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The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates
comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved
motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising,
in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even
harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different
approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of
cis-acting regulatory elements using word-counting or probabilistic methods (so-called “search by signal” methods) and the
delineation of promoters by considering both sequence content and structural features (“search by content” methods). As an
example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due
to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be
used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and
CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end,
a data set of more than 5,000 gene sequences was built, including the promoter region, the 5�-untranslated region, and the
first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential
CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/
CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on
the other, more sophisticated approaches can probably be developed for the successful detection of “putative” CpG and
CpNpG islands in plants.

Arabidopsis, and probably most plants, encode an
exceptionally large number of DNA-binding pro-
teins, potentially acting as transcription factors (TFs).
In fact, more than 3,000 genes have been anticipated
to be involved in transcription, more than one-half of
which were expected to encode TFs (Arabidopsis
Genome Initiative, 2000), corresponding to more than
5% of the Arabidopsis genes, and approximately
twice the ratio observed for yeast and animal ge-

nomes (Riechmann et al., 2000). These TFs bind to the
DNA on specific cis-acting regulatory elements
(CAREs) and orchestrate the initiation of transcrip-
tion, which is one of the most important control
points in the regulation of gene expression. CAREs
are short conserved motifs of five up to 20 nucleo-
tides usually found in the vicinity of the 5� end of
genes in what is called the promoter. The promoter
sequence is usually located upstream from the tran-
scription start site (TSS), but regulatory elements can
also be located downstream, for example, in the first
intron of the gene itself (Zhang et al., 1994; Gidekel et
al., 1996; de Boer et al., 1999; Dorsett, 1999). The
promoter can roughly be divided in two parts: a
proximal part, referred to as the core, and a distal
part. The proximal part is believed to be responsible
for correctly assembling the RNA polymerase II com-
plex at the right position and for directing a basal
level of transcription (Nikolov et al., 1996; Nikolov
and Burley, 1997; Berk, 1999). It is mediated by ele-
ments, such as TATA and Initiator boxes through the
binding of the TATA box-binding protein, and other
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general TFs specific for the RNA polymerase II
(Featherstone, 2002). The distal part of the promoter
is believed to contain those elements that regulate the
spatio-temporal expression (Tjian and Maniatis, 1994;
Fessele et al., 2002). How far upstream (or down-
stream) such a distal part reaches is not defined. In
addition to the proximal and distal parts, somewhat
isolated, regulatory regions have also been described,
mainly in animals, that contain enhancer and/or re-
pressors elements (Barton et al., 1997; Bagga et al.,
2000). The latter elements can be found from a few
kilobase pairs upstream from the TSS, in the introns,
or even at the 3� side of the genes they regulate
(Larkin et al., 1993; Wasserman et al., 2000). Lastly,
eukaryotic genomes can be organized into domains
of transcriptional activity or transcriptional silencing,
encompassing one or more genes (Oki and Ka-
makaka, 2002).

A promoter region, as described above, presents a
rather linear view of the promoter. In reality, a sup-
plementary layer of complexity is added by bringing
the TFs together on a promoter, by adopting a three-
dimensional configuration, enabling the interaction
with other parts to activate the basal transcription
machinery (Fig. 1; Buratowski; 1997; Berk, 1999;
Struhl, 2001). The packaging of DNA into chromatin
(Kornberg and Lorch, 2002) limits the accessibility of
the DNA template for the transcriptional apparatus
and inhibits transcriptional initiation. Therefore,
when compared with naked DNA, chromatin is able
to repress transcription, which is probably important
for the tight regulation of gene activity in vivo (Juo et
al., 1996; Marilley and Pasero, 1996; Ioshikhes et al.,
1999). Derepression of transcription by partial un-
folding of the chromatin structure probably consti-
tutes an important part of gene regulation, and sev-
eral TFs and transcriptional co-activators have been

shown to disrupt or remodel the chromatin structure
(Beato and Eisfeld, 1997; Kass et al., 1997; Travers
and Drew, 1997; Langst and Becker, 2001; Brower-
Toland et al., 2002).

The three-way connection between methylation,
gene activity, and chromatin structure has been
known for almost two decades. DNA methylation
has been shown to repress transcription initiation by
interfering directly with the binding of transcrip-
tional activators or indirectly by binding proteins
with affinity for methylated DNA (Weber et al., 1990;
Razin, 1998; Jones, 1999; Kooter et al., 1999; Ng and
Bird, 1999; Meyer, 2000). Proteins, which bind to
methylated DNA in a CpG density-controlled man-
ner, have been detected in both mammals and plants.
Experiments have indicated that methylation is not a
consequence of the transcriptional state but appar-
ently participates actively in the regulation of gene
expression (Inamdar et al., 1991; Finnegan et al.,
1998b; Pitto et al., 2000). Furthermore, during tran-
scription elongation, RNA polymerase and the DNA
template must rotate relative to each other inducing
rotary constraints. Scaffold or matrix attachment re-
gions are involved at this level of gene expression by
stabilizing the formation of heterochromatin. These
repetitive regions enable the formation of Z-DNA
dividing the DNA into topological domains, which
are delineated by torsionally locked boundaries (Ben-
tin and Nielsen, 2002).

Much attention has been paid to investigate the
modular structure of regulatory regions that control
the transcription of eukaryotic genes (Dynan, 1989;
Johnson and McKnight, 1989; Struhl, 1999; Klingen-
hoff et al., 2002). The fuzziness of one binding site can
be compensated by a higher fitness of the adjacent
binding site and enables the positioning of the addi-
tional TF thanks to specific protein-protein interac-
tions (Rooney et al., 1995; Struhl, 2001). Thus, pro-
moters can be described as the result of a modular
hierarchy, in which the individual CAREs constitute
the lowest level; they are then grouped into islands as
composite elements, themselves organized in mod-
ules that confer the specific expression of a gene. The
consequence of this modularity is that each promoter
is unique and controls specifically the transcript level
of its downstream gene.

All of these different levels of complexity have
great repercussions on the in silico identification of
binding sites and promoters. Here, we review current
approaches (summarized in Fig. 2) to identify pro-
moters and their regulatory elements.

