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National de la Recherche Scientifique, Universités de Marseille I and II, 31 Chemin Joseph Aiguier, 13402
Marseille cedex 20, France (B.H.)

Quantitative trait loci (QTLs) affecting sugar composition of the cell walls of maize (Zea mays) pericarp were mapped as an
approach to the identification of genes involved in cereal wall biosynthesis. Mapping was performed using the IBM (B73 �
Mo17) recombinant inbred line population. There were statistically significant differences between B73 and Mo17 in content
of xylose (Xyl), arabinose (Ara), galactose (Gal), and glucose. Thirteen QTLs were found, affecting the content of Xyl (two
QTLs), Ara (two QTLs), Gal (five QTLs), Glc (two QTLs), Ara � Gal (one QTL), and Xyl � Glc (one QTL). The chromosomal
regions corresponding to two of these, affecting Ara � Gal and Ara on maize chromosome 3, could be aligned with a
syntenic region on rice (Oryza sativa) chromosome 1, which has been completely sequenced and annotated. The contiguous
P1-derived artificial chromosome rice clones covering the QTLs were predicted to encode 117 and 125 proteins, respectively.
Two of these genes encode putative glycosyltransferases, displaying similarity to carbohydrate-active enzyme database
family GT4 (galactosyltransferases) or to family GT64 (C-terminal domain of animal heparan synthases). The results
illustrate the potential of using natural variation, emerging genomic resources, and homeology within the Poaceae to
identify candidate genes involved in the essential process of cell wall biosynthesis.

As a defining feature of plants, the cell wall is
important to all aspects of their biology. Further-
more, plant cell walls provide fuel, fiber, and food to
all human societies. Cell walls are a complex com-
posite of polysaccharides, proteins, and lignin. The
polysaccharide components can be classified into
three broad categories: pectins, hemicelluloses, and
cellulose. In both monocotyledons and dicotyledons,
the most abundant polysaccharide in the majority of
tissues is the simple polymer cellulose. In contrast,
the hemicelluloses are chemically and physically
more complex and their monomer composition var-
ies between species and between tissues and cell
types within an individual plant (e.g. Fincher, 1992;
Doblin et al., 2001). The cell walls of the commelinoid
monocotyledons, which includes the grasses and ce-
reals (family Poaceae), differ significantly in compo-
sition from other plants in having a larger amount of
arabinoxylan and a unique hemicellulose, mixed-

linked glucan (�1,3-�1,4-glucan, also known as cereal
�-glucan; Carpita and Gibeaut, 1993; Carpita, 1996).
Thus, the several stages of hemicellulose biosynthesis
(precursor synthesis, polymerization, secretion, and
incorporation into the wall) must differ significantly
among plant species and be dynamically regulated
processes within a particular plant.

A full understanding of the biosynthesis of the cell
wall remains a major unsolved problem in plant
biology. Biochemical approaches to identification of
the enzymes and genes involved have been hindered
by the lability of the enzymes and our ignorance of
their biosynthetic mechanisms. Although substantial
progress has recently been made on the identification
and function of cellulose synthases and the corre-
sponding genes (called CESA) and on several non-
processive glycosyl transferases such as xylosyl,
galactosyl, and fucosyl transferases, little is known
about the genes and enzymes involved in synthesis
of the backbones of the hemicellulosic polymers (Ari-
oli et al., 1998; Edwards et al., 1999; Perrin et al., 1999;
Fagard et al., 2000; Taylor et al., 2000; Faik et al., 2002;
Peng et al., 2002; Vanzin et al., 2002).

