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Disruption of specific components of the host cytoskeleton has been reported for several viruses and is
thought to be beneficial for viral replication and spread. Our previous work demonstrated that infection of
swine kidney (SK-6) cells with pseudorabies virus (PRV), a swine alphaherpesvirus, induced actin stress fiber
breakdown. In the present study, using several PRV deletion mutants, we found that the US3 serine/threonine
(S/T) protein kinase is involved in breakdown of actin stress fibers in different PRV-infected cell lines. Further,
by transfection assays, we showed that PRV US3 itself, in the absence of other viral proteins, is able to trigger
actin stress fiber breakdown when it is localized in sufficient amounts in the nucleus.

Viruses invade eukaryotic cells and complete their replica-
tion cycle by utilizing the cellular machinery of their host.
Disassembly of specific components of the host cell cytoskele-
ton has been suggested to be important for efficient replication
and spread of several viruses (19, 20, 29, 34). However, the
viral proteins responsible for these phenomena remain largely
unknown.

Different alphaherpesviruses can destroy cytoskeletal ele-
ments on infection of cultured cells. Almost two decades ago,
Bedows et al. demonstrated disruption of actin filaments in
herpes simplex virus type 1 (HSV-1)-infected Vero cells (4).
More recent studies by Avitabile et al. suggested that HSV-1
infection does not induce alterations within the actin cytoskel-
eton of Vero or HEp-2 cells but, rather, causes disassembly of
the microtubule network, which may be necessary for fragmen-
tation and dispersal of the Golgi apparatus (2). Cultured Vero
cells inoculated with equine herpesvirus 1, another alphaher-
pesvirus, also showed depolymerization of microtubule bun-
dles (35).

Recently, we have shown that pseudorabies virus (PRV), a
swine alphaherpesvirus, induces actin stress fiber disassembly
in cultured swine kidney (SK-6) cells, from 6 h postinoculation
(p.i.) onward, without altering the microtubule network (31).
To date, the PRV protein(s) responsible for actin breakdown
has not been identified. At least two hypotheses can be put
forward on how PRV disrupts actin filaments upon infection.
First, the PRV virion host shutoff (vhs) protein may be in-
volved. PRV vhs has significant amino acid sequence similarity
to its HSV-1 and bovine herpesvirus 1 (BHV-1) counterparts,
and, although the HSV-1 and BHV-1 vhs proteins have not
been reported to induce actin stress fiber disruption, they both
are capable of downregulating several mRNAs, including actin
mRNA (5, 13, 17). Second, viral serine/threonine (S/T) protein
kinases may be involved in actin stress fiber breakdown. Viral

S/T kinases have significant homology to cellular S/T kinases,
some of which make part of actin stress fiber-controlling sig-
naling pathways (28). The PRV genome encodes three puta-
tive S/T protein kinases: US3, UL13, and the large subunit of
the ribonucleotide reductase (RR) protein, which are conserved
among the alphaherpesviruses (10, 12, 32, 33, 38). Interest-
ingly, the US3 and the RR large subunit orthologues in HSV-2
act on actin-controlling signaling pathways (Cdc42/Rac and
Ras/MEK/MAPK pathway, respectively) (25, 30), and, for
HSV-2 US3, transfection studies with HEp-2 cells have shown
that this S/T protein kinase on its own can induce actin stress
fiber breakdown (25).

To test whether the PRV vhs protein or any of the three
putative PRV S/T protein kinases are involved in PRV-in-
duced disruption of filamentous actin, we investigated the actin
stress fiber organization in mock-infected and NIA3 wild-type-,
NIA3 vhs null-, NIA3 US3 null-, NIA3 UL13 null-, and NIA3
RR null-infected SK-6 cells at 8 h p.i. at a multiplicity of
infection (MOI) of 10. All virus strains were described previ-
ously (3, 9, 10, 11, 32).