CONTENT-BASED FEATURES

Promoter Prediction

Unlike gene prediction (Mathé et al., 2002), predic-
tion of promoters in silico is still in its infancy. One of
the main problems is that the promoter is defined
functionally and not structurally, which strongly lim-

Figure 1. Graphical, simplified view of the different elements in-
volved in transcription. The pre-initiation complex (PIC) situated at
the nucleosome-free TSS is shown containing RNA polymerase II
(large gray hatched oval), the TATA box-binding protein (gray
sphere), and a number of general TFs (white circles). Gene regulatory
proteins upstream or downstream of the TSS that stimulate gene-
specific transcription and also contribute to the PIC assembly are
shown as small gray circles.
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its the means to model it. Clear and unequivocal
descriptions of genomic segments that contain all
elements required to activate transcription would be
useful but are still unavailable, although the regula-
tory motifs of some specific genes have been inves-
tigated in detail. Therefore, most in silico research on
promoters is usually restricted to the so-called inter-
genic regions of the genome, i.e. between the coding
regions of two neighboring genes. The most practical
approach is to limit the putative promoter region to
an arbitrary number of base pairs upstream of the
translation start site of the gene of interest, the loca-
tion of the TSS being unknown most of the time.
However, ideally, this number should be chosen in
function of the organism, because the length of inter-
genic regions may differ considerably (Arabidopsis
Genome Initiative, 2000; International Human Ge-
nome Sequencing Consortium, 2001; Aparicio et al.,
2002). In multicellular organisms, regulatory ele-
ments may be found upstream or downstream of the
gene, as well as in introns, and may be spread over
tens or even hundreds of kilobases (Larkin et al.,
1993; Bagga et al., 2000). In such cases, intergenic
sequences will contain only a part of the regulatory
elements necessary to control transcription.

In 1997, Fickett and Hatzigeorgiou (1997) thor-
oughly reviewed the existing promoter prediction
tools. The programs tested could not reliably identify
promoters in a genomic sequence, predicting too
many false positives, i.e. on average one false posi-

tive per 1 kb. One of the reasons why these programs
did not perform better was that they were focused on
“search by signal” using only one or two given fea-
tures, such as the presence of a TATA box or Initiator
element, but disregarded structural and more general
sequence-based features characteristic for promoter
elements (Fickett and Hatzigeorgiou, 1997). Newer
approaches do take into account more features; they
consider the higher order structure of a promoter
DNA sequence important for transcriptional regula-
tion and are based on the concept that they share
common content features, although polymerase II
promoters are quite different in terms of individual
organization.

On the one hand, sequence-based algorithms aim
at identifying regulatory regions and promoters
based on their sequence composition compared with
that of non-promoters. Among others, Scherf et al.
(2000) and Bajic et al. (2002) have used this approach,
in which the promoter context is described by oligo-
nucleotides (see below; Hutchinson, 1996; Wolfert-
stetter et al., 1996). On the other hand, promoter
regions might be distinguished from non-promoter
regions on the basis of specific structural properties.
These features are either directly or indirectly corre-
lated with the three-dimensional structure a pro-
moter region should adopt for gene expression in
vivo (Baldi et al., 1998; Pedersen et al., 1998, 1999;
Zhang, 1998; Fickett and Wasserman, 2000; Hannen-
halli and Levy, 2001; Ohler and Niemann, 2001). The
three-dimensional structure can depend on charac-
teristic physico-chemical profiles of Z-DNA (Ho et
al., 1986) associated with scaffold and matrix attach-
ment regions (Bentin and Nielsen, 2002), stability of
duplex DNA (Breslauer et al., 1986; Sugimoto et al.,
1996), DNA curvature (Bolshoy et al., 1991), bending
and curvature in B-DNA (Goodsell and Dickerson,
1994), DNA bending/stiffness (Sivolob and Khra-
punov, 1995), bendability (Brukner et al., 1995a,
1995b), propeller twist (El Hassan and Calladine,
1996), B-DNA twist (Gorin et al., 1995), and protein-
induced deformability (Crothers, 1998; Olson et al.,
1998). If eukaryotic promoters have such general
structural features independently of the genes they
control, looking for these should help in identifying
promoters in general. We will discuss two prediction
tools each representing a different approach to find
promoters.

PromoterInspector (Scherf et al., 2000) focuses on
the sequence context of a promoter and is based on
libraries of IUPAC words. A promoter will be repre-
sented by a model that is based on two groups of
IUPAC words: one characteristic for promoter se-
quences and one for non-promoter-related se-
quences. The IUPAC words that build the model are
directly computed from a set of training sequences.
New promoter sequences will be assigned to the
promoter class when the ratio between the numbers
of observed promoter-specific and non-promoter-

Figure 2. Flow chart of the computational approaches to detect
promoters and cis-regulatory elements. 1, Promoter prediction
through sequence context and structural features, e.g. CpG islands; 2,
CARE prediction through statistics on overrepresentation, such as word
counting; 3, CARE prediction through comparative genomics (phylo-
genetic footprinting); 4, CARE prediction through analysis of co-
expressed gene clusters, for instance by Gibbs sampling (for details,
see text); 5, Promoter prediction through the identification of CAREs;
and 6, CARE motif prediction through comparative analysis of expres-
sion profiles. These approaches are not described in the text.
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specific IUPAC words exceeds a certain threshold.
Instead of using only one model, the program con-
structs three different models that differentiate pro-
moters from exons, from introns, and from 3�-
untranslated regions (UTRs). A given sequence will
be assigned to the class of “promoters” only when all
models are in agreement with the decision. The spec-
ificity and significance of this program is highly de-
pendent on the given training sets that build up the
different models.

McPromoter (Ohler et al., 1999, 2001; Ohler, 2000)
is a content-based probabilistic promoter prediction
program that uses an integrative approach combin-
ing different structural features, such as bendability
(Brukner et al., 1995a, 1995b), propeller twist (El Has-
san and Calladine, 1996), and CpG content (Ante-
quera and Bird, 1999; Ioshikhes and Zhang, 2000).
Here, a promoter is represented as a sequence of
consecutive segments represented by joint likelihood
of DNA sequence and profiles of physical properties.
A profile for a physical property consists of the cor-
responding values from a chosen parameter, for ex-
ample the bendability, set along the given DNA se-
quence. These parameters usually refer to di- and
trinucleotides only, so the profiles are generally very
noisy and are, therefore, smoothed with a filter. The
program tries to divide a given sequence into one
region upstream and one downstream from the TSS.
A search by signal is used to distinguish the core
promoter from the other parts by looking for a TATA
and/or Initiator box separated by a spacer of approx-
imately 15 bp.

