assume that there is a correlated structure in the LGN
input to layer 4C, and we build a pinwheel structure into the
model by tying the preferred orientation angle of a given 4C
neuron to its location in the layer with respect to the pinwheel
pattern. In the model, we tile the layer periodically with pin-
wheels. Four pinwheels, chosen with alternating ‘‘handedness,’’
are placed upon a square, and then extended periodically. This
periodic configuration permits rapid evaluation of cortical in-
teractions through fast Fourier transforms.

Random Inputs. The terms f E
0 (t) and f I

0(t) in Eq. 2 are random
inputs, excitatory and inhibitory, respectively, that represent
input to layer 4C neurons from layer 6 neurons and other sources
of excitation or inhibition. These stochastic terms were chosen so
that the spike firing statistics of neurons in the model would
resemble those seen in V1 neurons (19).

Cortico–Cortical Coupling. The kernels (a, b, c, d)j–k, in Eq. 2
represent the strength of spatial coupling between neurons.
Their length scales are based on neuroanatomy. While there is
evidence that long-range connections (.1000 mm) can be aniso-
tropic and orientation selective, the local dense connections
(,500 mm) appear spatially isotropic (20). Here we assume this
local isotropy, taking the density of these local connections as
Gaussians:

Kj
ss9 5 ~h2ypLss9

2 !exp~ 2 u jhu2yLss9
2 !,

where h denotes a spatial discretization. We use anatomical data
to estimate the coupling lengths Lss9. This includes population
stainings (orthograde and retrograde) (21), and individual neu-
ron stainings (21–27). These anatomical measurements classify
distinct types of neurons and measure the spatial extent (both
local and long-range) of their axonal and dendritic arbors. From
these measurements we estimate the mean 4Ca local coupling
lengths: rE and I

D . 50 mm, r E
A . 200 mm, r I

A . 100 mm, where
rE(or I)

D , rE(or I)
A denotes the mean radii of the excitatory (or

inhibitory) dendritic and axonal arbors. The interaction radii are
then given naturally by Lss9 5 =(rs

D)2 1 (rs9
A )2, or LEE . LIE .

200 mm, LEI . LII . 100 mm. Thus, the longest space scales arise
from the axonal arbors of the excitatory (not inhibitory) neurons.

The temporal kernels Gs(t) model the time course of synaptic
conductance changes in response to arriving spikes from the
other neurons. The cortical temporal kernels are of the form

Gs 5 cs

t5

ts
6 exp~ 2 tyts!H~t!, s 5 E, I,
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where H(t) is a unit step function. The time constants are based
on experimental observations (ref. 11, and A. Reyes, personal
communication). The time to peak for excitation (3 msec) is
shorter than that for inhibition (5 msec). In addition, based on
recent experimental findings (B. Connors, personal communi-
cation), we add a second, longer, time-course of inhibition ('30
msec in duration).

Synaptic Weights. In Eq. 2 all cortical kernels have been normal-
ized to have unit integral; hence, the parameters SEE, SEI, SIE,
and SII label the strength of interaction and represent synaptic
strengths. They are treated as adjustable parameters in the
model. In the model reported here, the strength vector (SEE, SEI,
SIE, SII) was set to be (0.8, 7.6, 1.5, 7.6). The effect of this choice
of synaptic weights can be estimated most directly by observing
the synaptic conductances of model neurons and comparing
them to the leakage conductance (set to 50 sec21), plus the
(random) background conductances, with peak values of 200
sec21. In these units, the peak LGN conductance during stim-
ulation reaches values of 180 sec21; the peak cortico–cortical
excitatory conductance reaches 60 sec21; and the peak inhibitory
conductance reaches values of 650 sec21. This choice of synaptic
strengths made the model stable and filled with orientation-
tuned simple cells. It also led to high membrane conductances
during stimulation.

Results
Orientation Selectivity. Fig. 1b shows orientation tuning curves for
sample neurons from the model, in response to a grating stimulus
drifting at 8 Hz. Also shown is the feed-forward tuning curve of
an uncoupled neuron, obtained by shutting off all cortical
interactions. These tuning curves from the model should be
compared with those from experiment, shown in Fig. 1a.