At 8 h p.i., the cells were fixed with 3% paraformaldehyde
and permeabilized with 0.1% Triton X-100. Subsequently,
PRV proteins and actin filaments were stained by incubat-
ing the cells for 1 h at 37°C with fluorescein isothiocyanate
(FITC)-conjugated polyclonal PRV-specific antibodies (26)
and phalloidin-Texas Red (Molecular Probes, Eugene, Oreg.),
respectively. Finally, stained SK-6 cells were mounted and an-
alyzed by confocal microscopy (TCS SP2 laser-scanning spec-
tral confocal system [Leica Microsystems, Heidelberg, Germa-
ny]). Figure 1 shows that approximately 89.0% � 7.6% of
mock-infected SK-6 cells possessed intact actin stress fibers
while only 13.5% � 3.1% of NIA3 wild-type-infected SK-6
cells retained intact actin stress fibers. Furthermore, actin
stress fiber disassembly observed in SK-6 cells inoculated with
the NIA3 vhs null strain (14.2% � 1.6% of the cells retained
fibers), the NIA3 UL13 null strain (17.3% � 1.5% of the cells
retained fibers) or the NIA3 RR null strain (16.2% � 2.3% of
the cells retained fibers) did not differ substantially from the
actin stress fiber breakdown observed in NIA3 wild-type-
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infected SK-6 cells. In contrast, 80.2% � 4.8% of SK-6 cells
inoculated with an NIA3 US3 null strain still possessed intact
actin stress fibers at 8 h p.i. (Fig. 1). These data indicate that
the PRV US3 protein, but not the vhs, UL13, or RR protein,
is involved in breakdown of actin stress fibers in PRV-infected
SK-6 cells.

PRV US3 null virus was constructed by insertion of a 20-mer
oligonucleotide, containing TAG translational stop codons in
all reading frames, in the 5� part of the US3 open reading
frame (ORF) (9, 32). This NIA3 wild-type-derived mutant
strain displays cell type-dependent growth retardation (22). To
investigate whether the lack of actin stress fiber breakdown in
PRV US3 null-infected cells may be (i) cell type dependent,
and/or (ii) due to slower growth of the PRV US3 null virus, we
examined the actin architecture and the extracellular virus
titers in different cell types at different time points p.i. To this
end, monolayers of SK-6 cells as well as monolayers of another
swine cell line, swine testicle (ST) cells, and a rabbit cell line,
rabbit kidney (RK13) cells, were inoculated (at an MOI of 10)
with the NIA3 wild-type, NIA3 US3 null, and NIA3 US3 res-

cue (21) strains. Extracellular virus titers were determined at
different time points (1, 6, 9, 12, and 24 h p.i.). Figure 2C shows
that the PRV US3 null virus displays a 2- to 3-h delay in growth
kinetics in all three cell lines tested. To determine the actin
stress fiber architecture, cells were paraformaldehyde fixed at 8
or 12 h p.i., permeabilized, stained for both PRV viral antigens
and actin filaments, and analyzed by confocal microscopy. Fig-
ure 2 shows that US3-mediated actin stress fiber disassembly
occurs in all three cell types tested and that the 2- to 3-h delay
in growth kinetics of the US3 null virus is not responsible for
the observed differences in actin stress fiber disassembly, since,
for all three cell types, actin stress fiber breakdown was obvious
at 8 h as well as 12 h p.i. in PRV wild-type- and PRV US3
rescue strain-infected cells but not in PRV US3 null strain-
infected cells.

Further, we used Western blot analysis to investigate wheth-
er PRV US3 affects only actin architecture or also the total
amount of cellular actin. We found that the total amounts of
cellular actin (42 kDa) were similar in PRV wild type- and
PRV US3 null strain-infected SK-6 cells (data not shown).

FIG. 1. Actin architecture of SK-6 cells infected with different PRV strains. Confluent monolayers of SK-6 cells were mock infected or infected
at an MOI of 10 with an NIA3 wild-type, NIA3 vhs null, NIA3 US3 null, NIA3 UL13 null, or NIA3 RR null strain. At 8 h p.i., cells were
paraformaldehyde fixed, permeabilized, and stained with FITC-conjugated polyclonal PRV-specific antibodies and phalloidin-Texas Red to
visualize PRV antigens (left panels) and actin filaments (middle panels), respectively. The right panels show the percentage of cells with intact actin
stress fibers (200 cells were scored). Bar, 10 �m.
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In PRV-infected cells, as a result of alternative splicing and
the presence of multiple translation initiation codons (ATG
codons), the US3 ORF is transcribed and translated into a US3
long isoform (less than 5% of the US3 protein) of 53 kDa and

an abundant US3 short isoform (greater than 95% of the US3
protein) of 41 kDa (32). The two US3 isoforms share S/T
protein kinase domains but have a divergent N terminus. To
investigate whether one or both of the PRV US3 S/T protein