A genetic approach to cell wall biosynthesis has
been successful in identifying CESA genes in differ-
ent species and also genes involved in hemicellulose
precursor biosynthesis (Reiter et al., 1993; Bonin et
al., 1997; Arioli et al., 1998). Wall compositional dif-
ferences in T-DNA-tagged plants of Arabidopsis
have also been examined (Gardner et al., 2002). The
exploitation of natural variation is an alternative ge-
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netic approach to these mutagenesis-based ap-
proaches. Traits such as fruit size, flowering time,
morphology, and light responsiveness differ among
lines, ecotypes, or accessions of a particular plant
species, and a number of these have been success-
fully analyzed genetically. Because they are typically
inherited in a quantitative manner, they are more
challenging to analyze, and isolation of the respon-
sible genes is more difficult. Nonetheless, in recent
years a number of quantitative trait loci (QTLs) have
been identified and isolated (Frary et al., 2000; Yano
et al., 2000; El-Assal et al., 2001; Maloof et al., 2001).
Contrary to some expectations, the QTLs underlying
natural variation have turned out to be variant alleles
of genes that play a central role in the trait under
study, and not minor, secondary genes with an indi-
rect role (Millar, 2001). Thus, the identification of
genes controlling natural quantitative differences in
cell wall properties might lead to the identification of
critical, primary genes involved in hemicellulose
biosynthesis.

A number of important agronomic properties of
plants are influenced by the properties of their cell
walls; for example, nutrient absorption and digest-
ibility by humans and animals, wheat (Triticum aes-
tivum) bread making quality, barley (Hordeum vul-
gare) brewing quality, and insect resistance (e.g.
Martin and Bamforth, 1980; Brice and Morrison, 1982;
Hedin et al., 1993; Lundvall et al., 1994; Courtin and
Delcour, 1998). The inheritance of the cell wall prop-
erties underlying some of these traits has been stud-
ied in several species including soybean (Glycine
max), wheat, barley, and maize (Zea mays; e.g. Powell
et al., 1985; Jung and Buxton, 1994; Lundvall et al.,
1994; Saulnier et al., 1995; Lempereur et al., 1997;
Stombaugh et al., 2000). These traits typically exhibit
a genotype by environment interaction effect and
have complex patterns of inheritance indicative of
control by many genes. QTLs affecting mixed-linked
glucan content in oat (Avena sativa) and barley, fiber
content in maize, and ratio of Ara to Xyl in wheat
flour have been detected (Han et al., 1995; Lübber-
stedt et al., 1997, 1998; Martinant et al., 1998; Kianian
et al., 2000; Méchin et al., 2000). However, the specific
genes underlying the QTLs identified in any of these
studies, due to the complexity of the relevant plant
genome, the lack of adequate genomic resources, or
both.

Substantial progress has been made in recent years
in the development of genetic and genomic resources
for many plants, including cereals such as rice (Oryza
sativa) and maize. This opens the possibility of using
natural variation to identify genes involved in a com-
plex process such as wall biosynthesis, with the ulti-
mate goal of elucidating the underlying biochemical
mechanisms of hemicellulose backbone synthesis.
Here, we have exploited high-throughput cell wall
analysis and advanced maize genetic resources to
identify QTLs affecting the sugar monomer compo-

sition of cell walls. The results illustrate the feasibil-
ity of identifying candidate genes involved in hemi-
cellulose biosynthesis when QTL analysis is
combined with synteny between rice and maize and
with the available partially annotated rice genome.

RESULTS

Several criteria were considered for defining a
model plant and tissue for the analysis of natural
genetic variation of cell wall composition. A major
consideration is the existence of rich genetic and
genomic resources, which is satisfied for maize in
light of recent advances in the development of inter-
mated recombinant inbred lines (RILs) such as the
IBM population derived from B73 and Mo17, a large
number of genetic markers, and synteny with the
completely sequenced genome of rice (Davis et al.,
1999, 2001; Goff et al., 2002; Lee et al., 2002; Song et
al., 2002). The tissue to be sampled should be easy to
collect, have a low level of starch, and its composition
should be insensitive to small differences in rates of
growth and development among accessions or
ecotypes. The maize pericarp satisfies these criteria.
It is predicted to have low starch content and, if
sampled from a fully mature cob, variation in growth
and development should be minimal. Sufficient
amounts of tissue can be sampled from a single ear.
The pericarp was removed with forceps from seeds
that had been soaked in water. When cross-sections
of intact seeds were observed by fluorescence micros-
copy, three types of cells were visible at the edge (Fig.
1, A and B; Kiesselbach, 1949). The pericarp is the
outermost layer and is composed of approximately
10 thick-walled cells that fluoresce blue. The aleurone
layer is characterized by relatively large round cells