Although the prediction tools hitherto developed
can produce acceptable results for certain species,
none of them have been trained and adapted for
plants. For example, McPromoter is trained espe-
cially to analyze data of fruitfly (Drosophila melano-
gaster) and has been used in the Genome Annotation
Assessment project (Reese et al., 2000; Ohler, 2000;
Ohler et al., 2002); however, when applied to plant
genomes, it is not as reliable nor as specific. Here, the
same rule applies as with gene prediction: Systems
have to be trained and tailored for each species sep-
arately (Mathé et al., 2002). For the careful training of
systems, large amounts of reliable data are needed.
Although the availability of large sets of documented

promoter sequences is still problematic, we expect
this will improve in the near future. An extensive
overview of the available programs for the prediction
of promoters is given in Table I.

Promoters and CpG Islands

A structural feature that has proven useful in the
detection of promoters in the human genome are the
so-called CpG islands, i.e. regions that are rich in
CpGs, which are important because of their strong
link with gene regulation. In general, CpG-rich re-
gions are methylated and are associated with inactive
DNA often linked to heterochromatin, gene silenc-
ing, and pathogen control (Jeddeloh et al., 1998;
Kooter et al., 1999; Wolffe and Matzke, 1999; Meyer,
2000; Bender, 2001; Vaucheret and Fagard, 2001;
Richards and Elgin, 2002; Robertson, 2002). In verte-
brate genomes, 60% to 90% of all CpGs are normally
methylated. Gene-associated CpG islands are mostly
not methylated and are usually linked to transcrip-
tionally active DNA (Panstruga et al., 1998; Razin,
1998; Antequera and Bird, 1999; Jones, 1999; Ng and
Bird, 1999; Ashikawa, 2001; Li et al., 2001). Prediction
programs have been developed to search for the
presence of CpG islands in the 5� region of genes
(Ioshikhes and Zhang, 2000; Ohler et al., 2001; Davu-
luri et al., 2001; Down and Hubbard, 2002; Ponger
and Mouchiroud, 2002). However, so far, application
of such prediction programs to CpG islands in plants
is very limited. A more detailed analysis on CpG and
CpNpG islands in Arabidopsis is given below.

Although the functional significance of methyl-
ation appears to be similar in humans and plants
(Hershkovitz et al., 1990; Weber et al., 1990; Inamdar
et al., 1991; Meyer et al., 1994; Sorensen et al., 1996;
Rossi et al., 1997; Meza et al., 2002), in plants, DNA
methylation is mainly found on the cytosine of the di-
and trinucleotide CpG and CpNpG and on nonsym-
metrical trinucleotides (Pradhan et al., 1999; Cao et
al., 2000; Finnegan and Kovac, 2000; Lindroth et al.,
2001; Cao and Jacobsen, 2002). Many plant genomes
contain methylated cytosine in asymmetric sequence
contexts (CpHpH with H � A, T, or C). Only sym-
metrical methylation sites have been shown to be
maintained through the propagation of cells and

Table I Promoter prediction programs

Programs Web Sites References

McPromoter MM http://genes.mit.edu/McPromoter.html Ohler et al. (1999, 2001)
PromoterInspector http://www.gsf.de/biodv/ Scherf et al. (2000)

http://www.genomatix.de/cgi-bin/promoterinspector/promoterinspector.pl
FunSiteP http://transfac.gbf.de/programs/funsitep/fsp.html Kondrakhin et al. (1995)
Dragon Promoter Finder http://sdmc.lit.org.sg/promoter/promoter1_3/DPFV13.htm Bajic et al. (2002)
CONPRO http://stl.bioinformatics.med.umich.edu/conpro/ Lui and States (2002)
Core-promoter http://argon.cshl.org/genefinder/CPROMOTER/human.htm Zhang (1998a, 1998b)
WWW PromoterScan http://bimas.dcrt.nih.gov/molbio/proscan/ Prestridge (1995)
Promoter 2.0 http://www.cbs.dtu.dk/services/promoter/ Knudsen (1999)
NNPP http://www.fruitfly.org/seq_tools/promoter.html Waibel et al. (1989)
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methylation of a promoter CpG island has been pro-
posed to play an important role in gene silencing,
genomic imprinting, heterochromatin formation,
chromatin modification, vernalization, and parent-
dependent effects (Finnegan et al., 1998a, 2000; Jed-
deloh et al., 1998; Sturaro and Viotti, 2001). CpNpG
and CpG islands can occur together in the same
promoter region, but their role might be different
(Sorensen et al., 1996).

The Landscape of CpG/CpNpG Islands around the
TSS in the Arabidopsis Genome

CpG islands are characterized by a locally in-
creased GC percentage (GC%) compared with local
averages and by the presence of CpGs (and CpNpGs
in plants). The CpG dinucleotide, usually methylated
at the fifth position on the cytosine ring, is counter-
selected and found much less frequently than ex-
pected based on mononucleotide frequencies, for ex-
ample, 5-fold lower in genomes of vertebrates. This
depletion is believed to result from accidental muta-
tions by deamination of 5-methylcytosine to thymine
(Sved and Bird, 1990; Duret and Galtier, 2000). In
fact, CpG islands are considered evolutionary rem-
nants, because some promoters have somehow been
kept free of methylation in the course of evolution, so
the deamination process is hampered. Another expla-
nation could be that to function as part of an expres-
sion pattern, a selection pressure has to be exerted
and, hence, CpG islands stand out in the surrounding
regions.

The original pragmatic definition of a CpG island
in human sequences considers a GC% higher than 50
and a ratio between observed and expected (o/e)
occurrence of CG dinucleotides of 0.6 over a window
of 200 bp (Gardiner-Garden and Frommer, 1987).
Recently, these parameters have been upscaled to a
GC% �55, an o/e CpG �0.65, and a window size of
500 bp, because the previous parameters had been
found to overestimate (50-fold) the number of poten-
tial CpG islands (Takai and Jones, 2002). In animals,
approximately 40% of genes are expected to be asso-
ciated with CpG islands (Gardiner-Garden and
Frommer, 1987; Antequera and Bird, 1999). Actually,
this percentage might be too low because a total of
29,000 CpG islands had been estimated after the com-
pletion of the human genome sequence (Venter et al.,
2001). With the above-mentioned parameters, no
CpG islands are discovered in plants (Takai and
Jones, 2002; our results). However, DNA methylation
occurs in plants, and DNA methylases are even more
numerous and diverse in plants than in animals
(Finnegan and Kovac, 2000; Cao and Jacobsen, 2002).
Therefore, we attempted to define the parameters
that could possibly specify CpG and CpNpG islands
in Arabidopsis by exploring the compositional land-
scape around the TSS. To this end, we built a data set
of 5,025 gene sequences, designated ARAPROM, by

aligning the full-length cDNA sequences generated
by Seki et al. (2002) against the genomic sequence
(Arabidopsis Genome Initiative, 2000). Generally,
these sequences are 2.5 kb long, in which 2 kb rep-
resent intergenic sequences upstream from the trans-
lation start codon, and 500 bp are taken downstream.
Nevertheless, when the upstream neighbor gene lies
closer than 2 kb, then only the intergenic sequence is
kept, up to the predicted coding boundary of the
upstream gene. The genomic sequences in the ARA-
PROM data set include the promoter region, the 5�-
UTR, and the first introns and coding exons of each
individual gene.