FIG. 2. (A and B) Actin architecture of NIA3 wild-type-strain (wt)-, NIA3 US3 null strain-, or NIA3 US3 rescue strain-infected SK-6, ST, and
RK13 cells at 8 h p.i. (A) and 12 h p.i. (B). At the indicated time points p.i., SK-6, ST, and RK13 cells were paraformaldehyde fixed, permeabilized,
and stained with FITC-conjugated polyclonal PRV-specific antibodies and phalloidin-Texas Red to visualize PRV antigens and actin filaments,
respectively. Bar, 10 �m. (C) One-step growth curves for NIA3 wild-type (solid line), NIA3 US3 null (dashed line), and NIA3 US3 rescue (dot-dash
line) viruses in SK-6, ST, and RK13 cells.
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kinase isoforms on their own (in the absence of other PRV
proteins) are able to trigger stress fiber breakdown, we per-
formed transfection assays. To do this, two US3 expression
vectors, one encoding the US3 long isoform (pBud/CAT/
US3long) and one encoding the US3 short isoform (pBud/
CAT/US3short), were constructed as follows. First, the se-
quence encoding the US3 long isoform was PCR amplified
with Pfx-Platinum polymerase (Invitrogen, Groningen, The
Netherlands) by use of the forward primer 5�CACCTGTGG
GCCAGCGCGTAGTA3� and the reverse primer 5�CACTTC
ATTGTTGAGCTGTGGAGAT3�, in the presence of 4% di-
methyl sulfoxide. The PCR amplification consisted of an initial
10-min denaturation step at 95°C, followed by 35 cycles of
denaturation (95°C for 45 s), annealing (59°C for 45 s), and
extension (73°C for 1 min 30 s), and then by one final 10-min
extension step. The PCR-amplified US3 long isoform-encod-
ing sequence (1,366 bp) was cloned into pBudCE4.1/CAT/
LacZ (Invitrogen) from which the lacZ reporter gene was
excised, to create pBud/CAT/US3long. Subsequently, plasmid
pBud/CAT/US3short was generated as follows. pBud/CAT/
US3long was digested with HindIII and Eco47III, releasing a
229-bp fragment, blunt ended using T4 DNA polymerase (In-
vitrogen), and subsequently religated, creating an expression
vector containing the ORF encoding the US3 short isoform
(pBud/CAT/US3short).

Then plasmid pBud/CAT/US3long, pBud/CAT/US3short,
and control plasmid pBud/CAT/LacZ were transiently trans-
fected in 40 to 60% confluent SK-6 cells as specified by the
manufacturer (CellPhect transfection kit; Amersham Pharma-
cia Biotech AB). At 24 h posttransfection, the cells were para-
formaldehyde fixed and permeabilized with 0.1% Triton
X-100. Cells transfected with pBud/CAT/US3long or pBud/
CAT/US3short were identified by subsequent incubation with
anti-US3 monoclonal antibodies (kindly provided by L. Olsen
and L. W. Enquist, Princeton University, Princeton, N.J.),
and FITC-conjugated goat anti-mouse antibodies (Molecular
Probes). Cells transfected with the pBud/CAT/LacZ control
plasmid were identified by incubation with rabbit anti-chlor-
amphenicol acetyltransferase (CAT) antiserum (Invitrogen)
and FITC-labeled goat anti-rabbit secondary antibodies (Mo-
lecular Probes). For all types of transfected SK-6 cells, actin
filaments were stained using phalloidin-Texas Red. Finally,
stained SK-6 cells were mounted and analyzed by confocal
microscopy.

Transfection of both US3 isoforms resulted in heteroge-
neous localization of US3 in the cell. Since the localization of
US3 appeared to be important for its effect on the actin archi-
tecture, the intracellular US3 localization is discussed in more
detail before the effect of transfected US3 on the state of actin
stress fibers is discussed in the next paragraph. In the majority
(80%) of SK-6 cells transfected with the US3 long isoform,
US3 was located exclusively in a dotted pattern in the cyto-
plasm, while a significantly smaller group (20%) expressed
US3 in the cytoplasm as well as in the nucleus (Fig. 3C).
Double immunofluorescent stainings, performed by incubating
live transfected cells with the mitochondrion-specific probe
MitoTracker Red CMXRos (Molecular Probes) (45 min at
37°C) and subsequently with mouse anti-US3 antibodies
followed by FITC-conjugated goat anti-mouse antibodies,
demonstrated that the dotted pattern of US3 long isoform