Figure 1. Fluorescent microscopy of cross sections of intact seeds
(caryopses; A and B) and excised pericarp (C and D). A, Mo17; B,
B73; C, RIL 356; D, RIL 338. The three layers of cells visible in the
whole caryopsis cross section, from inside to outside, are endosperm,
aleurone, and pericarp. Only pericarp is present in C and D. Bar �
100 �m.
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that fluoresce bright yellow-green under alkaline
conditions. Inside this layer of maternal tissue is the
endosperm, composed of large thin-walled cells. Mi-
croscopy indicated that the pericarp preparations
used in this study contained minimal contamination
by aleurone or endosperm walls (Fig. 1, C and D).
There were no noticeable differences among B73,
Mo17, and two randomly selected RILs from the IBM
population in appearance of the pericarp (Fig. 1).

We could not find any previous reports of the
sugar composition of maize pericarp. Our analyses
indicate that mature maize pericarp contains an av-

erage of 52% Xyl, 32% Ara, 10% Gal, and 5.0% Glc.
Rha, Fuc, and Man were present in trace quantities.
Arabinoxylan is the major hemicellulose in most ce-
real cell walls, although there are large differences in
the degree of Ara substitution among tissues. There-
fore, the high values for Xyl and Ara probably rep-
resent a high content of Ara-substituted xylan (arabi-
noxylan) in the pericarp. The polymeric nature of the
pericarp Gal is not known, although in coleoptiles
and young seedlings of maize it is mostly nonreduc-
ing terminal (Kato and Nevins, 1984; Carpita, 1996).
The trace quantities of Rha and Man eliminate galac-

Figure 2. Distribution of means of monosaccharide composition in the pericarps of the IBM RIL population. A, Ara; B, Xyl;
C, Gal; D, Glc. Parental values are indicated by arrows. RIL effects were significant (P � 0.01) for all four sugars.

Table I. Mean and range values for relative and absolute quantity of monosaccharides extracted from pericarp cell walls of the IBM
mapping population and parents

Monosaccharide
Parents RILs

B73 (relative chromatograph peak area �RCPA�) Mo17 (RCPA) Average (RCPA) Minimum (RCPA) Maximum (RCPA)

Ara 30.98 32.48 31.49 29.26 34.47
Xyl 51.33 54.19 52.26 47.83 54.98
Gal 12.14 8.31 10.32 7.28 14.80
Glc 5.55 5.02 5.92 3.54 11.52

B73 Mo17 Average Minimum Maximum

mg g�1

Ara 156.94 161.37 153.48 113.86 188.50
Xyl 260.20 269.70 254.97 183.85 305.43
Gal 61.51 41.25 50.31 32.59 71.26
Glc 28.13 24.81 28.91 15.91 55.04
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tomannan and rhamnogalacturanan as significant
contributors of Gal. The low Glc content indicates
that the pericarp contains only small amounts of
starch or other acid-digestible Glc polymers such as
mixed-linked glucan, which is relatively abundant in
barley aleurone and endosperm walls (Bacic and
Stone, 1981a, 1981a).

Summary statistics for the cell wall composition of
pericarps from the IBM RIL population (Davis et al.,
2001; Lee et al., 2002) are given in Table I. There was
a continuous range of values for all measured traits
among the RILs (Fig. 2). Some RILs had extreme
values for Glc (Fig. 2), possibly due to contamination
of the pericarp sample with endosperm starch. Nor-
mal distributions were observed for all monosaccha-
rides as illustrated by the histograms (Fig. 2). Signif-
icant differences among the RILs for monosaccharide
content were detected at the 1% level using analysis
of variance. The midparent values (i.e. the values
halfway between the two parents) and the median of
the RILs for Ara, Xyl, and Gal were very similar, but
the median for Glc was greater than the midparent
value, and the population was slightly skewed to the
right (Fig. 2).