A program in Perl was written that computes the
GC content and the o/e ratios of CpG and CpNpG
compared with local characteristics over a certain
window size. By applying this program to the ARA-
PROM data set to extract potential CpG/CpNpG
islands, we tested the effect of setting the cut-off
values for the GC content and the o/e CpG/CpNpG
ratios at different levels (39% to 52% with a stepwise
increase of 0.5% for the GC content; 0.6% to 2.0% for
the o/e CpG and CpNpG ratios with a stepwise
increase of 0.1. The results of this analysis with a
window size of 200 bp are shown graphically for
CpG and CpNpG islands (Figs. 3 and 4, respectively).
The first observation is that no CpG island is detected
with the cut-off parameters tuned for humans, except
for a few in coding exons. Both parameters, CG% and
o/e CpG, appear to influence strongly the number of
CpG islands detected and, depending on the position
in the genome, to affect differently the number of
CpGs found. That number found in the “promoter”
region sharply increases while the GC% cut-off de-

Figure 3. CpG island landscape exploration of Arabidopsis gene se-
quences over a range of CG content and CpG relative frequency. For
the various gene elements, on the z axis, the number of CpG islands
found in the ARAPROM gene set is plotted against the thresholds
defined on the x and y axes, being the CG percentage and the o/e CpG
ratio, respectively. The window size was 200 bp. Similar landscapes
are obtained for other window sizes (100 and 400 bp) and are avail-
able at http://www.psb.rug.ac.be/bioinformatics/.
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creases (Fig. 3). In contrast, for coding exons, the
landscape resembles more a plateau, with many CpG
islands found already at much higher GC% values.
Only at the lowest GC% values, more CpG islands
are predicted in the “promoter” region than in the
coding exons. In UTR exons, which show a landscape
similar to that of coding exons, fewer CpG islands are
found and introns, which show a landscape more
similar to that of the “promoter” region, show the
lowest number of CpG islands.

Regarding the CpNpG landscape (Fig. 4), the major
observation is that the overall number of islands lies
well below that of the CpG islands. In addition, the
same differences in landscape hold, as observed for
CpG islands between promoter (and introns), on the
one hand, and coding exons (and UTR exons), on
the other hand. Nevertheless, a striking difference is
that for CpNpGs, the o/e CpNpG threshold has to be
very low for those islands to be detected. In terms of
number of genes associated with CpG/CpNpG

islands, different parameter settings lead to very
different figures (Table II).

This preliminary in silico analysis shows that pre-
diction of promoter location based on the detection of
potential CpG/CpNpG islands in the Arabidopsis
genome is not straightforward. Nevertheless, be-
cause the landscape of CpG/CpNpG islands differs
considerably between promoters and introns on the
one side and exons (whether coding or not) on the
other, there is some hope that, based on such a clas-
sification, more sophisticated approaches can be de-
veloped to detect CpG and CpNpG islands in plants.

SIGNAL-BASED FEATURES

Regulatory Elements

As stated in the introduction, CAREs are short,
conserved motifs of approximately 5 to 20 nucleo-
tides. Detection of CAREs in the promoter is not
self-evident, because such short motifs are statisti-
cally expected to occur at random every few hundred
base pairs. Therefore, the main problem lies in dis-
criminating “true” from “false” regulatory elements
(Blanchette and Sinha, 2001). It is important to dis-
tinguish whether unknown or known motifs are
looked for. Compared with the detection of unknown
motifs, that of known motifs is fairly straightforward
and consists of the scanning of the DNA sequence
with a given motif, which can be found in specialized
databases such as TRANSFAC (Wingender et al.,
1996) and TFD (Ghosh, 2000) and in plant-specific
databases such as PLACE (Higo et al., 1999) and
PlantCARE (Lescot et al., 2002). An overview of the
different databases and motif search programs is
given in Tables III and IV, respectively. In contrast,
the detection of unknown CAREs in large regions of
DNA requires the development and use of novel
approaches and algorithms. Specifically, local multi-
ple alignment algorithms that identify regulatory
motifs have already been developed, which are
merely based on statistical properties. Such algo-
rithms search for DNA patterns that are more fre-
quently present in a set of “related” than “unrelated”
sequences. Therefore, the successful identification of

Figure 4. CpNpG island landscape exploration of Arabidopsis gene
sequences over a range of CG content and CpNpG relative fre-
quency. For the various gene elements, on the z axis, the number of
CpNpG islands found in the ARAPROM gene set is plotted against
the thresholds defined on the x and y axes, being the CG percentage
and the o/e CpNpG ratio, respectively. The window size was 200 bp.
Similar landscapes are obtained for other window sizes (100 and 400
bp) and are available at http://www.psb.rug.ac.be/bioinformatics/.

Table II. Percentage of genes (out of 5,025) containing CpG (top) or CpNpG (bottom) islands, for a
few different parameter settings

Additional values for other parameter settings can be found at http://www.psb.rug.ac.be/bioinformatics/.

CG%
Threshold

o/e
Threshold

With Island
in Promoter

With Island in
at Least One

Exona

With Island in
Promoter AND

in Exons

With Island in
Promoter

ONLY

With Island in
Exons ONLY

CpG
39 0.6 85.75 99.42 85.73 0.02 13.69
42 1.6 0.82 98.95 0.82 0.00 98.13

CpNpG
39 0.6 64.98 99.38 64.84 0.14 34.47
45 1.6 0.02 98.73 0.02 0.00 98.71

aRefer to exons either in coding regions or in the UTR region.
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regulatory DNA patterns depends on the size of the
promoter sequence and, to a great extent, on the
quality of the set of “related” sequences, i.e. genes
that are co-expressed or coregulated and are thus
expected to share similar conserved regulatory mo-
tifs. Such co-expressed genes are identified based on
high-throughput gene expression profiling experi-
ments. Alternatively, instead of coregulated genes,
intergenic regions of orthologous sequences can also
constitute a valuable data set for motif detection
(Duret and Bucher, 1997). When selection pressure
tends to conserve DNA patterns in the intergenic
regions of homologous genes in related species, such
DNA patterns can be expected to be of biological
relevance and to reflect a conserved ancestral mode
of regulation.