localization in the cytoplasm perfectly colocalized with mito-
chondria (Fig. 3A). Cells transfected with the US3 short iso-
form also displayed a heterogeneous localization of US3, albeit
different from that observed in cells transfected with the US3
long isoform. In the majority (60%) of SK-6 cells transfected
with the US3 short isoform, US3 was localized predominantly
in the nucleus, whereas in the remaining 40% of the cells, it
was localized predominantly diffusely in the cytoplasm (Fig.
3C). Using MitoTracker Red CMXRos, we found that in con-
trast to the US3 long isoform, cytoplasmically localized US3
short isoform did not colocalize with mitochondria (Fig. 3B).
An explanation for the intriguing finding that US3 in cells
transfected with the US3 long isoform, but not in cells trans-
fected with the US3 short isoform, shows a strong mitochon-
drial targeting was found by computational analysis of the
amino acid sequences of the two US3 isoforms. A program
specialized in the detection of mitochondrial localization sig-
nals (6) revealed the presence of a 51-amino-acid N-terminally
located mitochondrial targeting signal in the US3 long isoform,
which is not present in the US3 short isoform. Furthermore,
this program determined that the predicted cleavage site of the
mitochondrial targeting signal is 3 amino acids upstream of the
US3 short-isoform ATG start codon.

Both in SK-6 cells transfected with the US3 long isoform and
in SK-6 cells transfected with the US3 short isoform, the state
of the actin stress fiber network correlated with the localization
pattern of US3. For cells transfected with the US3 long iso-
form, 72.3% � 4.5% of cells with exclusive localization of US3
in the mitochondria possessed intact stress fibers, a percentage
which is comparable to that for cells transfected with the con-
trol plasmid (78.1% � 2.4%) or nontransfected cells (81.7 �
3.8%) (Fig. 3C). However, only 31.7% � 3.8% of the cells that
showed substantial nuclear localization of US3 retained intact
stress fibers (Fig. 3C). Similarly, in cells transfected with the
US3 short isoform, 65.0% � 3.6% of cells with predominant
localization of US3 in the cytoplasm retained intact actin stress
fibers, a percentage which is slightly lower than that for cells
transfected with the control plasmid or nontransfected cells
(Fig. 3C). However, only 38.3% � 1.4% of the cells that ex-
pressed the US3 short isoform predominantly in the nucleus
retained intact stress fibers (Fig. 3C). Taken together, these
data indicate that in cells transfected with the US3 long or
short isoform, US3 can induce actin stress fiber breakdown
when it is abundantly localized in the nucleus.

Although our transfection data indicate that the US3 long
isoform and especially the short isoform are efficiently trans-
ported to the nucleus in the absence of a viral chaperone, no
known nuclear localization signal (NLS) was found in the
amino acid sequences of the two US3 isoforms by computa-
tional analysis (7). This indicates that US3 may travel to the
nucleus via a yet to be determined NLS or, alternatively, via
association with a cellular chaperone or substrate protein. A
putative NLS in the US3 protein is not likely to be very strin-
gent since in the absence of a viral background, the mitochon-
drial localization signal in the US3 long isoform is epistatic to
the putative NLS.

Our transfection data indicate that (i) nuclear localization of
recombinant US3 is important for mediating efficient actin
stress fiber breakdown and that (ii) the long isoform of US3 is
localized predominantly in mitochondria. To be able to relate
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these transfection findings to infected cells, localization of
PRV US3 and the state of actin stress fibers were examined at
different stages of PRV infection. To do this, NIA3-infected
cells, paraformaldehyde fixed at 0, 2, 6 and 10 h p.i., were
permeabilized and stained for both PRV US3 and actin fila-
ments. At 6 h p.i., almost all the cells had undergone stress
fiber breakdown and US3 was localized predominantly in the
nucleus. At 10 h p.i., US3 was localized in the nucleus as well
as diffusely in the cytoplasm (Fig. 4). At none of the examined
time points could colocalization between PRV US3 protein
and mitochondria be observed (data not shown). Thus, in
agreement with our transfection data, at the onset of actin
stress fiber breakdown in PRV-infected cells, the US3 S/T
kinase is localized predominantly in the nucleus.

It may be somewhat surprising that the strong mitochondrial
targeting of the PRV US3 long isoform cannot be detected in
infected SK-6 cells. The most obvious explanation would be
that in PRV-infected cells, the US3 long isoform constitutes
less than 5% of the total US3 protein content (32), possibly
resulting in microscopically undetectable levels of US3 in mi-
tochondria. Although we could not detect any US3 signal in
mitochondria in infected cells, it is hard to imagine that the
specific mitochondrial signal is totally irrelevant for US3 func-
tioning. Although the role of PRV US3 in preventing apoptosis
has not yet been studied, the mitochondrial localization of the
US3 long isoform may have significance in this context, since
several antiapoptotic proteins are located in mitochondria
(15). However, this hypothesis remains speculative, especially