The proportion of the total variance of each source
of variation, RIL, replication, and error (RIL by rep-
lication interaction) were calculated from the vari-
ance components and are summarized in Table II.
Although RIL had a significant effect on monosac-
charide content, the proportion of the total variation
accounted for by RIL for each trait varied. Error had
the largest variance component for Ara, Xyl, and Glc.
Glc was the only trait where replicate variance was
greater than RIL variance. The magnitude of the vari-
ance among replicates for Xyl and Gal was negligible.
RIL effects accounted for the greatest proportion of
the variance for Gal and the least portion for Glc.

Correlation analysis showed a significant and
strongly positive relationship between Ara and Xyl
content (Table III). Gal content was moderately cor-
related with Ara and Xyl. No significant correlation
at the 5% level was observed between Glc and the
other monosaccharides (Table III).

Thirteen QTLs for maize pericarp monosaccharide
relative chromotograph peak area (RCPA) were de-
tected. The map location, log of the odds ratio (LOD)
score, flanking markers, marker bin, additive effect,

and percent of the total variance accounted for by
each locus are given in Table IV. Eleven of the loci
were associated with single monosaccharides. A lo-
cus on chromosome 3 was associated with both Ara
and Gal content, and a locus on the short arm of
chromosome 6 was associated with both Xyl and Glc
content. All of the Mo17 alleles had a positive addi-
tive effect on Ara and Xyl content. Nine of the 11 B73
alleles had a positive effect on Gal and Glc content.
Four of the QTL accounted for 10.0% or more of the
total variance. The size of the genetic map interval for
the QTLs ranged from 2.53 cM for QTL 1 to 31.4 cM
for QTL 2 (Table IV).

Several approaches were taken to identify known
nucleic acid sequences that might plausibly account
for the observed variation associated with the QTLs.
Some genes of known or putative function mapped
near some of the QTLs. Other candidates were iden-
tified by BLAST search of molecular marker partial
nucleic acid sequences. For example, the microsatel-
lite locus umc1111 maps to bin 1.11, and its flanking
sequences have sequence similarity to a gene encod-
ing a sterol-methyltransferase. Sterols have recently
been shown to play a role as intermediates in cellu-
lose biosynthesis (Peng et al., 2002). Marker umc1366,
which maps to bin 9.06 along with Gal and Ara QTLs
10 and 11, is predicted to encode a �1,3-glucanase, an
enzyme with a potential role in degradative cell wall
metabolism. A QTL for Glc content maps to bin 3.05
as does Suc phosphate synthase (UDP-Glc-Fru-
phosphate glucosyltransferase, encoded by sps2;
Causse et al., 1995). The nearest flanking marker to
the 5.63-cM Gal QTL interval on chromosome 10,
umc1053, has high sequence homology to a gene en-
coding a wall-localized invertase (Shanker et al.,
1995).

Searching for gene candidates in maize is currently
limited by the lack of genomic sequence. Therefore,
syntenic regions for the QTLs were identified within
the rice genome using MapSearch at the Gramene
Web site (http://www.gramene.org; Ware et al.,
2002). Rice chromosome 1 is syntenic to much of the
apical portion of maize chromosome 3 (Gale and
Devos, 1998). Because rice chromosome 1 is com-
pletely sequenced and annotated, two contiguous
segments of DNA could be identified that correspond
to QTL 3 (Ara plus Gal), QTL 4 (Ara), and QTL 5
(Gal) on maize chromosome 3 (Table III). A flanking

Table II. Percentage of the total variance for each source of
variation for RCPA of cell wall monosaccharide content of the
IBM mapping population

The coefficients of variance for Ara, Xyl, Gal, and Glc were 3.32,
2.33, 6.62, and 28.3, respectively.