Regulatory Elements in Coregulated Genes

Co-expressed genes can be identified through tran-
script profiling techniques, such as microarrays
(Brown and Botstein, 1999; Lipshutz et al., 1999;
Southern, 2001) and cDNA-AFLP (Vos et al., 1995;
Breyne et al., 2002). These high-throughput profiling
techniques allow the expression level of hundreds or
thousands of genes to be monitored simultaneously
under the conditions tested. For each gene, an ex-
pression profile is obtained that reflects its dynamic
behavior during a time-course experiment or its be-

havior under distinct conditions. Genes with similar
expression profiles are considered “co-expressed”.
To identify sets of co-expressed genes from high-
throughput expression data, clustering techniques
are required (Heyer et al., 1999; Jensen and Knudsen,
2000). In addition to standard cluster algorithms,
such as hierarchical clustering, K-means, and self-
organizing maps, more advanced algorithms are also
being developed, which are specifically fine-tuned
for biological applications (for a review, see Moreau
et al., 2002).

Because co-expressed genes tend to behave simi-
larly, they are expected to be coregulated. Under the
simplifying assumption that this coregulation occurs
at the transcriptional level, co-expressed genes
should contain similar cis-regulatory elements in
their promoter regions. As a consequence, these yet
unknown cis-regulatory elements will be statistically
overrepresented in the intergenic regions of the co-
expressed genes in comparison with their frequent
occurrence in a set of unrelated sequences. This over-
representation constitutes the general principle on
which motif detection algorithms is based.

Regulatory Elements in Orthologs

Usually, genes are part of more extensive gene
families that have originated through both speciation
and duplication events. Homologous genes in dis-

Table IV. Motif search programs

Programs Web Sites References

PLACE Signal Scan http://www.dna.affrc.go.jp/htdocs/PLACE/signalup.html Higo et al. (1999)
ScanACE http://arep.med.harvard.edu/mrnadata/mrnasoft.html Roth et al. (1998)
HMMER http://bioweb.pasteur.fr/seqanal/interfaces/hmmsearch.htm
Tess http://www.cbil.upenn.edu/tess/
PatSearch http://transfac.gbf.de/cgi-bin/patSearch/patsearch.pl Pesole et al. (2000)
SignalScan http://bimas.dcrt.nih.gov/molbio/signal/

http://biosci.cbs.umn.edu/software/software.html
ftp://molbio.cbs.umn.edu/pub/sigscan/ Prestridge (1991)

AliBaba2 http://www.alibaba2.com/ Grabe (2002)
TFBind http://tfbind.ims.u-tokyo.ac.jp/ Tsunoda and Takagi (1998)
MatInspector http://www.gsf.de/biodv/matinspector.html

http://www.genomatix.de/matinspector/
http://www.genomatix.de/software_services/software/MatInspector/

matinspector.html
Werner (2000)

Table III. Databases of cis-regulatory elements and promoter sequences

Databases Description Web Sites References

TRANSFAC Transcription factor database http://transfac.gbf.de/TRANSFAC/ Wingender et al. (2000)
TFD Transcription factor database http://www.tfdg.com/Pages/tfddata.html Ghosh (2000)
TRRD Transcription regulatory region database http://www.mgs.bionet.nsc.ru/mgs/dbases/trrd4/ Kolchanov et al. (2000)
PlantCARE Plant cis-Acting regulatory elements http://sphinx.rug.ac.be:8080/PlantCARE/ Lescot et al. (2002)
PLACE Plant cis-acting regulatory elements http://www.dna.affrc.go.jp/htdocs/PLACE/ Higo et al. (1999)
RegulonDB Database on transcriptional regulation in

Escherichia coli
http://www.cifn.unam.mx/Computational_

Genomics/regulondb/
Salgado et al. (2001)

SCPD Promoter database of Saccharomyces
cerevisiae

http://cgsigma.cshl.org/jian Zhu and Zhang (1999)

EPD Eukaryotic promoter database http://www.epd.isb-sib.ch/ Praz et al. (2002)
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tinct species are called orthologs, whereas paralogs
refer to homologous genes that are found in the same
genome and have been created through gene dupli-
cation (Mindell and Meyer, 2001). Regarding pro-
moter analysis and study of regulatory elements, it is
important to discriminate between these two types of
homologous relationships. True orthologs have usu-
ally retained very similar functions in distinct spe-
cies, whereas this is not necessarily true for paralogs.
In many cases, paralogs have only been conserved if
they have acquired different or complementary func-
tions. Hughes (1994) and Force et al. (1999) argued
that when a gene with multiple functions is dupli-
cated, the duplicates are only redundant for as long
as each gene is capable of performing all ancestral
roles. When one mutated duplicate is prevented from
carrying out one of these ancestral roles, the other
duplicate is no longer redundant. According to the
“duplication degeneration complementation” model
of Force et al. (1999), degenerative mutations pre-
serve rather than destroy duplicated genes, but also
change their functions or, at least, restrict them to
become more specialized. Duplicated genes can have
different expression domains (i.e. the tissue in which
both genes are expressed might have changed as well
as the time of expression) because of changes in their
regulatory elements in the promoter region (Force et
al., 1999; Altschmied et al., 2002; Prince and Pickett,
2002). Therefore, promoter regions of true orthologs
probably contain similar regulatory motifs, which
may no longer be true for paralogs.