The response of a neuron uncoupled from the network (also
shown in Fig. 1b) is very weakly selective for orientation. We
term this the feed-forward case because the visual driven input
to the cortical cell is only from the LGN. While the time-
averaged input from a sum of LGN cells is untuned for orien-
tation (2, 5), the observed feed-forward selectivity arises from
the cortical cell’s leaky integration of the input’s broadly tuned
temporal modulation, background noise, and spike thresholding.
This only weakly sharpens the cortical response (see also ref. 28).

In the present model there is no diversity in feed-forward
responses. While orientation preference changes from neuron to
neuron, forming the pinwheel spatial patterns, the selectivity in
the absence of cortical coupling is identical for every neuron.

In the presence of cortical coupling, the tuning curves in Fig. 1b
show that significant sharpening and diversity occur in the
model. This takes place with recurrent connections whose spatial
arbor sizes are consistent with anatomical observations (21–27,
29, 30)—with the axons of excitatory neurons possessing the
largest local arbors.

The diversity in orientation selectivity emerges from the
cortico–cortical interactions, and its presence is consistent with
experimental data. This diversity is quantified in Fig. 4. There,
the degree of selectivity is measured through the CV of the
(time-averaged) firing rate mj(u) of the jth neuron, as in ref. 28:

CV@m# 5 1 2 U*m~u!exp~2iu!du

*m~u!du
U . [4]

Sharply tuned neurons have CVs near 0, whereas broadly tuned
neurons have CVs near 1. Fig. 4 shows these data for the model
(b) and for a population of 42 neurons in 4Ca available from
experiment (a). In the model, the CV of neurons in the absence
of cortical coupling is 0.9 (thick dashed line in b). Thus, due
solely to cortical interactions, the distribution of CVs over the
population shows considerable diversity. The model’s distribu-

tion of CV is not as diverse as in experiment, but we found that
adding variability in the pattern of spatial convergence of the
LGN input could produce more broadening of the CV histo-
gram. The histogram for the inhibitory population shows also
that the model’s inhibitory neurons are on average more broadly
tuned than the excitatory.

Spatial Distribution of Selectivity. The model shows intriguing
spatial distributions of firing and selectivity, relative to the
location of the neurons within the pinwheel pattern. Fig. 5 shows
a color-coded two-dimensional representation of average firing
rate in response to a drifting grating, and the CV[mj] of
excitatory neurons. The firing rate distribution shows higher
activity near the pinwheel centers. The spatial distribution of CV
shows typically higher orientation selectivity near the pinwheel
centers. While this accounts for a large part of the observed
diversity, there are other well-tuned neurons scattered across the
cortex. Similar observations hold for the inhibitory neuron
population.

RTCs. Fig. 2b shows RTC data for a model neuron. The figure
shows P(u, t), the probability that t time units before a spike is
fired, visual stimulation at angle u occurred. The parameters
used in these RTC simulations are identical to those in the
drifting grating simulations described above. There is qualitative
agreement between the model and experiment—in particular, a
simple response with a single maximum at a preferred angle up,

Fig. 4. Histogram (fraction of total population) of tuning curve CVs. (a)
Experiment, 42 4Ca neurons (presumably excitatory). (b) Model, showing both
excitatory (solid) and inhibitory (dotted) neurons. (Neurons with low peak
firing rates are discarded.) Also shown is the CV of the feed-forward response
(thick dashed vertical line).

Fig. 5. Spatial distribution of response properties across the model’s four
hypercolumns. (The upper left quadrant is that hypercolumn depicted in Fig.
3.) The left two hypercolumns show the time-averaged firing rate of the
excitatory population in response to a grating drifting at angle u 5 45°
(averaged over 50 cycles). The lines emanating from pinwheel centers label
orientation columns at 0° (green), 45° (red), 90° (yellow), and 135° (blue). The
right two hypercolumns show the spatial distribution of circular variance,
CV[mj]. The scale on the left is in spiltes per second, and on the right is the
range [0, 1] of the CV.
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which grows and then relaxes. Also shown is the CV[P], which
captures the temporal course of selectivity—a latency, followed
by sharpening, then relaxation. Again experiment and model are
roughly consistent, although this particular model neuron shows
a second, lesser, peak in CV (sometimes observed in experi-
ment). Minimum CVs for RTC experiments in the 0.6 range are
observed in the model as in the cortex.