Source of Variation
Monosaccharide

Ara Xyl Gal Glc

RIL 35.92 41.49 70.84 14.63
Replication 27.38 1.94 0.25 17.61
Error 36.69 56.57 28.90 53.16

Table III. Pair-wise Pearson’s correlation coefficients of means of
absolute monosaccharide content of the IBM mapping population

Monosaccharide Ara Xyl Gal

mg g�1

Ara – – –
Xyl 0.85a – –
Gal 0.22a 0.28a –
Glc 0.07 0.02 0.06

a Significant at P � 0.01.
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marker, mmp36, of QTL 3 has significant homology to
sequences on overlapping rice P1-derived artificial
chromosome (PACs) AP002872 and AP002540 (http://rgp.dna.
affrc.go.jp/). These two PACs map to the short arm
of rice chromosome 1. The nearest maize/rice marker
on the other flank of the QTL, umc1392, is 45 cM
proximal to mmp36 and has homology to rice PAC
AP003214 (Fig. 3). Assuming that map distances and
physical distances are roughly proportional, but err-
ing on the side of inclusion, AP002540 and five PACs
in the direction of umc1392 (i.e. AP002872, AP003311,
AP002483, AP002872, and AP002913) were selected
as most likely completely spanning QTL3. Together,
these six PACs form a contig of 638 kb and were
predicted to encode 117 proteins. A second contig
chosen to include the proximal Ara and Gal QTLs 4
and 5 (flanking markers mmp9 and umc1449) includes
PACs AP001073, AP001081, AP000837, AP000836,
and AP001072, is 658 kb, and is predicted to encode
125 proteins.

The predicted protein sequences were analyzed by
standard BLAST against the nonredundant database
of the National Center for Biotechnology Information
and also against the carbohydrate-active enzyme da-
tabase (CAZy) of glycosyltransferases (Campbell et
al., 1997; Coutinho and Henrissat, 1999). A single
candidate glycosyltransferase was found in each con-
tig. One candidate, BAB40110, encodes a predicted
member of glycosyltranserase family GT4, which
contains a variety of transferases that form alpha-
linkages, including Suc synthase, GDP-Man �-manno-
syltransferase, �-1,3-rhamnosyltransferase, trehalose
phosphorylase, and digalactosyldiacylglycerol syn-
thase. A second predicted protein, BAA90366, is a
member of family GT64. This family includes plant
proteins that are related to the C-terminal domain of
animal heparan synthases, which are themselves

bifunctional glycosyltransferases that use UDP-
GlcNAc and UDP-GlcA to synthesize polysaccha-
rides with alternating �1,4-GlcNAc and �1,4-GlcA
residues. Plant genes related to the N-terminal do-
main or the C-terminal domain of animal heparan
synthetases (families GT47 and GT64, respectively)
are abundant, Arabidopsis having at least 44 mem-
bers and rice more than 30. The function of at least
one member of plant family GT47 has been eluci-
dated (pectin �-glucuronyltransferase; Iwai et al.,
2002). The precise function of family GT64 in plants is
not known, but similarity to the C-terminal domain
(�-GlcNAc transferase) of animal heparan syntheta-
ses suggests it could be an �-glycosyltransferase.

DISCUSSION

Analysis of the IBM population of RILs led to the
identification of 13 QTLs affecting the sugar mono-
mer composition of maize pericarp walls. Using
markers that bridge maize and rice, it was possible to
identify syntenic regions in rice corresponding to
some of the maize QTLs and, thus, identify corre-
sponding candidate rice genes. Due to the nature of
QTLs, the regions for searching were rather large.
Nonetheless, within this collection, the number of
proteins with a plausible role in wall biosynthesis
was small. Therefore, it should be practical to study
the candidate genes further for a role in wall biosyn-
thesis; for example, by detailed studies on their pat-
tern of expression (e.g. are they expressed in the
pericarp?) or biochemical function by heterologous
expression (e.g. Faik et al., 2002).