Motif Prediction

To conceive a general method that can detect reg-
ulatory motifs is a great challenge because of both the
complexity and flexibility of the regulatory mecha-
nisms (see the introduction). An important distinc-
tion between the different approaches used thus far
to detect regulatory motifs lies in the representation
of the motif, i.e. the TF-binding site. The simplest
description for a motif is a string of characters (A, C,
G, and T), extended with the 11 IUPAC characters
that represent partly unspecified or ambiguous nu-
cleotides, and is used in the string-based approaches,
such as word counting. A more sophisticated de-
scription is to represent a given motif by describing it
in a probabilistic manner in which a certain likeli-
hood is assessed for each nucleotide at a given posi-
tion in the motif. An example of a probabilistic rep-
resentation is the position-weight matrix, where each
column corresponds to a position in the aligned bind-
ing sites and each row to a nucleotide, as shown in
Figure 5. The cells of these matrices contain a number
indicating the probability to find a given nucleotide
at that particular position. Alternatives to describe
motifs in a probabilistic manner are the hidden
Markov models (Jarmer et al., 2001) or neural net-
works (Workman and Stormo, 2000). Software tools
for motif prediction are listed in Table V.

String-Based Motif Prediction

Counting all of the possible words that may occur
across the different promoter sequences is one of the
simplest approaches to find CAREs in a set of pro-
moters. Among word-counting methods, enumera-
tive and suffix-tree approaches can be distinguished,
the latter being an optimization of the former. Both
methods are string based: The DNA sequence is con-
sidered as text in which oligonucleotides are repre-
sented as words or strings. For a given set of pro-
moter sequences, the frequency of each possible
word of a defined length is computed (Hutchinson,
1996; Wolfertstetter et al., 1996; Brāzma et al., 1998;
van Helden et al., 1998; Vanet et al., 1999; Busse-
maker et al., 2000a, 2000b; Sinha and Tompa, 2000;
Hampson et al., 2002). The difference between the
two representations is that the enumerative approach
will search for each word in the sequence and calcu-
late its frequency, whereas the suffix-tree approach
will only look for a certain subset. The suffix tree is
used to represent each word together with all of its
subwords (or suffixes) so that each word can be
reconstructed by going down the tree. For example,
when a certain suffix (for instance, ACCT) is not
found in the data set, none of the words containing
ACCT will be counted anymore (Sagot and Myers,
1998; Marsan and Sagot, 2000). As a consequence, the
computational time needed to count words can be
highly reduced, which allows the analysis of larger
data sets.

Once the frequencies of different words are calcu-
lated, the words that are likely to be a “true” regu-
latory motif have to be differentiated from those that

Figure 5. Schematic representation of a set of intergenic sequences
upstream of the ATG translation initiation site, with a common motif
shown as black boxes. On the basis of such a data set, “words” can
be counted and statistically evaluated for their overrepresentation.
On the other hand, the “putative” motifs can be aligned and frequen-
cies of occurrence of each nucleotide can be calculated for each
column within the generated alignment, producing a position weight
matrix. See text for details.
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are not. Therefore, in each of these word-counting
methods, the number of occurrences of a word needs
to be compared with the expected frequency in a set
of non-related sequences, represented by a back-
ground model, which is used to obtain an expected
probability. The simplest way to build a background
model is by creating a set of randomly generated
sequences, based on the single nucleotide composi-
tion of the submitted sequence. More sophisticated
ways to generate a background model are based on
Markov chain statistics (Schbath et al., 1995; Schbath,
1997, 2000; van Helden et al., 2000a; Thijs et al., 2001),
a lexicon (Bussemaker et al., 2000a, 2000b), or by
simulations in which words are randomly reassem-
bled to rebuild a set of sequences (Coward, 1999;
Marsan and Sagot, 2000). The choice of the back-
ground model can be critical. In our experience, rep-
resentations closest to real biological sequences or a
set of well-chosen biological sequences appear to be
the most reliable. The statistical methods to evaluate
the significance of an observed versus expected fre-
quency and to conclude whether a word is overrep-
resented or not are, for example, binomial probability
(van Helden et al., 1998), composed Poisson law
(Robin and Schbath, 2001), z-score (Kleffe and
Borodovsky, 1992; van Helden et al., 2000a), and �2

test (Vanet et al., 1999). Although the latter is a very
simple statistical method to evaluate unknown mo-
tifs, its merits in previous studies has been proven in
looking for regulatory elements in the yeast genome
(van Helden et al., 1998; Sinha and Tompa, 2002).

Probabilistic Motif Detection

Probabilistic motif detection aims at constructing a
multiple alignment by locally aligning small con-
served regions in a set of unaligned sequences. Here,
we will focus on the matrix-based approaches to
illustrate probabilistic motif detection procedures.
All methods start from a random motif model, rep-
resented as a weight matrix and altered through a

series of iterations by machine-learning algorithms
that are aimed at finding the optimal score. The
process of optimizing the score for a local alignment
already tends to converge toward conserved motifs
that occur frequently in the data set. The more ad-
vanced algorithms incorporate a background model
to compensate for given motifs occurring at high
frequencies because of compositions similar to those
of the non-conserved parts of the sequence (the
“background”). A motif in which the average nucle-
otide composition differs strongly from the back-
ground will be assigned a higher score. Implementa-
tions differ from each other in the way the
background is represented, in how the score is cal-
culated, and in how the optimization is performed.
For motif detection algorithms that describe the motif
by a weight matrix, expectation maximization and its
stochastic variant, Gibbs sampling, are often used for
optimization strategies.

The program CONSENSUS was one of the first
algorithms that represented a motif by a weight ma-
trix (Hertz et al., 1990; Hertz and Stormo, 1996, 1999).
The algorithm starts with a first sequence from the
submitted data set and creates a weight matrix for
each possible word of user-specified length. Subse-
quently, it aligns each possible word from the next
sequence with each weight matrix. The obtained
alignments are scored for their information content,
and those with the highest score are retained for the
next iteration. This process is reiterated until all se-
quences have contributed to the alignment and weight
matrix. CONSENSUS was used for example in the
identification of CAREs involved in the heat shock
response in Caenorhabditis elegans (GuhaThakurta and
Stormo, 2001).