Included in Fig. 2b is CV[P] for an uncoupled model neuron,
which shows the weak dynamical selectivity of feed-forward
response (cf. ref. 28). The CV for this neuron is near 1, meaning
it is unselective for orientation. This implies that the orientation
selectivity seen in the RTC simulations is a consequence of
cortico–cortical interactions.

Discussion
This paper describes the performance of a neuronal network
model of the input layer 4Ca of macaque V1. This model
differs from others in the literature in several ways. (i) It is
designed largely from data for the anatomy and physiology of
layer 4Ca of macaque (i.e., length scales and patterning of
connectivity, and pinwheel centers). (ii) It uses cortical coor-
dinates rather than idealized coordinates as in ‘‘ring models’’
(7, 8, 28) or ‘‘near-ring models’’ (9), whose coordinate labels
are angles of orientation preference, rather than cortical
locations within the layer. (iii) It has only short-range local
inhibition, which is consistent with anatomical data, rather
than an inhibition which is explicitly long-range in orientation
preference, as is standard for many models (7–9, 31). (iv) It
uses membrane potential, driven by synaptic conductances, as
the fundamental variables, rather than activities or mean firing
rates (7, 8, 32), or a probabilistic ‘‘population-density’’ repre-
sentation (31, 33, 34). (v) Its local coupling architecture is not
long-range, anisotropic, or ‘‘orientation specific’’ (35)—it is
local and isotropic. (vi) As a large-scale network model, it
necessarily consists of point neurons rather than multicom-
partmental models (36–38). The model most similar to ours,
in attempting to account for orientation selectivity with a
realistic cortical network, is that of Troyer et al. (5). The main
difference between their model and ours lies in the spatial
pattern of cortico–cortical connectivity. Theirs is phase and
orientation specific, whereas ours is isotropic.

Our neuronal network model obtains agreement with physi-
ological experiments with regard to (i) sharpening of orientation
selectivity, (ii) diversity in orientation selectivity, and (iii) dy-
namical characteristics of orientation selectivity. Requiring that
the model account for physiological experiments, while also
following the neuroanatomy and neurophysiology of cortical
cells, places demanding performance criteria on the model. For
instance, requiring sharpening of orientation selectivity with
short-range monosynaptic inhibition, and agreement with RTC
experiments, severely constrains the values of the free parame-
ters in the model. In most models of orientation selectivity,
sharpening is achieved by a direct long-range monosynaptic
inhibition, usually in an effective angle coordinate. In macaque
4Ca, a long-range inhibition in cortical coordinates is not
supported by anatomical evidence, although, as our model
suggests, a long-range inhibition in angle may arise near pin-
wheel centers.

Orientation Selectivity, Diversity, and Pinwheels. An intriguing pre-
diction of the model is the spatial distribution of CVs in the
steady-state experiments (with drifting gratings as stimuli). The
model shows CVs near pinwheel centers smaller than those away
(Fig. 5). Analyzing this characteristic reveals how the model
achieves its selectivity and part of its diversity. Fig. 6 shows the
orientation tuning curves firing rates and for intracellular cur-
rents for two representative excitatory neurons, one near and
one far from the pinwheel center. The far neuron’s tuning curve

has a high CV because of the relatively high response at angles
orthogonal to its preferred orientation. The near neuron’s
orientation tuning curve has a lower CV because its response
drops to near zero at angles orthogonal to preferred, and its peak
response is higher. In the model, the orientation selectivity is
initiated by the temporal modulation of the LGN current about
its mean, and the differences in selectivity between these two
neurons is accounted for by the differences in the mean inhibi-
tion as a function of orientation.