It was fortuitous to find genetically influenced dif-
ferences in cell wall composition between B73 and
Mo17, thereby making the genetic reference map a
tool for cell wall discovery. The IBM mapping pop-

Table IV. Summary of QTLs affecting sugar composition of maize pericarp

A positive additive effect indicates that the B73 allele was associated with a higher value, whereas a negative effect indicates that the Mo17
allele was associated with a higher value.

QTL
Chromosome

Position
QTL Map Position LOD Trait Flanking Markers Bin

Additive
Effect

Variance

%

1 1 54.52–57.05 4.10 Xyl php20537-ufg33 1.01 �0.2972 5.56
2 2 67.19–98.23 4.22 Xyl umc1824-bnl2g277 2.02 �0.3773 16.2
3 3 277.70–284.00 4.37 Ara mmp144-mmp36 3.04 �0.2263 5.50
3 3 281.00–287.04 7.98 Gal mmp144-mmc0132 3.04 0.3362 8.54
4 3 328.70–331.70 3.27 Ara bnlg1816-umc1920 3.04 �0.2215 5.15
5 3 351.55–353.84 3.79 Gal mmp9-umc1449 3.04 0.2229 3.67
6 3 453.05–459.15 4.53 Glc umc1167-psr119a 3.05 0.2907 5.45
7 4 332.44–345.10 4.73 Glc lim446-php10025 4.09 0.3167 6.60
8 5 364.89–365.64 3.44 Gal umc1155-nbp35 5.05 0.2502 4.51
9 6 182.42–189.44 7.33 Glc bnlg1174-phi078 6.05 0.3931 10.0
9 6 182.42–189.44 5.37 Xyl bnlg1174-phi078 6.05 �0.3483 14.5

10 9 368.57–375.66 11.63 Gal bnl5.09a-bnl14.28 9.06 0.4110 12.4
11 9 381.32–387.22 4.41 Ara umc1789-umc1675 9.06 �0.2262 5.43
12 10 119.86–125.10 5.63 Gal psb527d-umc1053 10.04 �0.2864 5.91
13 10 205.96–221.34 6.25 Gal psb365a-umc1993 10.06 0.4110 6.95
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ulation was instrumental in mapping these QTL with
high resolution because it has nearly a 4-fold increase
in recombination events relative to a conventional
RIL population that is not intermated, in addition to
a high level of saturation of over 1,800 molecular
markers (Lee et al., 2002). The large population size
of over 300 RILs and the heritability of the traits also
contributed to the fine level of mapping. Several
small effect QTLs were identified for each trait. Al-
though all but four of the QTL accounted for less
than 10.0% of the total variation, many were mapped
to small intervals. The maize genome is estimated to
be 2,500 Mb (Laurie and Bennett, 1985), and the IBM
genetic linkage map reported at MaizeDB has a total
of 6,246 cM (Coe et al., 2002). Therefore, the approx-
imate physical distance of 1 cM is 400 kb. If the maize
genome contains 50,000 genes, the gene density is
predicted to be 8 genes cM�1. Therefore, the individ-
ual QTLs identified in this study are predicted to
contain 20 to 250 genes.

Continuous and natural genetic variation for cell
wall properties has been documented in various ce-
reals and legumes (e.g. Powell et al., 1985; Lundvall
et al., 1994; Saulnier et al., 1995; Lempereur et al.,
1997; Stombaugh et al., 2000). Environmental effects
and genotype by environment interaction effects also
influence cell wall composition. The range of signif-
icant phenotypic variation within the IBM popula-
tion and the differences between the parents imply
that the quantity of the individual monosaccharides
is under the control of several genes, each having a
small effect. Our results indicate that a large portion
of the total variance of Gal and Xyl content is con-
trolled by at least nine loci. A smaller portion of the
Ara and Glc variability can be attributed to genetic
effects. However, several QTLs were identified for
each trait.