The expectation-maximization (EM) method (Stormo,
1988, 1990; Stormo and Hartzell, 1989; Lawrence and
Reilly, 1990; Cardon and Stormo, 1992; Bailey and
Elkan, 1995) is a two-step iterative procedure that
aims at obtaining, for each possible motif position,
the likelihood that the motif located at that position

Table V. Motif prediction programs

Programs Web Sites References

RSA-tools http://rsat.ulb.ac.be/rsat/ van Helden et al. (2000)
SMILE http://bioweb.pasteur.fr/seqanal/interfaces/smile2.html Marsan and Sagot (2000)
R’MES http://www-mig.jouy.inra.fr/ssb/rmes/ Schbath (1997)
CONSENSUS http://ural.wustl.edu/�jhc1/consensus/html/Html/main.html Hertz and Stormo (1999)
MEME http://meme.sdsc.edu/meme/website/ Bailey and Elkan (1995)
Gibbs sampling http://bayesweb.wadsworth.org/gibbs/gibbs.html Lawrence et al. (1993)

http://rsat.ulb.ac.be/rsat/ Neuwald et al. (1995)
Motif Sampler http://www.esat.kuleuven.ac.be/�thijs/Work/MotifSampler.html Thijs et al. (2002)
AlignACE http://atlas.med.harvard.edu/cgi-bin/alignace.pl Roth et al. (1998)
Improbizer http://www.cse.ucsc.edu/�kent/improbizer/improbizer.html
YEBIS http://www-btls.jst.go.jp/MotifExtraction/
BioProspector http://bioprospector.stanford.edu/ Liu et al. (2001)
Footprinter 2.0 http://abstract.cs.washington.edu/�blanchem/FootPrinterWeb/

FootPrinterInput.pl
Blanchette and Tompa (2002)

Co-Bind http://ural.wustl.edu/�dg/co-bind.html GuhaThakurta and Stormo (2001)
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corresponds to the current motif model (weight ma-
trix). In the maximization step, the parameters that
optimize the likelihood are estimated. Once the motif
positions are known, the observed frequencies of the
nucleotides at each motif position correspond to the
maximum-likelihood estimates of the parameters of
the motif model. On the basis of the updated proba-
bilities of all motif positions of the previous step, the
model parameters are re-estimated. For motif find-
ing, EM simultaneously computes the alignment po-
sitions, the motif weight matrix, and the background
model that maximize the likelihood of the sequence.
In the original implementation (Lawrence and Reilly,
1990), the “exactly one occurrence” of the motif in
each sequence was assumed. This assumption is a
problem because in a cluster of co-expressed genes,
sequences might be present without a (or the) motif.
Because EM-based motif detection algorithms are de-
terministic, results for particular queries with similar
parameter settings and initializations will be identi-
cal. A drawback of the method is that results depend
strongly on the initial conditions and often converge
into local optima. One of the most widely used EM
applications is the program MEME (Bailey and El-
kan, 1995).

Gibbs sampling-based strategies have originally
been developed to detect protein motifs but have
been adapted later on to handle DNA sequences
(Neuwald et al., 1995; Roth et al., 1998; Hughes et al.,
2000; Liu et al., 2001; Thijs et al., 2002a). Gibbs sam-
pling is a stochastic variant of EM (Lawrence et al.,
1993; Neuwald et al., 1995). Because of the stochastic
nature of the Gibbs sampling approach, an initially
detected motif can be replaced by another one that
has a higher score, thus allowing escape from local
optima. This feature is the reason why the output of
a stochastic motif detection algorithm results in dif-
ferent outputs, even with the same input and param-
eter settings. However, the more pronounced the
optimal solution is in a given data set, the more a
motif is overrepresented, and the stronger its conser-
vation, the more frequently it will be retrieved over
different runs. Statistics on the outcome of multiple
runs of a stochastic implementation can facilitate in-
terpretation of the results.

Adaptative quality-based clustering (De Smet et al.,
2002) combined with Motif Sampler based on Gibbs
sampling (Thijs et al., 2002a) was applied to the data
published by Reymond et al. (2000) in which gene
expression was studied in response to mechanical
wounding in Arabidopsis leaves. After clustering,
the four most populated clusters (�3 genes) of co-
expressed genes were selected, and the upstream
sequences were analyzed with the Motif Sampler to
discover common regulatory elements. To avoid the
problem of local optima, each data set was submitted
10 times to the Motif Sampler with the same param-
eters. The output of these 10 runs was compiled
taking into account the individual scores of each

motif and the order in which they were found. Sub-
sequently, the consensus of the motifs found were
compared with regulatory sites described in the
PlantCARE database (Lescot et al., 2002). From all of
the high-ranking motifs returned by the Motif Sam-
pler, several were similar to known cis-regulatory
elements involved in plant defense (methyl
jasmonate-, abscisic acid-, or elicitor-responsive
elements) or in light responsiveness. Among these
elements, a 12-bp motif was found composed of two
sites involved in methyl jasmonate responsiveness.
These motifs have been described previously in the
upstream sequence of the lipoxygenase isoenzyme 1
gene of barley, where they were separated by 15 bp
(Thijs et al., 2002a).

Motif Prediction by Phylogenetic Footprinting

The procedure that identifies regulatory elements
based on a set of orthologous sequences is named
phylogenetic footprinting (Koop, 1995; Duret and
Bucher, 1997; Wasserman et al., 2000). Phylogenetic
footprinting has proven its usefulness to detect
CAREs in the human genome, based on the pairwise
comparison between human and mouse (Hardison,
2000; Wasserman et al., 2000; Krivan and Wasserman,
2001; Dermitzakis and Clark, 2002; Jegga et al., 2002).
However, producing a reliable data set for phyloge-
netic footprinting is not self-evident. When the over-
all degree of conservation in intergenic sequences
between two homologs is too high, conserved motifs
will not be detected. At the other extreme, when
homologs are compared from species that are too
distantly related, the intergenic regions may no
longer show any similarity (Tompa, 2001). The ideal
composition of a data set can only be derived in
retrospect, implying that an algorithm suited for
phylogenetic footprinting should ideally identify and
discard (or counter-weigh) sequences that are too
similar and cope with the presence of sequences that
do not contain the conserved motif. Furthermore, the
phylogenetic distance between organisms should be
taken into account in the weighting schemes of the
algorithm. As stated before, closely related sequences
are less useful for identifying a motif because of their
high overall conservation, complicating the search
for functionally conserved regions. Alignment algo-
rithms, such as ClustalW (Thompson et al., 1994) and
Bayes-Block Aligner (Zhu et al., 1998), have proven
useful for phylogenetic footprinting, but the length of
the conserved motif is often too small compared with
the length of the non-conserved part of the sequence;
therefore, multiple sequence alignment will fail.