First, consider the tuning curve for total current. The mean
current (solid line), and the mean 6 1.5 standard deviations (the
two dotted lines), are plotted vs. orientation u. The near, more
selective, neuron’s mean 1 1.5 standard deviation exceeds the
threshold for spike firing (long-dash line) over a much narrower
range of angles than does the far neuron’s. This is the underlying
cause of the sharper selectivity. But why is the total current of
the near neuron more tuned? As is observed from the separation
of the standard deviations in the two graphs (near and far
neurons), the modulation of the total current (from LGN and
cortico–cortical interactions) is approximately the same for the
two neurons. Therefore, the differences in selectivity must come
from differences in tuning of the mean current.

The different patterns of mean inhibitory input across u is the
primary reason for differences in orientation selectivity and
sharpening for the near and far neurons. This is seen in Fig. 6
Right. The near neuron receives mean inhibition that is essen-
tially independent of u, whereas the far neuron receives inhibi-
tion that depends on u and is maximal at its preferred orienta-
tion. The reason underlying this difference is that inhibitory
inputs arrive solely from other cortical neurons. For the neuron
near the pinwheel center, the interaction length for inhibition
(LII and LEI) extends over all orientations; thus, its sharpening
is achieved by a global inhibition in orientation. This is not true
for the far neuron. Its inhibitory inputs are from cortical neurons
whose orientation preference is nearly the same as its own. In this
case inhibition is not global in orientation, and thus is less
effective in sharpening the excitation’s broad selectivity.

The experiments of Maldonado et al. (18) suggest that the
degree of selectivity is not strongly correlated to distance from
a pinwheel center. However, their data from cat cortex are not
correlated directly with the laminar structure. This makes it
difficult to compare their experimental results with the model’s
predictions. Future experiments on the spatial distribution of CV
in macaque V1 would provide a strong test of our model.

High Conductances. In our model, cortico–cortical interactions are
dominated by inhibition, and the membrane conductances are
high during stimulation, mainly because of the inhibition. This

Fig. 6. Differences underlying selectivity for an excitatory neuron near
(Upper) and another far (Lower) from a pinwheel center. (Left) Average firing
rate as a function of u. (Center) Time-averaged current at threshold (center
curve), plus and minus 1.5 standard deviations (dotted curves), as a function of
u. (Right) Time-averaged inhibitory network contributions, plus and minus 1.5
standard deviations, to this current.
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high-conductance regime follows from two constraints the
model must satisfy if it is to simulate the biological cortex
adequately—both (i) orientation selectivity and (ii) peak firing
rates must agree with physiological observations. From the
results of a series of numerical experiments, we have observed
that these two constraints are met as follows: To obtain adequate
orientation selectivity, a significant level of inhibition is re-
quired. To obtain adequate firing rates, the excitatory conduc-
tance must overcome both this inhibition and the leakage
conductance. In addition, the excitatory and inhibitory currents
must be roughly balanced, for the voltage not to be driven above
threshold all of the time, or to dwell near rest all of the time. Such
a balance of currents seems consistent with experimental data
(39). This balance of currents immediately implies that the
inhibitory conductance must be higher than the excitatory (gEVE
. gIuVIu f gI . (VEyuVIu)gE 5 7gE). The high (inhibitory)
conductance regime at which the model operates is also sup-
ported by recent experiments: large inhibitory conductances,
evoked by visual stimuli, have been observed experimentally in
visual cortical cells (40, 41).

Dynamics. In the RTC simulations, orientation selectivity is
observed and is qualitatively consistent with that measured in
4Ca cells (3). By design, the RTC experiments (3) caused most

cortical cells to be persistently excited above threshold. A
selectivity mechanism based on the sharpening of broad feed-
forward inputs by a fixed threshold would likely give much poorer
selectivity in the RTC experiments than in the steady-state
experiments (as seen in the responses of the uncoupled model
neuron; see Figs. 1b and 2b). But this is not what is observed,
either in experiment or in the model network. In the model
network, the orientation selectivity occurs through a dynamical
thresholding that is set through an interplay between LGN
excitation, cortico–cortical excitation, and cortico–cortical in-
hibition. Also, in the RTC simulations the model gives a corre-
lation between the degree of selectivity and the proximity to
pinwheel centers—similar to that seen in the steady-state sim-
ulations. This is another prediction of the model that could be
tested experimentally.
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