No differences in pericarp cell morphology or peri-
carp cell counts were observed between samples, and
the content of total monosaccharides was also not
significantly different within the recombinant popu-
lation. Therefore, the genetic variation that we ob-
served is likely due to differences in cell wall com-
position, in either quantity of backbone sugars
and/or the degree of their substitution, rather than
cell size or shape. The differences in composition
could, in turn, be due to any of a number of allelic
variations in the genes controlling the multiple steps
along the pathway of cell wall biosynthesis, from
precursor synthesis to final incorporation into the
wall.

Two QTLs were each found to be associated with
differences in the levels of two sugars, Ara and Gal
on chromosome 3 (QTL 3) and Glc and Xyl on chro-

mosome 6 (QTL 9). The gene underlying QTL3 might
be one that affects synthesis of a polysaccharide con-
taining both Ara and Gal, such as the arabinogalactan
attached to membrane-associated proteins (arabi-
nogalactan proteins). QTL9 might plausibly be asso-
ciated with synthesis of xyloglucan, which is present
in cereals (Kato et al., 1982; Carpita, 1996). On the
other hand, although there was a strong positive
correlation between Ara and Xyl content, no QTLs
were identified that influence the quantity of those
two monosaccharides together. One possible expla-
nation for this is that B73 and Mo17 do not have any
genetic differences influencing overall arabinoxylan
biosynthesis.

The ultimate goal of the study of natural variation
in maize cell wall composition is to identify the exact
nucleotide polymorphism that is responsible for each
mapped phenotypic variation. Based on current re-
sources, we were able unequivocally to identify only
two candidate genes in the genomic regions corre-
sponding to QTLs 3 to 5. Further analyses were lim-
ited by the lack of sufficient markers that bridge
maize and rice and the incomplete annotation of the
rice genome. It is expected that these resources will
become available within the next year. The combined
use of maize mapping populations and the com-
pleted rice genome is also potentially limited by a
lack of synteny in critical regions. It is too early to
know if this will create insurmountable obstacles.

Additional genetic resources can be used to make
further progress. For example, it should be possible
to map some of the QTLs to smaller regions using
other near-isogenic RILs, such as the BC3-derived
near-isogenic lines representing introgression of
Tx303 chromosomal regions into the B73 genetic
background and BC3-derived near-isogenic lines rep-
resenting introgression of Oh43 alleles into the Mo17
genetic background (Stuber, 1998).

MATERIALS AND METHODS

Genetic Resources

We measured the cell wall monosaccharide profile of the intermated RIL
IBM population derived from B73 and Mo17 (Davis et al., 2001; Coe et al.,
2002). B73 and Mo17 represent two of the major heterotic U.S. maize (Zea
mays) germplasm pools, Iowa Stiff Stalk Synthetic and Lancaster Sure Crop,
respectively. The F2 were intermated for five generations and subsequently
self-pollinated to make RILs. The RILs (302 total) were used to make a
high-density genetic linkage map with �1,850 molecular markers. These
data are available at MaizeDB (www.agron.missouri.edu/maps.html). A
subset of the population was obtained from the Maize Genetic Consortium
Stock Center and the complete population from the University of Missouri
Maize Mapping Project. Seed were collected from a single location and year
and used directly.

Figure 3. Chromosome line graphs and QTL likelihood plots of relative pericarp cell wall monosaccharide content (RCPA)
in the IBM population based on composite interval mapping. The horizontal axes in each graph indicate LOD scores, and
the vertical lines indicate the empirically derived LOD threshold (P � 0.05) for each monosaccharide. The length of the bars
indicates an LOD score of 3.0 for each QTL, and the line extensions of each bar, when present, indicate an LOD score of 2.0.
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Wall Analysis

For each replicated sample, two seeds were soaked overnight in 2 mL of
tap water in 24-well microtiter plates. The pericarp was removed using
forceps. All tissue samples were stored in 70% (v/v) ethanol at 4°C. Only the
pericarp was removed from the seed. For microscopy, maize seeds or
pericarp were sectioned by hand and mounted on glass slides in 0.1 m
ammonium hydroxide (pH 9.8). Slides were observed using an Axiophot
Fluorescence Microscope (HBO 100 Hg vapor bulb, Zeiss, Jena, Germany)
with a 365- 	 12.5-nm exciter and a 450-nm long-pass filter, using the 10�
and 20� objectives. Wall-bound ferulic acid fluoresces green at high pH
(Rudall and Caddick, 1994).