A promising novel algorithm has recently been
published that identifies the most conserved motifs
among the input sequences as measured by a parsi-
mony score on the underlying phylogenetic tree
(Blanchette et al., 2002; Blanchette and Tompa, 2002).
In general, the algorithm selects motifs that are char-
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acterized by a minimal number of mismatches and
are conserved over long evolutionary distances. Fur-
thermore, the motifs should not have undergone in-
dependent losses in multiple branches. In other
words, the motif should be present in the sequences
of subsequent taxa along a branch. The algorithm,
based on dynamic programming, proceeds from the
leaves of the phylogenetic tree to its root and seeks
for motifs of a user-defined length with a minimum
number of mismatches. Moreover, the algorithm al-
lows a higher number of mismatches for those se-
quences that span a greater evolutionary distance.
Motifs that are lost along a branch of the tree are
assigned an additional cost because it is assumed that
multiple independent losses are unlikely in evolu-
tion. To compensate for spurious hits, statistical sig-
nificance is calculated based on a random set of
sequences in which no motifs occur. Phylogenetic
footprinting for the detection of CAREs is steadily
gaining importance (Koch et al., 2001, 2002; Quiros et
al., 2001; Colinas et al., 2002) and will continue to do
so when more plant genomic sequences will become
available. To give just one example, using phyloge-
netic footprinting, Tompa (2001) was able to predict
several new binding sites in the 5�-UTR of plant
genes coding for the small subunit of ribulose-1,5-
bisphosphate carboxylase.

Improvements and Fine Tuning of Motif
Detection Algorithms

The most obvious reason why motif detection al-
gorithms fail is because of their sensitivity to noise.
All parts of a sequence that do not contain the motif
constitute noise in the context of motif detection.
Moreover, because sets of related sequences are usu-
ally based on other predictive tools, for instance clus-
tering, they are expected to contain sequences with-
out any shared motif. A decreasing signal-to-noise
ratio exacerbates the identification of statistically
overrepresented motifs and increases the chance of
finding false positives. Probabilistic motif detection
methods have been improved considerably to cope
with a large noise level. Current implementations,
such as AlignACE (Hughes et al., 2000) and MEME
(Bailey and Elkan, 1995), usually take into account
that some sequences lack a shared motif and allow
the influence of such sequences to be discarded by
estimating the motif model parameters. The more
advanced implementations derive the optimal num-
ber of motif occurrences in each sequence from the
data. Modeling the background with a more complex
sequence model contributes also considerably to the
robustness of the algorithm in the presence of noise
(Liu et al., 2001, 2002; Thijs et al., 2001, 2002a). Be-
sides making more robust algorithms that facilitate
discrimination between true and false positives, ad-
vanced scoring schemes are being developed that
assign a statistical significance to the motifs detected,

i.e. that describe the probability of observing a motif
with a similar score in a set of unrelated sequences.

Because regulatory motifs, in particular in higher
eukaryotes, are concentrated in modules, current re-
search is focusing toward adapting motif detection
algorithms to retrieve dyads, i.e. motifs spaced by a
fixed or variable gap. Within the enumerative statis-
tical methods, Sinha and Tompa (2000) created an
algorithm that searches for motifs with a gap of
variable size between them. The algorithm devel-
oped by van Helden et al. (2000) enables a search for
dyads with a fixed number of base pairs between 3
and 20.

Vanet et al. (2000) and Marsan and Sagot (2000)
developed approaches that look for two motifs sep-
arated by a fixed number of nucleotides by using the
suffix-tree method. Cardon and Stormo (1992)
adapted their EM-based algorithm to detect dyads
with variable gap size. In their Gibbs sampling-based
implementation, Liu et al. (2001) have included an
extension that allows searching for dyads, whereas
the program Co-bind of GuhaThakurta and Stormo
(2001) was specifically created to identify two regu-
latory sites of gap-separated cooperative TFs.

The need for extensive parameter fine tuning com-
plicates nonexpert use of most of the motif detection
approaches described above. Novel implementations
of motif detection algorithms tackle this problem by
estimating the optimal parameter settings themselves,
hence, minimizing the number of user-defined param-
eters. An example of such a user-defined parameter is
the motif length. Because the motif length is generally
unknown in advance, it is not obvious to choose the
parameter setting that results in the true motif. Some
algorithms compute the optimal motif length; for in-
stance, Pattern assembly (van Helden et al., 2000b)
groups overlapping motifs to build a longer motif
consensus. The implementation of AlignAce deter-
mines the optimal motif length from the data (Roth et
al., 1998; Hughes et al., 2000). Manually generating a
suitable data set (see above) that can be used readily
for motif detection can be a tedious job. Therefore,
some on-line implementations have been developed,
such as the INCLUSIve (Thijs et al., 2002b; Engelen et
al., 2003) Web site that offers a pipeline to combine
microarray preprocessing, the adaptive quality-based
clustering, automatic sequence retrieval, and motif de-
tection based on Gibbs sampling (Motif Sampler). A
tool similar to INCLUSIve, called expression profiler
(Brāzma et al., 1998), is provided by the European
Bioinformatics Institute. “Regulatory Sequence Anal-
ysis tools” (van Helden et al., 1998) proposes a word
counting-based set of tools to analyze a set of inter-
genic sequences.

CONCLUSIONS

Promoters are very complex structures, defined by
many different structural features. The actual regu-
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latory elements are usually very short, which highly
complicates their unambiguous identification. As a
consequence, the in silico prediction of promoters
and regulatory motifs is not straightforward. In ad-
dition, our knowledge of transcription regulation in
general and organism-specific expression regulation
in particular, is still very limited. Especially for
plants, solid “intrinsic” genomic data are still needed
that can be integrated into existing prediction tools.
In this respect, we have started with the analysis of
CpG and CpNpG islands, known to be often associ-
ated with promoters. Although several implementa-
tions for the detection of such “islands” in verte-
brates have been described (Ioshikhes and Zhang,
2000), parameter settings used to detect these islands
in animals cannot be used to find similar islands in
the Arabidopsis genome. Software and parameters
have to be adapted to the species under investigation.
Moreover, even if a reliable tool were available for
the detection of CpG and CpNpG islands associated
with plant promoters, it remains to be proven
whether these islands would be biologically func-
tional and relevant. In addition to a lack of “intrinsic”
genomic data, experimental data on promoters are
also scarce, because in general, thorough analysis of
even one single promoter is very time consuming.
Furthermore, the technology is still missing for ex-
haustive knowledge of gene expression or for under-
standing the mechanisms behind it. Therefore, for
now and despite its many shortcomings, in silico
analysis seems to be a privileged alternative to ana-
lyze simultaneously a great number of regulatory
elements or promoter regions. Experimental testing
of these in silico predictions may be a manner to
increase knowledge on promoters more quickly and
at a lower cost, especially for plants.
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