FIG. 3. (A and B) Subcellular localization of US3 in SK-6 cells transfected with the gene encoding either the US3 long (A) or short (B) isoform.
At 24 h posttransfection, SK-6 cells were incubated with MitoTracker Red CMXRos (left panels), paraformaldehyde fixed, permeabilized, and
incubated with monoclonal anti-US3 antibodies and FITC-conjugated secondary antibodies (middle panels). Merged images are given in the right
panels. Localization of the US3 long isoform is either exclusively mitochondrial (row 1) or mitochondrial and nuclear (row 2), while localization
of the US3 short isoform is either predominantly cytoplasmic (row 1) or predominantly nuclear (row 2). (C) Actin architecture of US3-transfected
SK-6 cells. At 24 h after mock transfection or transfection with expression vectors encoding either the CAT reporter protein or the US3 long or
short isoform, cells were paraformaldehyde fixed, permeabilized, stained, and analyzed by confocal microscopy. The CAT reporter protein and US3
were stained by incubating cells with either anti-CAT or anti-US3 antibodies and subsequently with FITC-labeled secondary antibodies (top
panels), and actin filaments were stained using phalloidin-Texas Red (middle panels). The bottom panels show the percentage of cells with intact
actin stress fibers (100 cells were scored). Bar, 10 �m.
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since a similar mitochondrial targeting signal is totally absent
in HSV US3, a protein known to be an effective inhibitor of
apoptosis in specific cell types (14, 16, 18, 24).

Recently, Murata et al. transfected the HSV-2 orthologue of
the PRV US3 ORF, which is transcribed and translated as one
protein with a molecular mass of 66 kDa, in HEp-2 cells and
found that HSV-2 US3 inactivates JNK, a downstream target
protein of the Cdc42/Rac signaling pathway, and as a conse-
quence blocks this pathway (25). The Cdc42/Rac pathway reg-
ulates actin stress fiber assembly and disassembly, and HSV-2
US3-mediated negative modulation of this pathway was found
to result in actin stress fiber breakdown. Although it remains to
be determined whether HSV-2 induces stress fiber breakdown
during infection or whether HSV-2 US3 interference with the
Cdc42/Rac signalling pathway occurs during infection, these
data seem to be consistent with our current findings on PRV
US3. A possible explanation for the importance of nuclear
localization for PRV US3-mediated stress fiber breakdown
may then be found when extrapolating the above-mentioned
results for the HSV-2 orthologue (25). If PRV US3, like
HSV-2 US3, inactivates JNK, a key component of the Cdc42/
Rac pathway, and thereby induces stress fiber breakdown, nu-
clear localization of PRV US3 may be necessary to fulfill its
function. Indeed, translocation to the nucleus of some cellular
kinases, involved in actin assembly- and disassembly-regulating
pathways, is vital for fulfillment of many of their activities (1,
36). Importantly, activated JNK is translocated to the nucleus,
where it exerts its biological function (1). Hence, our data,
which suggest that US3 may cause actin stress fiber disassem-

bly, but only when it is localized predominantly in the nucleus,
may suggest that in the nucleus, PRV US3 competes with
cellular kinases that are implicated in actin stress fiber-con-
trolling pathways.

Besides the current findings on PRV US3-mediated actin
stress fiber breakdown, the PRV US3 S/T protein kinase has
been indicated to play important cell type-dependent roles in
virus egress from the nucleus and, recently, cell-to-cell spread
(23, 27, 33). Although the exact mechanism by which PRV US3
plays its role during cell-to-cell spread is still puzzling, it has
been hypothesized by Demmin et al. that certain viral proteins
required for cell-to-cell spread are modified by the PRV US3
S/T protein kinase (8). Our observation of US3-mediated actin
stress fiber breakdown may perhaps give an alternative expla-
nation for the role of PRV US3 in cell-to-cell spread. Indeed,
artificial disassembly of actin stress fibers in A431 cells by the
addition of TPA (12-O-tetradecanoylphorbol-13-acetate) has
been suggested to increase HSV-mediated cell-cell fusion (37).
Further research is necessary to evaluate the possible role of
PRV US3-mediated actin stress fiber breakdown in viral cell-
to-cell spread.

In summary, PRV US3 causes actin stress fiber disassembly
in different PRV-infected cells, as well as in US3-transfected
SK-6 cells, when localized in sufficient amounts in the nucleus.
Further work is necessary to elucidate the exact mechanism of
PRV US3-induced actin stress fiber breakdown as well as the
role of US3-mediated stress fiber breakdown in the virus life
cycle.
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