Cell wall monosaccharides were analyzed as the alditol acetates after acid
hydrolysis as described by Reiter et al. (1993) and Blakeney et al. (1983) with
modification. The samples were washed for 1 h at 70°C with 70% (v/v)
ethanol, with one change of ethanol after 30 min, washed once with acetone,
and dried. Aliquots of each sample (7–15 mg) were hydrolyzed with 1 m
H2SO4 for 1 h at 121°C. The released sugars were reduced to alditols by
addition of 100 �L of 9 m ammonium hydroxide followed by 1 mL of 2%
(w/v) NaBH4 in dimethyl sulfoxide, and incubated at 40°C for 90 min. The
alditols were acetylated by the addition of 250 �L of acetic acid, 250 �L of
1-methylimidazole, and 4 mL of acetic anhydride. After addition of 8 mL of
water, the alditol acetates were extracted with 2 mL of dichloromethane and
separated using an Agilent 6890 series GC system equipped with an Agilent
DB-225 capillary column (Agilent, Palo Alto, CA). Detection was by flame
ionization. Quantitation used the integration software in GC ChemStation
(Agilent). The temperature program was: 1 min at 160°C, 20°C min�1 to
200°C, hold for 5 min, 20°C min�1 to 240°C, hold for 11.5 min, 25°C min�1

to 150°C, and hold for 1 min.
Peak areas were adjusted relative to an internal inositol standard. Rha,

Fuc, and Man were present in maize pericarp in only trace amounts and
were not included in the QTL analysis. Sugars are reported as both RCPA of
the four principal monosaccharides (Ara, Xyl, Gal, and Glc) and total
quantity (milligram of sugar per gram of tissue).

Statistical Analyses

The seeds were sampled and analyzed within each replication in a
completely random manner. Three independent pericarp samples were
collected from a pair of seeds for each RIL. Analyses of variance were
performed using PROC GLM with inbred as the single random effect (SAS
Institute, 2000). Variance components were calculated to estimate the per-
centage of the total variance originating from RIL, replication, and error
using PROC VARCOMP under the assumption that all sources of variation
were random.

The map score data and genetic linkage maps were provided by the
Maize Mapping Project (University of Missouri, Columbia). Map distances
were confirmed using MapMaker version 3.0 (Lander et al., 1987) with an
LOD score threshold of 3.0 and a maximum recombination frequency of
0.50. The Kosambi function was used to transform recombination frequen-
cies into centiMorgans. Cosegregation of phenotypic properties and genetic
markers was determined using QTL Cartographer version 1.15 (Basten et al.,
2001). QTLs were identified using means and a framework genetic linkage
map with a marker density of approximately one per 10 cM. Areas where
QTLs were identified were saturated with previously mapped markers to a
density of one per 0.10 cM and reanalyzed. In both cases, we employed
composite interval mapping to increase resolution and reduce background
marker effect (Zeng, 1994). LOD thresholds were determined by computing
1,000 permutations for each trait (Churchill and Doerge, 1994). The levels of
significance for Ara, Xyl, Gal, and Glc levels at P � 0.05 were LOD 3.22, 3.32,
3.54, and 3.27, respectively, and at P � 0.01, the LOD were 4.17, 4.17, 4.24,
and 4.12, respectively. The graphical representation of the linkage maps and
QTLs were prepared using MapChart (Voorrips, 2002).

Distribution of Materials

Upon request, all novel materials described in this publication will be
made available in a timely manner for noncommercial research purposes,
subject to the requisite permission from any third party owners of all or
parts of the material. Obtaining any permissions will be the responsibility of
the requestor.
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